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Results: Application to speech learning data from Reetzke,
Xie, Llanos, and Chandrasekaran (2018) and a simulation
study demonstrate the utility of FLMEM and its many
advantages over linear and logistic mixed-effects models.
Conclusion: The FLMEM is highly flexible and efficient in
improving upon the practical limitations of linear models and logistic
linear mixed-effectsmodels. We expect the FLMEM to be a useful
addition to the speech, language, and hearing scientist’s toolkit.
Supplemental Material: https://doi.org/10.23641/
asha.7822568
Research in the speech, language, and hearing
sciences often involves longitudinal data analysis
(Jia, 2003; Reetzke et al., 2018). Whereas some

investigations focus on the developmental trajectories
of language learning across different groups (e.g., differ-
ences in learning one language vs. two languages in early
childhood; Bialystok, Luk, Peets, & Yang, 2010; Pearson,
Fernández, & Oller, 1993; Uccelli & Páez, 2007), others
focus on the benefits of new intervention strategies for pop-
ulations with various speech, language, and hearing impair-
ments over time (e.g., speech-in-noise hearing strategies for
older adults with hearing loss; Anderson, White-Schwoch,
Choi, & Kraus, 2014; Anderson, White-Schwoch, Parbery-
Clark, & Kraus, 2013; Burk & Humes, 2008). Trial-by-trial
data generated by such experiments are usually treated as
binary in nature (e.g., accuracy on a behavioral task),
recording whether the participants were successful in their
assigned task or not. The underlying “learning curve” may
then be defined as the average longitudinal trajectory of the
probability of success in the population of interest. In doing
so, it is important to accommodate the individual heteroge-
neity of the participants. For example, in studies examining
participant learning across time, one participant may take a
longer time to learn a given task relative to others (Wong,
Perrachione, & Parrish, 2007; Zatorre, 2013). The experi-
mental designs and scientific questions of interest thus natu-
rally give rise to mixed-effects models, where the primary
interest is in estimating the population-level learning curve
whereas secondary interests lie in inferring individual vari-
ability related to participant-level behavior.

Research employing mixed-effects models for infer-
ence in such data sets has focused primarily on linear
mixed-effects models or their many variants, including
analysis of variance models (Holt, Lee, Dowell, & Vogel,
2018; Ingvalson, Lansford, Fedorova, & Fernandez, 2017;
Jia, 2003; Moyle, Ellis Weismer, Evans, & Lindstrom,
2007), often implemented using the lme4 package in R.
Such models are, however, not very suitable for modeling
quantities with restricted supports, for example, probabilities.
In nonlongitudinal static settings, Jaeger (2008) promoted
the use of generalized linear models instead, specifically the
logistic mixed model. Such models regress logit-transformed
probabilities, which are no longer supported only on [0, 1]
but can technically take any value on the real line, on
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associated covariates using traditional linear mixed models.
An alternative data transformation is the arcsine function,
θ ¼ arcsin

ffiffiffi
p

p
. However, as noted in Warton and Hui (2011),

this transformation lacks both testing power and inter-
pretability. Moreover, this approach still does not solve
the problem of the support of the data. Transformed values
are in [−π/2, π/2], whereas a linear model formally requires
parameters supported on the real line.

The linearity assumption may, however, not satisfy even
in the transformed scale. In addition, the individual specific
variability may also vary over time. Ignoring these important
data features can result in unrealistic estimates of the popula-
tion, individual-level learning curves, and their uncertainties.

In this article, we address these shortcomings of linear
mixed-effects models and generalized linear mixed-effects
models by proposing and demonstrating the use of func-
tional logistic mixed-effects models (FLMEMs) for estimating
learning curves from longitudinal learning data. Functional
data analysis techniques are suited to scenarios when the
data and/or parameters can be viewed as functions varying
over some domain. For instance, in our motivating applica-
tions, the population or individual-level learning curves can
be naturally treated as functions of time. Functional statistics
arose from the seminal work of Ramsay and Silverman
(1997) and, in fact, was originally motivated by the study
of growth curves (Lairdl & Ware, 1982; Rice & Silverman,
1991). Most methods for functional data are designed for
smooth data on sparse grids as commonly encountered in
longitudinal settings. For a review, we refer to Morris (2015).
We adapt these techniques to the problem of learning curve
estimation, developing flexible hierarchical FLMEMs using
mixtures of splines (de Boor, 1978) that relax the restrictive
linearity and constant random effects variance assumptions
of traditional logistic mixed-effects models. Using data
from Reetzke et al. (2018) as a case study, we illustrate
the flexibility and efficiency of the proposed approach in
improving upon the practical limitations of current gold
standard analysis methods.

