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Purpose: Speech-evoked neurophysiological responses are
often collected to answer clinically and theoretically driven
questions concerning speech and language processing.
Here, we highlight the practical application of machine
learning (ML)–based approaches to analyzing speech-
evoked neurophysiological responses.
Method: Two categories of ML-based approaches are
introduced: decoding models, which generate a speech
stimulus output using the features from the neurophysiological
responses, and encoding models, which use speech
stimulus features to predict neurophysiological responses.
In this review, we focus on (a) a decoding model classification
approach, wherein speech-evoked neurophysiological
responses are classified as belonging to 1 of a finite set of
possible speech events (e.g., phonological categories), and
(b) an encoding model temporal response function approach,
which quantifies the transformation of a speech stimulus
feature to continuous neural activity.
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Results: We illustrate the utility of the classification
approach to analyze early electroencephalographic (EEG)
responses to Mandarin lexical tone categories from a
traditional experimental design, and to classify EEG
responses to English phonemes evoked by natural
continuous speech (i.e., an audiobook) into phonological
categories (plosive, fricative, nasal, and vowel). We also
demonstrate the utility of temporal response function to
predict EEG responses to natural continuous speech
from acoustic features. Neural metrics from the 3 examples
all exhibit statistically significant effects at the individual
level.
Conclusion: We propose that ML-based approaches can
complement traditional analysis approaches to analyze
neurophysiological responses to speech signals and provide
a deeper understanding of natural speech and language
processing using ecologically valid paradigms in both
typical and clinical populations.
S peech-evoked neurophysiological responses provide
information about the neural mechanisms underlying
the sensory encoding of the speech signal. They are of

great value to researchers and clinicians in the fields of speech,
language, and hearing sciences (Martin, Tremblay, & Korczak,
2008; Skoe & Kraus, 2010). Machine learning (ML)–based
approaches have become increasing popular, particularly
among researchers in the neuroscience of speech and language,
in analyzing many different types of speech-evoked neuro-
physiological data from recordings via invasive techniques
such as electrocorticography (Golumbic et al., 2013; Mes-
garani & Chang, 2012; Moses, Leonard, & Chang, 2018)
and noninvasive techniques such as magnetoencephalogra-
phy (MEG; e.g., Brodbeck, Presacco, & Simon, 2018; Ding
& Simon, 2012a, 2012b) and electroencephalography (e.g.,
Broderick, Anderson, Di Liberto, Crosse, & Lalor, 2018;
Di Liberto & Lalor, 2017; Di Liberto, O’Sullivan, & Lalor,
2015; Di Liberto, Peter, et al., 2018; Khalighinejad, Cruzatto
da Silva, & Mesgarani, 2017; Llanos, Xie, & Chandrasekaran,
2017; Xie, Reetzke, & Chandrasekaran, 2018; Yi, Xie,
Reetzke, Dimakis, & Chandrasekaran, 2017).

Recent advances in ML-based analysis techniques
have led to an emerging paradigm shift in the study of
speech and language processing with natural stimuli beyond
simplified, controlled stimuli in traditional experimental
designs (Hamilton & Huth, 2018). Natural stimuli offer vari-
ous advantages over simplified, controlled stimuli to shed
light on the neural mechanisms underlying speech and lan-
guage processing (Hamilton & Huth, 2018; Wöstmann,
Fiedler, & Obleser, 2017). Nevertheless, the application
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of ML-based approaches for natural stimuli is still limited
in the fields of speech, language, and hearing sciences.
Therefore, we present the current review to highlight the
practical utility of ML-based approaches to analyze
speech-evoked neurophysiological responses, with the aim
that researchers and clinicians would consider ML-based
approaches and natural stimuli in future assessments of
speech and language processing.

We will first introduce the major categories of ML-
based approaches and outline the general steps for ML-based
analysis. Then, we will demonstrate two applications of
ML-based approaches to analyze speech-evoked neuro-
physiological responses. The first application involves
electroencephalographic (EEG) responses to simplified,
controlled speech stimuli from a traditional experimental
design (Xie et al., 2018). Similar designs have dominated
research in the fields of hearing, speech, and language
(Martin et al., 2008; Skoe & Kraus, 2010; Tremblay, Friesen,
Martin, & Wright, 2003). The second application focuses
on EEG responses evoked in response to natural continu-
ous speech. To demonstrate each analysis application, we
highlight the advantages of ML-based approaches over tra-
ditional approaches. Finally, we discuss the clinical utility of
ML-based approaches and natural stimuli, summarizing
the advantages and limitations of ML-based approaches.
We conclude with recommended improvements for the
ML-based analysis approaches presented in the current
review.
ML-Based Approaches
Two Major Categories of ML-Based Approaches