We adopt a Bayesian route to estimation and infer-
ence for the proposed approach (FLMEM). We compare
it to the popular models in the literature, such as linear
models, logistic linear mixed-effects models (LMEM) and
logistic mixed-effects models with higher order terms
(LMEM+), all implemented in a frequentist paradigm.
As opposed to its classical (or frequentist) counterpart, the
Bayesian paradigm treats the model parameters θ as random
variables and assigns a probability distribution p(θ), captur-
ing the “prior” belief about those parameters. Inference is
then based on the posterior p(θ | data) obtained by com-
bining the prior information with the likelihood evidence
p(data | θ) via Bayes’ rule as

p θ jdatað Þ ¼ p data j θð Þp θð Þ
p datað Þ : (1Þ

See Figure 1. This yields a coherent framework for estima-
tion and uncertainty quantification based on the information
encoded in the entire posterior probability distribution. For
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most realistic scenarios, the posterior is, however, not avail-
able in closed form. Inference is then typically based on
samples drawn iteratively from the posterior using Markov
chain Monte Carlo (MCMC) algorithms. For an introduc-
tion to Bayesian statistics, see Gelman et al. (2013).

The Bayesian approach offers a few practical advan-
tages over classical techniques. Typically, classical methods
estimate the parameters by maximizing the data likelihood.
Optimization methods may, however, not converge, espe-
cially in more complex models. The uncertainty of the esti-
mates is usually assessed using asymptotic results. Bayesian
methods, on the other hand, allow building complex models
in a hierarchical fashion. MCMC algorithms try to sto-
chastically explore the whole posterior probability space
and hence are typically less prone to getting stuck at local
optima, even in complex models. Point estimates of the
parameters and their finite sample uncertainty estimates
can be obtained directly out of the posterior samples. The
posterior credible intervals (see Figure 1) also have actual
probability interpretation, unlike frequentist confidence
intervals.

In the next four sections, we describe the published
speech learning experiment (Reetzke et al., 2018) used to
demonstrate the utility of FLMEM. Then, the FLMEM
is built in steps, starting with the linear mixed model. We
first describe results on the speech learning experiment and
then show the efficacy of the proposed method in a variety
of simulated settings. Concluding remarks sum up the
contributions of this work. Additional details, such as the
MCMC algorithm to fit the model and so forth, are dis-
cussed in the Supplemental Materials.
Speech Learning Experiment
In a recent experiment, the timescale of sensory plas-

ticity following speech learning in adulthood was assayed
using electroencephalography paired with an extensive,
individualized training paradigm (Reetzke et al., 2018). In
this experiment, 20 native English-speaking adults were
trained to categorize four Mandarin lexical tones: high-flat,
Tone 1; low rising, Tone 2; low dipping, Tone 3; and high
falling, Tone 4. On each trial of the experiment, participants
listened to a lexical tone stimulus binaurally presented over
Sennheiser HD 280 Pro circumaural headphones. Partici-
pants were instructed to categorize the stimulus into one
of four categories by pressing number keys on a computer
(1, 2, 3, or 4). Feedback was presented to the participant
based on the accuracy of their response (“right” vs. “wrong”).
Each individual participant was monitored until behavioral
performance comparable to native Chinese Mandarin–
speaking participants was achieved and maintained. Partic-
ipants were then “overtrained” for an additional 10 days.
Two months after training had ceased, participants returned
to examine the extent to which learning was “retained.” The
data presented here consist of learning curves of different
lengths across 20 participants, as participants varied in the
number of days it took them to reach native-like proficiency.
43–553 • March 2019