ML-based approaches to analyze speech-evoked
neurophysiological responses fall into two broad categories:
decoding models and encoding models. The decoding
models generate a speech stimulus output using the fea-
tures from the neurophysiological responses, whereas the
encoding models use speech stimulus features to predict
neurophysiological responses. Decoding models can be fur-
ther delineated into two distinct categories: classification and
reconstruction. In a classification approach, speech-evoked
neurophysiological responses are classified as belonging to
one of a finite set of possible speech events (e.g., phonological
categories). In a reconstruction framework, speech-evoked
neurophysiological responses are used to reconstruct con-
tinuously varying features (e.g., temporal envelope) of the
speech stimulus to match the original speech features.
For a comprehensive overview of decoding and encoding
models used in neurophysiological experiments, see Holdgraf
et al. (2017).
General Steps to Implement ML-Based Approaches
Here, we summarize the general steps to implement

decoding and encoding models in the context of analyzing
speech-evoked neurophysiological responses based on
Holdgraf et al. (2017).
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Step 1: Extraction of input and output features. For
both decoding and encoding models, a representation of
the speech stimulus and the neurophysiological signal needs
to be estimated. In decoding models, the representation of
the neurophysiological signal is used as the input and the
speech stimulus representation as the output, and vice versa
for encoding models. Examples of speech stimulus rep-
resentation have been used, including acoustic features
such as the amplitude envelope or speech-specific features
such as phonemes and phonetic features (Di Liberto &
Lalor, 2017; Di Liberto et al., 2015; Di Liberto, Peter, et al.,
2018), and lexical–semantic features (Broderick et al., 2018).
The representation of neurophysiological signals is often
a derivation of the raw neurophysiological signals, such
as time-varying amplitude in a frequency band (e.g.,
Broderick et al., 2018; Di Liberto & Lalor, 2017; Di
Liberto et al., 2015; Di Liberto, Peter, et al., 2018),
fundamental frequency (F0; Llanos et al., 2017), and spectral
magnitude (Yi et al., 2017). For multiple-channel neuro-
physiological data, the choice of a particular set of channels
can also be considered as part of the representation of the
neurophysiological signals. The choice of features from
the speech stimulus and neurophysiological signal gener-
ally underlies assumptions regarding particular levels of
speech and language processing that are reflected in the
neural responses (Di Liberto et al., 2015).

Step 2: Model selection and cross-validation. A model
is selected to quantify the relationship between speech stim-
ulus features and neurophysiological response features.
The choice of model determines the type of relationship
that can be represented between these features. In the
decoding models, the model maps the neurophysiological
response features to speech stimulus features, and vice
versa for the encoding models. The selected model is fitted
with some example data (i.e., training data set) to find an
optimal model that yields the least error between the
predicted estimates (e.g., predicted neurophysiological re-
sponses) and the corresponding original data (e.g., actual
neurophysiological responses). Once the model has been
estimated, the optimized model is validated to see how
well it generalizes to novel example data (i.e., testing
data set). The ability of the optimized model to general-
ize to the testing data set (i.e., model predictive score) is
used to index the quality of neural processing of speech
signals.

In practice, the model estimation and validation pro-
cesses are conducted within a data set containing data from
a single participant or a group of participants. A proportion
of the data (i.e., training data set) is selected for model esti-
mation, and another proportion is “held out” (i.e., testing
data set) and used for model validation. These processes
are repeated until all the data have been used for model
estimation and validation and are often referred to as model
cross-validation. The performance of the fitted model is
averaged across all instances of validation.

It is critical to evaluate the extent to which a model’s
predictive score is statistically significant. Permutation
tests have often been used to fulfill this purpose (Good,
87–601 • March 2019



2013; Ojala & Garriga, 2010). Generally, an empirical
null distribution of predictive scores is derived by modeling
the relationship between a pseudoversion of the speech
stimulus features and the actual neurophysiological re-
sponse features, or between the actual speech stimulus
features and a pseudoversion of the neurophysiological re-
sponse features. This can be achieved by mismatching the
speech stimulus and neurophysiological response features
(e.g., assigning incorrect speech stimulus to the neuro-
physiological responses) or disrupting the inherent struc-
tures of the speech stimulus or neurophysiological response
features (e.g., randomizing the timing of the speech stimulus
or neurophysiological response feature values). Then, the ac-
tual model predictive score is tested against the null distri-
bution. The p value can be estimated using the formula:
p = (a + 1) / (n + 1) (Phipson & Smyth, 2010), where a is
the number of predictive score from the null distribution
that exceeds the actual predictive score and n is the total
number of predictive scores from the null distribution.

Step 3: Model inspection and interpretation. One may
evaluate the model parameters to gain insight into the rela-
tionship between stimulus speech features and neurophys-
iological activity (e.g., Di Liberto et al., 2015; Yi et al.,
2017). The model parameters may be compared across ex-
perimental conditions or participants (Crosse, Butler, &
Lalor, 2015; Di Liberto, Crosse, et al., 2018; A. E. O’Sullivan,
Crosse, Di Liberto, & Lalor, 2017; J. O’Sullivan et al., 2014).
For example, the magnitude of model weights may be used to
index the strength of neural responses to the evoking stimulus
speech features (e.g., Crosse et al., 2015; Di Liberto, Crosse,
et al., 2018).

In the next sections, we illustrate two applications of
decoding and encoding models to analyze speech-evoked
neurophysiological responses. We focus on the first two
steps outlined above, because for Step 3, the model param-
eters are not always straightforward to interpret and are
largely dependent on the chosen model (Holdgraf et al.,
2017). However, we want to emphasize to the reader that
this is not a trivial step.
Application 1: Speech-Evoked EEG Responses
From a Traditional Experimental Design
Speech-Evoked Neurophysiological Responses
From Traditional Designs

In many, if not most, neurophysiological studies on
speech processing, researchers have typically characterized
neural responses to a limited set of repetitive, temporally
isolated speech sounds that vary along a limited number
of dimensions (Martin et al., 2008; Skoe & Kraus, 2010;
Tremblay et al., 2003). This is mainly due to the constraints
imposed by noninvasive neurophysiological recordings
from humans. Neural responses from noninvasive neuro-
imaging modalities are susceptible to physiological noise. To
overcome the poor signal-to-noise ratio, hundreds (or even
thousands) of neural responses to repetitively presented
Xie
stimuli are averaged together to provide an estimate of
the neural response.

Speech-evoked neurophysiological responses from these
traditional experimental designs provide invaluable insight
on the processing of speech signals throughout the auditory
system and are of great value to clinicians in the prevention,
diagnosis, and rehabilitation of communicative deficits or
disorders (Martin et al., 2008; Skoe & Kraus, 2010). For ex-
ample, the frequency-following response (FFR), an electro-
physiological response that reflects phase-locked activity to
the physical properties of acoustic signals (Bidelman, 2015;
Chandrasekaran & Kraus, 2010; Marsh, Worden, & Smith,
1970; Moushegian, Rupert, & Stillman, 1973; Skoe &
Kraus, 2010; Smith, Marsh, & Brown, 1975; Worden &
Marsh, 1968), has been widely adopted by researchers and
clinicians. The scalp-recorded FFR provides a noninvasive
window into the neural encoding of speech signals along
the initial stages of the auditory pathway (Chandrasekaran
& Kraus, 2010; Krishnan, 2002; Krishnan, Xu, Gandour,
& Cariani, 2004; Skoe & Kraus, 2010). Researchers have
used the FFR to index the integrity of early sensory encod-
ing and how the fidelity of the FFR may relate to different
speech and language abilities in a variety of populations,
including children with developmental disorders (Russo,
Nicol, Trommer, Zecker, & Kraus, 2009; Russo et al., 2008;
White-Schwoch et al., 2015), older adults with hearing
disorders (Anderson, Parbery-Clark, White-Schwoch,
Drehobl, & Kraus, 2013), and normal aging adults (Anderson,
White-Schwoch, Parbery-Clark, & Kraus, 2013).

In the next sections, we present the FFR as an exam-
ple to demonstrate the application of ML-based approaches
to analyze speech-evoked neurophysiological responses from
traditional designs. It can be assumed that similar ML-
based approaches can be applied to other types of speech-
evoked neurophysiological responses from traditional
designs.
Advantages of ML-Based Approaches
Prior work has demonstrated the feasibility of decod-

ing models, specifically the classification approach, to
characterize FFRs evoked by segmental speech features (e.g.,
vowels; Sadeghian, Dajani, & Chan, 2015; Yi et al., 2017)
and suprasegmental speech features (e.g., linguistically
relative pitch patterns; Llanos et al., 2017; Reetzke, Xie,
Llanos, & Chandrasekaran, 2018; Xie et al., 2018).

A major motivation to characterize speech-evoked
FFRs with ML-based approaches is to improve experimen-
tal efficiency by reducing the number of trials needed to
evoke a meaningful brain response and, in turn, to shorten
overall experimental time and minimize fatigue in partici-
pants. Because of the posited brainstem site of origin of the
FFR (Bidelman, 2015; Chandrasekaran & Kraus, 2010;
Smith et al., 1975), FFRs are small in magnitude and, in
turn, have relatively low signal-to-noise ratio at the single-
trial level. As a result, the extant studies typically rely on
FFRs averaged across thousands of trials (Skoe & Kraus,
2010). In contrast to these prior studies, our recent work
et al.: Machine Learning for Speech-Evoked EEG Responses 589



has demonstrated the feasibility of classifying FFRs to
vowel stimuli on a single-trial basis. Reliable classification
performance can be achieved with as low as 50 trials per
vowel stimulus (Yi et al., 2017). Most recently, we have
successfully implemented support vector machines (SVMs), a
widely used ML algorithm in the EEG literature (Garrett,
Peterson, Anderson, & Thaut, 2003; Lotte, Congedo, Lécuyer,
Lamarche, & Arnaldi, 2007; Subasi & Gursoy, 2010), to
classify FFRs to Mandarin lexical tones averaged across
less than 100 trials, contributing to a better understanding
of the impact of cross-modal attention and online stimulus
context on the FFRs (Xie et al., 2018).