Figure 1. A graphical illustration of the Bayesian inferential regime: the prior (blue), the likelihood (red), and the
posterior (green). The dotted line marks the posterior mean. The shaded region shows a 95% credible interval.
Reetzke et al. (2018) computed individual-level empir-
ical estimates of the probabilities of success by counting
the proportion of successes of each participant each time he
or she was tested (see Figure 2). A large number of trials,
ni(t) = 180, were utilized to estimate these quantities with
precision. The empirical estimates do not accommodate
dependencies across adjacent time points or across estimates
corresponding to the same individual. Naturally, the empiri-
cal probability curves cannot capture the expected smooth
behavior of the underlying learning curves.
FLMEM
We use the data set from Reetzke et al. (2018) to illus-

trate different models and their relative advantages and
Figure 2. Subject-by-day empirical learning curves (n = 20) from
the speech training task. The gray region at the top shows the mean
accuracy level, along with its standard error limits, for native Chinese
participants (target criterion for learners); the dashed gray line at the
bottom indicates accuracy of categorizing an input tone into one of
four categories purely by random guess (25%). The emphasized black
line shows the trajectory of a representative participant across time.
disadvantages. Let yi(t) be the number of successes obtained
by the ith individual at time t in ni(t) trials, where i = 1, …,
n = 20 and t = 1, …, T = 17. In the speech learning experi-
ment, the successes correspond to the correct identification
of a presented Mandarin lexical tone as one of the four pos-
sible lexical tones. Letting the probability of success by the
ith person at the tth time point be denoted by πi(t), the trials
to be independent, the total number of successes in ni(t) tri-
als follows a binomial distribution as

yi tð Þ ∣ πi tð Þ ∼ Bin ni tð Þ; πi tð Þf g: (2Þ

We are interested in the population-level probability curve,
denoted as π(t) sans any individual specific subscript, and
how it evolves as the participants get trained over time.
In addition, we want to estimate the individual learning
curves πi(t) and quantify their variability around the popu-
lation baseline.

Linear Probability Models
One possible strategy to analyze the speech learning

data may be via a linear mixed-effects model for the prob-
abilities as

πi tð Þ ¼ β0 þ β1 tþ ui; ui ∼ fu uið Þ: (3Þ

Here, β0 and β1 are fixed regression coefficients, uis
are individual specific random effects distributed according
the zero mean probability law fu, typically assumed to be a
normal distribution with variance σ2u. The population-level
Paulon et al.: Functional Logistic Mixed Effects Models 545



average learning behavior is then obtained by integrating
out the random effects from the individual-level mixed
model as

π tð Þ ¼ ∫πi tð Þ fu uið Þ dui ¼ β0 þ β1 t: (4Þ

Introducing artificial error terms ϵi(t), the linear
mixed-effects model can be fitted to the empirical probabil-
ity estimates plotted in Figure 2, henceforth denoted by
π̂i tð Þ, as

π̂i tð Þ ¼ β0 þ β1 tþ ui þ ϵi tð Þ; (5Þ

where ϵi(t) are error terms explaining the additional varia-
tions in π̂i tð Þ, from the smooth linear curves πi(t). Such
practices are common in the current literature (Holt et al.,
2018; Ingvalson et al., 2017; Moyle et al., 2007; Reetzke
et al., 2018). Figure 3 shows the population-level estimate,
fitting the above model to the sound-to-category data using
the lme4 package in R.

The model clearly does not respect the restricted
parameter space. Probabilities can only lie in the interval
[0, 1]. The linear probability model suggests, however,
with sufficiently large values of t, π(t) can be made larger
than 1, and, for sufficiently small value of t, π(t) can be
made even negative. In the sound-to-category data set,
this actually happens well within the range of the observed
time points.
Figure 3. Population probability curve π(t) and its 95% conf
model applied to the empirical success probabilities in the s
estimates obtained by fitting a logistic linear mixed-effects m
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Logistic Mixed-Effects Models
Generalized linear mixed models alleviate the limita-

tions of linear probability models. The literature on gen-
eralized linear models, in particular logistic models, is
enormous (Agresti, 2002; Cox, 1958; Cox & Snell, 1989;
Dyke & Patterson, 1952). Jaeger (2008) provided an excel-
lent review written for speech and language researchers. A
logistic regression model can be viewed as a linear regres-
sion model, but on a transformed space. Specifically, in
our longitudinal setting, a logistic mixed-effects model
(LMEM) can be specified as

ln
πi tð Þ

1� πi tð Þ ¼ β0 þ β1 tþ ui; ui ∼ fu uið Þ: (6Þ

The probability πi(t) is then recovered from the model as

πi tð Þ ¼ exp β0 þ β1 tþ uið Þ
1þ exp β0 þ β1 tþ uið Þ ¼

1
1þ exp �β0 � β1 t� uið Þ :

(7Þ

The parameters πi(t) are now always restricted to be in
[0, 1] no matter how large or small t is. Logistic models are
thus much better suited to model binomially distributed
categorical data.