Despite the use of less trials, the neural metrics de-
rived from these decoding models demonstrate robust
degree of convergence with metrics based on traditional
analyses of FFRs (Llanos et al., 2017; Xie et al., 2018).
For example, Llanos et al. (2017) utilized a hidden Markov
model to classify Mandarin lexical tone categories using the
F0 of FFRs in native and nonnative speakers of Mandarin
Chinese. Extensive prior work with traditional analyses
that quantify the similarity in F0 between FFRs and
the evoking Mandarin tones has revealed that the neural
tracking of F0 is more robust in native relative to nonnative
speakers of Mandarin Chinese (e.g., Bidelman, Gandour,
& Krishnan, 2011; Krishnan, Xu, Gandour, & Cariani,
2005; Xie, Reetzke, & Chandrasekaran, 2017). Consistent
with these findings, Llanos et al. found higher classification
accuracy of the FFRs in native speakers of Mandarin
Chinese, compared to nonnative speakers, even when FFRs
were averaged across only about 100 trials.
A Demonstration of ML-Based Approach to
Analyze FFRs
Sample Data Set

The FFR data for this demonstration are from a
study on the effects of visual attention and auditory predict-
ability on the FFRs carried out by Xie et al. (2018). This
data set consists of FFRs to three linguistically relevant
pitch patterns (Mandarin tones: T1, high-level; T2, low-
rising; T4, high-falling) in a group of 20 young adult native
speakers of Mandarin Chinese (nine women and 11 men,
19–35 years old). All participants had normal hearing
(defined as having pure-tone thresholds of ≤ 25 dB HL
for octaves from 250 to 4000 Hz and less than 15 dB dif-
ference between the two ears at each frequency) and normal
or corrected-to-normal vision. All participants reported
having no previous history of hearing problems or neuro-
logical disorders.

In this study, each participant completed a visual let-
ter search task with high (target similar to distractors) or
low (target dissimilar to distractors) perceptual load, with
concurrent Mandarin tones presented in either a predict-
able (i.e., tones were presented in blocks within which each
tone was presented repetitively) or variable (i.e., the tones
were presented in a random order) context. Participants
were instructed to ignore the sounds and focus their attention
590 Journal of Speech, Language, and Hearing Research • Vol. 62 • 5
on the visual task. They were required to respond to the
visual task as quickly and accurately as possible.

To accommodate the constraints of the visual tasks,
FFRs to each Mandarin tone were averaged across only
about 95 trials (of 96 possible trials) in each condition, the
number of which is far fewer compared to prior work (sev-
eral hundreds to thousands; e.g., Krishnan et al., 2004,
2005; Xie et al., 2017). The FFRs were recorded using a
vertical montage of four electrodes (active, ~Fpz; reference,
linked mastoids; ground, midforehead) at a sampling rate
of 25 kHz. After data collection, the FFR data were band-
pass filtered from 80 to 2500 Hz (12 dB/octave, zero phase
shift) to predominantly highlight subcortical responses
(Bidelman & Alain, 2015; Musacchia, Strait, & Kraus,
2008). The bandpass filtered FFR responses were segmented
with a time window of −40 to 150 ms (0 ms corresponds to
the onset of the Mandarin tones), and baseline corrected
to the prestimulus region (i.e., −40 to 0 ms). The artifact-
contaminated trials were rejected, defined as having ampli-
tudes exceeding the range of ± 50 μV. The remaining
artifact-free trials were averaged to produce one sample
response for each tone in each condition. To improve com-
putational efficiency, the averaged FFRs were down-sampled
to 5 kHz.

A Decoding Model Approach
In this demonstration, we chose the classification ap-

proach to model speech-evoked FFRs. We used a linear
SVM algorithm (model) to classify EEG signals (Garrett
et al., 2003; Lotte et al., 2007; Subasi & Gursoy, 2010).
There are several advantages associated with SVM: generally
better classification performance than many other algorithms
(Kotsiantis, Zaharakis, & Pintelas, 2007; Lehmann et al.,
2007) and the ability to deal with data with a large number
of features but relatively lower number of training examples
(Kotsiantis et al., 2007). Note that the linear SVM in its
standard form can only classify (or discriminate) data of
two classes. To handle N (> 2) classes, the linear SVM
was modified using a “one-against-one” approach. Specifi-
cally, the linear SVM constructed N(N − 1) / 2 classifiers,
one for each pairwise combinations of the N classes. Each
classifier assigned one vote for its preferred class, and the
class with the highest votes across all the classifiers was
taken as the classified class. In the following paragraphs,
we summarize how SVM is implemented to analyze FFRs
to speech stimuli and highlight relevant findings.

The analysis goal is to classify FFRs into the corre-
sponding Mandarin tone categories (T1, T2, and T4). This
analysis approach has been reported in Xie et al. (2018).

Step 1: Extraction of input and output features. In
this analysis, the input (EEG) features are amplitude values
of the FFRs from 10 to 110 ms (after stimulus onset).
The output (speech stimulus) features are the Mandarin
tone categories (T1, T2, and T4).

Step 2: Model selection and cross-validation. As
mentioned above, the SVM was selected to map the
FFR amplitude values to the tone categories. The cross-
validation procedures are illustrated in Figure 1. A fourfold
87–601 • March 2019



Figure 1. Procedures to implement a decoding model using linear support vector machines (SVMs) to analyze frequency-following responses
(FFRs) to linguistically relevant pitch patterns (Mandarin tones): T1, high-level; T2, low-rising; T4, high-falling. This SVM analysis approach
was reported in Xie et al. (2018). Leave-one-fold-out: The linear SVM classifier (model) is estimated with three of the four folds to classify
FFRs into one of the three tone categories and is validated to see how well it can generalize to FFR data in the held-out fold. Decoding
accuracy reflects the percentage that the SVM model correctly identified the tone categories across the four FFR folds.
cross-validation strategy with 5,000 iterations was adopted
in the current example. In each iteration, the FFR data were
first randomized based on the order of participants and
then divided into four consecutive folds (i.e., four subgroups,
each contains FFR data from five unique participants). Three
of four folds were selected as the training data set for model
estimation, and the hold-out fold was selected as the testing
data set for model validation. This process was repeated
four times until all the four folds had served as the testing
data set. The predictive score of the fitted SVM model was
quantified as decoding accuracy, which reflects the percent-
age that the model correctly identified the tone categories
across the four FFR testing data set. The whole processes
were iterated 5,000 times to derive 5,000 decoding accuracy
values. The right (red) histogram in Figure 2A displays the
decoding accuracies of a fitted SVM model in one experi-
mental condition. A contingency table (also called confusion
Figure 2. An example of results for implementing a decoding model using lin
responses (FFRs) to speech stimuli. The data were taken from Xie et al. (20
decoding accuracy (n = 5,000) derived from permutation tests. The right
accuracy (n = 5,000; actual distribution). The black vertical dashed line in
the actual distribution is higher than the 99th percentile in the null distribu
significant at an alpha value of .01. (B) A contingency table (also called con
decoding analysis. Each column corresponds to the true tone category, an
and the numbers of a given cell denote the occurrence of a predicted tone
category (i.e., probability).

Xie
matrix) of the true versus predicted tone categories from
the decoding analysis was also presented in Figure 2B.

We then evaluated the extent to which obtained decod-
ing accuracy was statistically significant. We adopted the
permutation test described above. First, an empirical null
distribution of decoding accuracies was derived using the
same procedures to derive the actual decoding accuracies,
except that the SVM model was trained with the FFRs that
were associated with the randomly assigned tone categories.
The left (black) histogram in Figure 2A displays an exam-
ple null distribution of decoding accuracies from the
same condition as above. Then, the p value was estimated
using the formula: p = (a + 1) / (n + 1) (Phipson & Smyth,
2010), where a is the number of decoding accuracies from
the null distribution that exceeds the median of the actual
distribution of decoding accuracies and n is the total num-
ber of decoding accuracies from the null distribution. In the
ear support vector machines (SVMs) to analyze frequency-following
18). (A) The left (black) histogram represents the null distribution of
(red) histogram represents the distribution of the actual decoding
dicates the 99th percentile in the null distribution. If the median of
tion, it indicates that the actual decoding accuracy is statistically
fusion matrix) of the true versus predicted tone categories from the
d each row corresponds to the predicted tone category. The shade
category in proportion to the total instances of a given true tone

et al.: Machine Learning for Speech-Evoked EEG Responses 591



current example, the p value is 1.9996 × 10−4, which is be-
low .001, suggesting that the actual decoding accuracy was
statistically significant.

Decoding Model Approach Versus Traditional
Analysis Approaches

With the above decoding model approach, we obtained
decoding accuracies for all four experimental conditions
(2 [visual perceptual load: high or low] × 2 [auditory stimu-
lus context: predictable or variable]). As reported in Xie
et al. (2018), the decoding accuracies from the four condi-
tions were all significantly above chance. For the predictable
auditory context, decoding accuracies were significantly
higher in the low visual load condition (Mdn = 76.67%,
99th percentile = 83.33%) relative to the high-load condition
(Mdn = 60%, 99th percentile = 68.33%). However, for the
variable auditory context, decoding accuracies were sig-
nificantly lower in the low visual load condition (Mdn = 65%,
99th percentile = 73.33%) relative to the high-load condi-
tion (Mdn = 76.67%, 99th percentile = 85%).