The population-level probabilities are obtained as
before—by integrating out the random effects from the
individual-level mixed model as
idence interval estimated by a linear mixed-effects
peech learning experiment (blue) superimposed over
odel (green).
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π tð Þ ¼ ∫πi tð Þ fu uið Þ dui ¼ ∫ exp β0 þ β1 tþ uið Þ
1þ exp β0 þ β1 tþ uið Þ fu uið Þ dui:

(8Þ

Unlike the linear case, however, the above integral cannot be
obtained in closed form for typical choices of random effects
distributions, including the normal family (Wang & Louis,
2003). For conventional normally distributed random effects,
an approximation is given in Zeger, Liang, and Albert (1988) as

π tð Þ ¼ ∫ exp β0 þ β1 tþ uið Þ
1þ exp β0 þ β1 tþ uið ÞNormal ui j 0; σ2u

� �
dui

≈
exp β∗0 þ β∗1 t

� �
1þ exp β∗0 þ β∗1 t

� � ;
where β∗0 ¼ β0= 1þ c2 σ2u

� �1=2
and β∗1 ¼ β1= 1þ c2 σ2u

� �1=2

with c ¼ 16
ffiffiffi
3

p� �
= 15πð Þ. Without the correction, the

population-level learning curve tends to get overestimated
(see Figure 4a).

The LMEM, though a significant improvement over
linear mixed models, is still very limited in its capacity to
model widely varying learning curves. The assumption
of linear regression on time cannot satisfy even in the logit-
transformed scale. In the example speech learning experi-
ment, for instance, the performances are generally poor at
the beginning of the study and then improve rapidly, but
never quite reach perfection. This hints at nonlinearity. A
linear model on the logit scale typically implies that accuracy
would rapidly reach 100%, as in Figure 4a. In particular,
the LMEM significantly overestimates the probability of
success in initial trials and then underestimates it for middle
trials, eventually overestimating it again for the final trials.
The estimates of the individual curves obtained by the

(9)
Figure 4. (a) Estimated population probability curve π(t) by the logistic line
correction (blue). The shaded areas are the 95% confidence intervals for th
three individuals and their 95% confidence intervals using the LMEM.
LMEM method (see Figure 4b) also show similar behavior
and are clearly heavily shape restricted. The probabilities
in the early trials are again grossly overestimated. See, for
example, the green and orange curves in Figure 4b. The
opposite effect is seen, in particular in the violet curve, which
is highly overestimated in the final trials. Mixed-effects
models with higher degree polynomial terms can capture
the residual variability, which is not explained by a simple
first-degree linear model. It is not clear, however, how
many terms should be included in such models. In the next
section, we discuss how splines, specifically piecewise poly-
nomial B-splines, can alleviate these problems by locally
adapting to different smoothness patterns.

In addition, the individual heterogeneity may also
vary over time. In the speech learning experiment, the per-
formances of the participants were generally poor early
in the study, and then their learning trajectories were quite
varied during middle trials, eventually all attaining high
success levels (because training was criterion dependent;
see Figure 4b). The equal variance assumption, however,
results in unrealistic uncertainty bounds around the estimates.
The confidence bands are all very wide for the early trials
even though empirical observation points to more homoge-
neous behavior in this phase of the experiment. They are
also unrealistically narrow in the final trials.

FLMEMs
To alleviate these limitations, we propose a Bayesian

model generalizing the LMEM to an FLMEM, that is,

ln
πi tð Þ

1� πi tð Þ ¼ μ tð Þ þ ui tð Þ: (10Þ

The term μ(t) corresponds to the linear function β0 + β1t in
Equation 6, but it is now a flexible function of t, that is, a
ar mixed-effects model (LMEM) method with (green) and without
e mean function π(t). (b) Individual specific probability curves for

Paulon et al.: Functional Logistic Mixed Effects Models 547



function that can adapt to different shapes other than lin-
ear. The terms ui(t)s, corresponding to ui in Equation 6,
are additive individual specific effects as before, but now
have the multiplicative structural form

ui tð Þ ¼ ξ tð Þ ηi; ηi eNormal 0; σ2η
� �

; (11Þ

where ξ(t) is another flexible function of t. This induces
a time-varying variance for the random effects because
var ui tð Þf g ¼ σ2u tð Þ ¼ ξ tð Þ2 σ2η. This multiplicative parame-
terization of the random effects is a functional version
of the “parameter expanded” model (Liu & Wu, 1999;
van Dyk & Meng, 2001), originally introduced to reduce
dependence among the parameters in a hierarchical model
and to improve MCMC convergence. A time-varying vari-
ance is important in order to model latent heterogeneity
among participants that can increase or decrease during
the study. The model described here has similarities with
the functional mixed-effects model proposed in Guo (2002)
and a generalization presented in Kliethermes and Oleson
(2014). The latter adopted a less statistically principled ap-
proach, introducing artificial errors to make computation
simpler while also using somewhat ad hoc random effects
structure.