As a comparison, we also adopted the traditional ap-
proaches to evaluate the fidelity of neural tracking of F0
contour in the Mandarin tones as reflected by the FFRs.
As reported in Xie et al. (2018), we calculated two widely
utilized metrics to assess the F0 tracking accuracy: stimulus-
to-response correlation, which quantifies the similarity of F0
between the stimulus and the evoked FFR, and peak auto-
correlation, which quantifies the degree of periodicity in
the FFR data. For the stimulus-to-response correlation
metric, we found that, for the predictable auditory context,
the mean stimulus-to-response correlation was significantly
higher in the low-load condition relative to the high-load
condition (p < .05), but for the variable auditory context,
the mean stimulus-to-response correlation was not signifi-
cantly different between two load conditions (p > .05).
For the peak autocorrection metric, we did not find any
significant effect of visual perceptual load, auditory stimu-
lus context or their interaction (all ps > .05). Thus, results
from the decoding model approach and the traditional
analyses are partially consistent.

Application 2: EEG Responses to Natural
Continuous Speech
Advantages of Natural Continuous Stimuli Over Simplified,
Controlled Stimuli

The use of simplified, controlled stimuli has a long
tradition of utility and continues to dominate speech and
language function research. These stimuli are typically a
limited set of isolated speech sounds that differ on a limited
number of dimensions (Martin et al., 2008; Skoe & Kraus,
2010; Tremblay et al., 2003). There is currently a surge of
interest in the study of speech and language processing using
natural stimuli in place of simplified, controlled stimuli. These
studies have mainly focused on the cortical processing of
speech signals (Broderick et al., 2018; Di Liberto & Lalor,
2017; Di Liberto et al., 2015; Di Liberto, Peter, et al., 2018;
Fuglsang, Dau, & Hjortkjær, 2017; Khalighinejad et al.,
592 Journal of Speech, Language, and Hearing Research • Vol. 62 • 5
2017; Kong, Mullangi, & Ding, 2014; Kong, Somarowthu,
& Ding, 2015; Mirkovic, Debener, Jaeger, & De Vos, 2015;
J. O’Sullivan et al., 2014; Power, Colling, Mead, Barnes,
& Goswami, 2016; Power, Foxe, Forde, Reilly, & Lalor,
2012; Puschmann et al., 2017), and some recent work has
extended the paradigms to examine processing at auditory
subcortical levels (Forte, Etard, & Reichenbach, 2017;
Maddox & Lee, 2018).

Neural responses to natural speech stimuli have often
been proposed to be an objective neural measure of speech
intelligibility (e.g., Di Liberto, Crosse, et al., 2018; Ding &
Simon, 2014; Vanthornhout, Decruy, Wouters, Simon, &
Francart, 2018). For example, Vanthornhout et al. (2018)
showed that EEG metrics reflecting the neural processing
of speech envelope in natural continuous speech correlated
with a behavioral measure of speech intelligibility (i.e., speech
reception threshold, the signal-to-noise ratio yielding 50%
intelligibility) on the same speech stimuli. Furthermore, re-
cent studies have begun to probe what specific psycholinguis-
tic processes are encoded by the neurophysiological responses
to natural continuous speech (e.g., Brodbeck et al., 2018;
Broderick et al., 2018; Di Liberto et al., 2015). For exam-
ple, Broderick et al. (2018) estimated an encoding model
that maps semantic dissimilarity features from continuous
natural speech to the corresponding EEG responses. The
estimated model weights shared characteristics (e.g., time
course and topographic distribution) with the N400, a com-
ponent of the event-related potential (ERP) that is thought
to reflect semantic processing (Kutas & Federmeier, 2011;
Lau, Phillips, & Poeppel, 2008). Furthermore, the model
weights significantly correlated with the N400 amplitude.
Hence, the neural metric derived from the encoding model
may reflect semantic processing of natural speech.

According to Hamilton and Huth (2018), natural
stimuli offer at least three advantages over simplified, con-
trolled stimuli from traditional experimental designs. The
first advantage is generalizability. Traditional experimental
designs typically use a limited set of isolated phonemes/
syllables (e.g., Tremblay et al., 2003; Xie et al., 2018; Yi
et al., 2017), words (e.g., Galbraith, Arbagey, Branski,
Comerci, & Rector, 1995; Marinkovic et al., 2003), or
sentences (e.g., Aiken & Picton, 2008; Friederici, Pfeifer,
& Hahne, 1993). These stimuli, as well as the tasks that im-
posed these stimuli (e.g., judging whether a sentence was
syntactically correct), are usually uncommon in real-life
settings. Hence, in contrast to traditional designs, research
with natural stimuli may better generalize to speech and
language processing in ethological settings. Consistent with
this argument, for example, Bonte, Parviainen, Hytönen,
and Salmelin (2006) suggests that neural responses to speech
units (e.g., syllables) embedded in continuous speech
are different when they are presented in isolation (even
though the stimuli are identical).