As in the case of LMEM, the population-level learn-
ing curve is obtained as

π tð Þ ¼ ∫ exp μ tð Þ þ ui tð Þf g
1þ exp μ tð Þ þ ui tð Þf gNormal ui j 0; ξ tð Þ2 σ2η

� �
dui

≈
exp μ∗ tð Þ� �

1þ exp μ∗ tð Þf g ;

where μ∗ tð Þ ¼ μ tð Þ= 1þ c2 ξ tð Þ2 σ2η
n o1=2

with c ¼ 16
ffiffiffi
3

p� �
= 15πð Þ.

We now focus on modeling the functions μ(t) and
ξ(t) flexibly. In this work, we use weighted mixtures of
quadratic B-splines to model a generic function f(t) as
f tð Þ ¼ ∑J

j¼1bq; j tð Þ βj. Consider positive integers K and q,
denoting the number of intervals and the spline degree,
respectively. Partition a compact interval [a, b] into K sub-
intervals defined by knot points a = t1 = ⋯ = tq+1 < tq+2 <
⋯ < tq+K < tq+K+1 = ⋯ = t2q+K+1 = b. One can then con-
struct J = q + K spline basis functions of degree q, denoted
by Bq,J(t) = {bq,1(t), …, bq,J(t)}

T through a recursion rela-
tion given in de Boor (1978). See Supplemental Material
S2 for an illustration of quadratic (q = 2) basis functions.
The B-splines satisfy a local support property. Specifically,
bq,j(t) is supported only on [tj, tj+q+1]. This means flexible
functions f tð Þ ¼ ∑J

j¼1bq;j tð Þ βj can be modeled by varying
the spline coefficients β = (β1, …, βJ)

T. Large (positive or
negative) values of βj will lead to large (positive or negative)
values of f(t) on the local support of the associated spline
basis bq,j(t). Likewise, similar successive values of βj will
result in a flat region in f(t). See Supplemental Material S3
for an illustration.

(12)
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We thus model μ(t) flexibly with a mixture of
B-splines as

μ tð Þ ¼ ∑
J

j¼1
bq; j tð Þ βj: (13Þ

As mentioned in the introduction, we adopt a Bayesian
route to fit the FLMEM, assigning each parameter a prior
and inferring them from the posterior. The spline coeffi-
cients are assigned the smoothness-inducing prior

β ∣ σ2β ∼ MVNJ 0; σ2βP
�1

� �
σ2β ∼ Inv�Ga aβ; bβ

� �
:

(14Þ

Here, MVNJ(μ, P−1) denotes a J-dimensional multivariate
normal distribution with mean μ and precision P; Inv −
Ga(a, b) denotes an inverse gamma distribution with
shape parameter a and rate parameter b. Also, P = DTD,
where the (J − 2) × J matrix D is such that Dβ computes
the second differences in β. This prior thus penalizes
∑J

j¼1 ∇2βj
� �2 ¼ βTPβ, the sum of squares of second-order

differences in β (Eilers & Marx, 1996) and thus makes the
function smooth. The variance parameter σ2β is the smoothness-
inducing parameter—the smaller the value of σ2β, the stron-
ger the penalty and the smoother the function. It is assigned
an inverse Gamma hyperprior and inferred from the data.
The smoothness of the underlying function is thus data
adaptive and not fixed in advance. Analogously, we model
ξ(t) as

ξ tð Þ ¼ ∑
J

j¼1
bq; j tð Þ γi;

γ ∣ σ2γ ∼ MVNJ 0; σ2γ P
�1

� �
;

σ2γ ∼ Inv�Ga aγ; bγ
� �

:

Therefore, the fixed and random functional effects are
modeled in the same functional space (Guo, 2002). For the
variance of the random effects components ηi,, we specify
the prior