The second advantage is the ability to directly com-
pare effect sizes across studies on different levels of speech
and language features. This can be achieved by instantiat-
ing each effect as a model to predict the neurophysiological
responses evoked by the same, natural stimulus data set.
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The fraction of variance in the neurophysiological responses
that can be explained by each effect (model) may reflect the
importance of the corresponding effect. This may be dif-
ficult to implement in traditional experiments given the
variability in methodologies across studies (e.g., different
types of stimuli or measures/metrics).

The third advantage is experimental efficiency. Multi-
ple hypotheses regarding different levels of speech and lan-
guage processing can be tested from a single experiment
with natural stimuli. This can be achieved through relating
neurophysiological responses with different features in nat-
ural continuous speech such as acoustic features (Crosse
et al., 2015; Di Liberto et al., 2015; Fuglsang et al., 2017;
Kong et al., 2014, 2015; Mirkovic et al., 2015; J. O’Sullivan
et al., 2014; Power et al., 2016, 2012; Puschmann et al.,
2017), phonemes or phonetic features (Di Liberto & Lalor,
2017; Di Liberto et al., 2015; Di Liberto, Peter, et al., 2018;
Khalighinejad et al., 2017), and lexical–semantic features
(Brodbeck et al., 2018; Broderick et al., 2018). Traditional
experiments, however, are usually unable to address multi-
ple hypotheses simultaneously because they are typically
designed to test a specific hypothesis of interest.

A Demonstration of ML-Based Approaches
to Analyze EEG Responses to Natural
Continuous Speech
ML-Based Approaches to Analyze Neurophysiological
Responses to Natural Continuous Speech: A Brief Summary

Decoding models have been used to quantify the re-
lationship between speech stimulus features in continuous
speech and neurophysiological responses. Within a recon-
struction framework, for instance, an ongoing line of work
focuses on reconstructing the temporal envelope of the
attended speaker in a multispeaker environment based on
EEG responses (e.g., Fuglsang et al., 2017; Mirkovic
et al., 2015; J. O’Sullivan et al., 2014; Power et al., 2012;
Puschmann et al., 2017), with an eventual clinical goal
of developing neurosteered hearing prostheses that can en-
hance the speaker of interest based on a listener’s attention
(Das, Van Eyndhoven, Francart, & Bertrand, 2016;
J. O’Sullivan, Chen, et al., 2017). Within a classification
framework, for example, a recent study extracted EEG
responses time-locked to phonemes (phoneme-related po-
tentials [PRPs]) from continuous speech stimuli, as in tra-
ditional ERP studies. They found that the PRPs can be
reliably classified into phonological categories of plosive,
fricative, nasal, and vowel (Khalighinejad et al., 2017).

Researchers have also quantified the forward map-
ping of a speech feature in continuous speech to neurophys-
iological responses with encoding models. The temporal
response function (TRF) is one type of encoding model of-
ten used. The TRF quantifies the transformation of a stim-
ulus representation to continuous neural responses by the
brain based on linear regression (Crosse, Di Liberto, Bednar,
& Lalor, 2016; Di Liberto & Lalor, 2017; Di Liberto et al.,
2015). The neural response, in relation to a stimulus event,
does not emerge until a certain time lag (e.g., several tens
Xie
of milliseconds for cortical responses) and lasts for a certain
period (e.g., several hundred milliseconds). Therefore, the
TRF is defined as a series of regression weights across a
certain set of time lags between stimulus and response (e.g.,
0–250 ms in Di Liberto et al., 2015). The value of the TRF
at a certain time lag (e.g., 200 ms) indexes the effect of the
speech feature on the neural response at that lag (e.g., 200 ms
later; Crosse et al., 2016). Like traditional analyses on the
ERP, the resulting TRF has often been evaluated in terms
of its temporal and spatial (e.g., topographic distribution)
dynamics (e.g., Broderick et al., 2018).

Using the TRF, researchers have revealed the neural
processing of acoustic features and speech-specific features
such as phonemes and phonetic features (Di Liberto &
Lalor, 2017; Di Liberto et al., 2015; Di Liberto, Peter,
et al., 2018), as well as semantic features (Broderick et al.,
2018), as reflected by the EEG responses. Importantly, the
TRF is highly related to the ERP components from tradi-
tional approaches (Broderick et al., 2018; Maddox & Lee,
2018), suggesting the validity of the TRF in capturing the
relationship between speech stimulus features and brain ac-
tivity. For example, Maddox and Lee (2018) utilized the
TRF to model auditory brainstem processing of continu-
ous natural speech using EEG. They found that the TRF
demonstrates a high level of morphological similarity (me-
dian correlation coefficient of .82) to the standard click-
evoked auditory brainstem responses.