σ2η ∼ Inv�Ga
aη
2
;
aη
2

� �
: (16Þ

The computational strategy to fit the model is based
on the Pòlya-Gamma scheme proposed in Polson, Scott,
and Windle (2013). For the two smoothing parameters σ2β
and σ2γ, the prior is noninformative for small values of their
hyperparameters. Thus, we set aβ = bβ = aγ = bγ = 0.5.
Similarly, for the prior on σ2η, we use aη = 0.5. The algo-
rithm converges rapidly to the stationary distribution for
all of the parameters. Convergence and stationarity of the
chain were assessed by examining trace plots and using the
Geweke diagnostic criterion (Geweke, 1992). Further details

(15)
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are deferred to Supplemental Material S1. Moreover, a
sensitivity analysis on the hyperparameters has been per-
formed, and similar results were achieved.

We programmed in R interfaced with C++. In each
case, 7,500 MCMC iterations were run with the initial
2,500 iterations discarded as burn-in. For n = 20 and ni(t) =
80 for all i and all t, the computation time is less than 2 min.
An R package implementing our method, including an
instruction manual and demos, is available in the Supple-
mental Materials.

Figures 5, 6, and 7 summarize the results of the
FLMEM applied to the speech learning data. The popula-
tion learning curve π(t) estimated by the FLMEM looks
very different from the estimate obtained by the LMEM
(see Figure 5a). Being severely shape restricted, the LMEM
did not capture the rapid improvements early on and also
the plateaued performances later in the study. The FLMEM,
on the other hand, provides more realistic estimates, cap-
turing well the empirically observed patterns. On Day 1, for
example, the FLMEM estimates the population-level aver-
age success probability at π(t) = 0.45, whereas the LMEM
estimated it at 0.65—a difference of 0.20. The FLMEM esti-
mates quickly surpass the LMEM, and on Day 4, the esti-
mates by the FLMEM and the LMEM are approximately
0.80 and 0.90, respectively. Finally, on Day 17, the esti-
mates by the FLMEM and the LMEM are 0.95 and 0.99,
respectively. The estimates of individual learning curves
(see Figure 5b) have also greatly improved (compare with
Figure 4b), illustrating the flexibility of the FLMEM in
adapting to varying shapes.

The random effect variance is also not constant but
varies over time (see Figure 6). Figure 7 shows the esti-
mated random effects on Days 1 and 10 of the trials. These
figures provide strong evidence that the latent heterogeneity
Figure 5. (a) Estimated population probability curves π(t). The solid lines
effects model (green) and the functional logistic mixed-effects model (FL
intervals for the mean function π(t). (b) Individual specific probability curve
using the FLMEM.
is small early on but increases later, which, in turn, has
resulted in more realistic uncertainty bounds around the
estimates.

It is worth noting that the proposed model can be
reformulated as a traditional linear mixed-effects model.
See details in the Supplemental Materials. We could thus
try to fit these models using a frequentist approach imple-
mented in the lme4 package in R. Our experience with
such attempts suggests that they cannot converge, even in
the simpler LMEM case. The Bayesian approach and its
MCMC-based implementation, on the other hand, always
converged, providing very stable estimates of the parame-
ters and their uncertainties.

Testing
We may also be interested in formally testing various

hypotheses related to the behavior of the learning curves,
such as the extent to which (a) there is a significant dif-
ference in the population curve between two specific points
in time, (b) if an individual performs significantly differ-
ently at a two specific time points, or (c) if two individuals
perform significantly differently at a specific time point.
For the testing problem (a) above, θ = π(t1)− π(t2), whereas
for (b), θ = πi(t1) − πi(t2), and for (c), θ = πi(t1) − πj(t1) for
individuals i and j. Following Berger and Delampady
(1987), we can represent the problems generically as Hϵ

0 ¼
θj j < ϵ versus Hϵ

1 ¼ θj j > ϵ, where θ is the difference of in-
terest and ϵ represents its practical limits of significance.
MCMC-based implementation of our Bayesian method pro-
vides us with samples of the individual curves and the popu-
lation curve. The posterior distributions of the difference
between curves at particular time points are thus readily
available from the MCMC output, so are the estimates of
represent the estimates according to the logistic linear mixed-
MEM; red). The shaded areas are the 95% credible/confidence
s for three individuals and their 95% credible intervals, obtained

Paulon et al.: Functional Logistic Mixed Effects Models 549



Figure 6. The random effects standard deviation σu(t) and its 95% credible intervals.
the posterior probabilities, p Hϵ
0 j data

� �
. Specifically, we have

p Hϵ
0 j data

� � ¼ 1
G∑gI θ gð Þϵ �ϵ; ϵ½ �� �

, where G is the number
of MCMC iterations and θ(ɡ) is the sampled values at itera-
tion ɡ. We reject Hϵ

0 if p(H0|data) < α, a chosen level of
significance.

As a numerical example, say we are interested in test-
ing the extent to which, in our sound to category experiment,
the population curve is significantly different between the time
points t1 = 1 and t2 = 5 and then between t2 = 5 and t3 = 10
(see Figure 5a) with ϵ = 0.05. The probability p Hϵ

0 j data
� �

is
Figure 7. Posterior means (red dots) and 95% credible intervals (black lines
at time t = 1 (a) and t = 10 (b).
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then 0 in the first case and 0.626 in the second one, leading
to rejection of the null hypothesis in the first test but a failure
to reject in the latter.
Simulation Experiments
To illustrate the efficacy of the FLMEM in effi-

ciently recovering the population and individual-level
learning curves in general settings, we designed a simula-
tion study comparing its performance with two popular
) of the random effects ui arranged in increasing order of magnitude
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models: the LMEM and the LMEM+ (with higher order
terms up to the fourth order), both implemented using the
glmer function of the lme4 R package (Bates, Maechler,
Bolker, & Walker, 2014). In both models, we used random
effects for both intercept and slope. That is, we fitted the
model ln[πi(t)/{1−πi(t)}] = β0 + β1 t + γ0i +γ1i t for the lin-
ear case and ln[πi(t)/{1−πi(t)}] = β0 + β1 t + β2 t

2 + β3 t
3 +

β4 t
4 + γ0i + γ1i t for the polynomial case.

We simulated n = 20 learning curves at T = 20 time
points with ni(t) = 40 trials under eight possible scenarios,
with four possible choices for the true underlying function
μ(t) and two possible choices for ξ(t). In particular, for
μ(t), we tried (a) a linear function μ(t) = −2 + 0.7t, (b) a
quadratic function μ(t) = −1 + 0.02t2, (c) a step function
μ(t) = −2 ⋅ {t < 7.5} + 0.5 ⋅ {7.5 ≤ t < 12.5} + 5 ⋅ {t ≥
12.5}, and (d) an oscillatory function μ(t) = −2 + 0.5 t +
0.5 sin(t). For ξ(t), we tried (a) a constant ξ(t) = 1 and
(b) a linear ξ(t) = 0.5 + 0.224 t function. In all the exper-
iments, we set the true ση to be 0.8.

As a metric of goodness-of-fit, we measure how well
the population-level learning curve π(t) is recovered. In
particular, we use the mean integrated squared error (MISE).
The MISE for estimating f(t) by f̂ tð Þ is defined as

MISE ¼ E ∫ f tð Þ � f̂ tð Þ
n o2

dt
	 


: (17Þ

We estimate the MISE by averaging the estimated
integral across B simulated data sets as MISEest ¼
1
B∑

B
b¼1∑

N
i¼1Δi f tið Þ � f̂ tið Þ� �2

, where Δi = ti − ti−1 and

tif gNi¼1 are a set of grid points on the range of the data.
In Table 1, the reported estimated MISEs are based on
B = 50 simulated data sets.

In Table 1, one can see that FLMEM performs com-
petitively in comparison with logistic mixed-effects models
Table 1. Mean integrated squared error (MISE) between the true
population function π(t) and the estimated population function π(t)
estimated by the two models under different scenarios.

True π(t) True ξ(t)

MISE × 103

LMEM LMEM+ FLMEM

1 (a) 0.35 0.37 0.45
(b) 0.13 0.14 0.80

2 (a) 2.73 0.93 0.94
(b) 2.57 0.80 1.02

3 (a) 10.42 9.21 0.77
(b) 9.85 9.58 0.63

4 (a) 2.27 1.45 0.74
(b) 2.09 1.27 0.45

Note. Bold text denotes the models that are significantly outperforming
the others in each simulation scenario (see Supplemental Material S4
for further details). LMEM = logistic linear mixed-effects model;
LMEM+ = logistic mixed-effects models with higher order terms;
FLMEM = functional logistic mixed-effects models.
(LMEM) or LMEM+ even when the ground truth is linear
or quadratic. Moreover, as discussed throughout this arti-
cle, linearity is a highly unrealistic assumption for most
practical applications. In general, for nonlinear cases not
corresponding to simple polynomials, the FLMEM vastly
outperforms both the LMEM and the LMEM+. Supple-
mental Material S4 reports the distributions of the ISEs
under the eight possible scenarios.

Figures 8 and 9 correspond to the Simulation Sce-
nario 2(a). In Figure 8a, the estimate of the population learn-
ing curve π(t) is shown. For this example, data were generated
from an underlying quadratic function, and therefore, we
expect the FLMEM model to outperform the simpler
LMEM. The fit obtained via lme4 is, unsurprisingly, poor.
On the other hand, our model recovers the true population
learning curve very efficiently. In Figure 8b, three individ-
ual specific probability curves are displayed. Let us remind
the reader that we are comparing confidence intervals of
the simpler models LMEM and LMEM+ (obtained via
bootstrap using glmer) with credible intervals obtained
from the MCMC samples in the case of FLMEM. This is
necessary because the methods used to fit these models are
different (frequentist for the former, Bayesian for the latter).

Figure 9a shows the random effects posterior distri-
butions at the initial time t = 1. In Figure 9b, we report
the posterior distribution for the standard deviation of the
random effects as a function of time. Using a constant ran-
dom effect variance, we expect our model to recover the
true flat variance function σu = |ξ(t)|ση = ση. As we can
see, the estimated function σu(t) is flat, and its mean is
coherently close to σu. The loss of accuracy for large values
of t can be explained by the fact that, in that region, μ(t) is
large. Therefore, larger values of ui could yield to the same
implied probability of ≈1.
Discussion
The current state of the art in speech, language, and

hearing research for modeling data over various time points
is primarily dominated by linear and logistic mixed-effects
models. Traditional linear and logistic mixed-effects models
assume linearity in the observed or transformed logit scales
and also assume the random effects heterogeneity to remain
constant over time. We presented an approach, namely,
FLMEM, that relaxes these limitations by allowing more
flexible regression and variance models in the transformed
scale using smoothed mixture of B-splines. Moreover, the
Bayesian estimation procedure outlined in this article allows
a coherent framework for finite sample estimation and un-
certainty quantification.

We demonstrated the utility of the proposed FLMEM
in estimating learning curves using data from a recent speech
learning study and via a simulation experiment. Specifically,
we showed that the FLMEM is more flexible and efficient in
estimating individual- and population-level learning curves
across different time points relative to linear and generalized
linear mixed-effects models.
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Figure 8. Results for simulated data. (a) Estimated population probability curves π(t) superimposed over the truth (blue dashed line). The solid
lines represent the estimates according to the logistic linear mixed-effects model (green) and the functional logistic mixed-effects model
(FLMEM; red). The shaded areas are the 95% credible/confidence intervals for the mean function π(t). (b) Individual specific probability curves
for three individuals and their 95% credible intervals, obtained using the FLMEM.
The methods described here are broadly applicable
to speech, language, and hearing experiments wherein
repeated measures are collected from participants over time,
for example, not only in learning experiments (as demon-
strated here) but also in treatment paradigms, where the
focus is to capture both individual- and group-level treat-
ment gains over time (Anderson et al., 2014, 2013; Burk &
Humes, 2008). In the current article, we show that FLMEM,
when compared to linear and generalized linear mixed-effects
models, recovers the true population and the individual-level
learning curves and therefore may be very useful for meeting
Figure 9. Results for simulated data. (a) Posterior means (red dots) and 95
increasing order of magnitude. (b) Marginal posterior distribution for the ra
blue dashed line represents the true value.
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the goals of future researchers. In particular, as we have a
better understanding of sources of individual differences,
there is potential toward personalized approaches to learn-
ing. Such applications necessitate to accurately estimate the
population and single individuals, and we expect that our
model is well suited to take on the complexities of personal-
ized approaches.

Ongoing directions of research include the simulta-
neous modeling of success probabilities for each of the dif-
ferent input tones, as well as the accommodation of exogenous
covariates. These directions would allow us to understand the
% credible intervals of the random effects ui at t = 1, arranged in
ndom effects standard deviation σu(t) and its credible intervals. The
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learning process separately for the four phonemes at a much
deeper level than what is possible using existing methods.
Moreover, it is possible to incorporate exogenous covari-
ates in the model, as well as clustering curves into homoge-
neous latent subgroups and so forth.
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