Here, we illustrate the utility of SVM as a decoding
model, similar to that in Application 1, to classify phono-
logical categories (plosive, fricative, nasal, and vowel) from
the PRPs evoked by natural continuous speech and the
utilization of TRF as an encoding model to predict EEG
responses based on acoustic features (temporal envelope)
in natural continuous speech.

Sample Data Set
The EEG responses to continuous speech data come

from an unpublished data set in our lab. This data set con-
sists of 62-electrode EEG segments elicited to 15 tracks of
story segments (each ~60 s in length) in a group of 16 young
adult native speakers of American English (11 women and
five men, 18–23 years old). All participants had normal
hearing (defined as having pure-tone and bone-conduction
thresholds of ≤ 20 dB HL for octaves from 250 to 8000 Hz)
and normal or corrected-to-normal vision. To minimize the
effect of music training on the EEG response to the speech
stimuli (e.g., Bidelman & Alain, 2015; Coffey, Mogilever,
& Zatorre, 2017), we recruited participants with either no
history or no significant formal music training (≤ 4 years of
continuous training, not currently practicing). All partici-
pants reported no history of psychological or neurological
disorders, no use of neuropsychiatric medication, and no
prior history of a hearing deficit.

The story segments were selected from a classic work
of fiction, Alice’s Adventures in Wonderland (http://librivox.
org/alices-adventures-in-wonderland-by-lewis-carroll-5).
The audiobook was narrated in English by an adult male
speaker of American English and sampled at 22.05 kHz. In
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the study, participants listened to the auditory story
segments and ignored concurrent visuospatial stimuli
(blue squares at different loci on the screen). To encourage
participants to focus on the auditory stimuli, at the end of
each segment, they were asked two multiple-choice questions
to probe comprehension about the story segments. EEG
data were recorded from 64 electrodes (online referenced to
TP9; ground at the Fpz electrode site) that are organized in
accordance with the extended 10–20 system (Oostenveld &
Praamstra, 2001). The EEG data were offline referenced to
the average of the electrodes TP9 and TP10, bandpass filtered
from 1 to 15 Hz (e.g., Di Liberto et al., 2015), and seg-
mented into epochs that were time-locked to the onset of
the auditory story segments. The duration of the epochs
matched that of the corresponding story segments. To im-
prove computational efficiency, the segmented EEG data
were down-sampled to 128 Hz. An independent component
analysis using the restricted Infomax algorithm (Bell &
Sejnowski, 1995) was applied to the segmented EEG data
to remove ocular artifacts. Finally, the EEG data from each
electrode were normalized to ensure zero mean and unit
variance.

A Decoding Model Approach
The analysis goal is to classify PRPs from continu-

ous speech stimuli into the corresponding phonological
categories (plosive, fricative, nasal, and vowel) based on
Khalighinejad et al. (2017). The procedures are illustrated
in Figures 3A–3C.

Step 1: Extraction of input and output features. In this
analysis, the input (EEG) features are amplitude values of
the PRPs. The output (speech stimulus) features are the pho-
nological categories (plosive, fricative, nasal, and vowel).
The PRPs are extracted as follows: As illustrated in Figure 3A,
to obtain a time-locked EEG response to each phoneme,
the EEG data were segmented and aligned to phoneme on-
set with a predefined time window (e.g., 0–600 ms). The
computation of phonemes and onset information can be
achieved via a combination of automatic tools and manual
correction (Di Liberto et al., 2015; Mesgarani, Cheung,
Johnson, & Chang, 2014). The PRPs are calculated by av-
eraging all the instances of the segmented EEG responses
to each phoneme. Examples of the PRPs are displayed in
Figure 3B. Khalighinejad et al. (2017) suggests that PRPs
from the frontocentral electrodes provide the best distinction
of the phonological categories. Therefore, one analysis
option is to focus on PRPs from this subset of electrodes.
In the current example, we focus on all the 62 electrodes for
illustration purposes.

Step 2: Model selection and cross-validation. As men-
tioned above, the SVM was selected to map the PRP
amplitude values to the phonological categories. The cross-
validation procedures are illustrated in Figure 3C. The PRP
data from 15 of the 16 participants were used as the training
data set for model estimation and the hold-out participant
as the testing data set for model validation. The predictive
score of the fitted SVM model was quantified as decoding
accuracy, which reflects the percentage that the model
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correctly identified the phonological category labels of
the PRP data in the testing data set. Figure 3D displays the
results from an example participant. This plot shows the
decoding accuracies across all the 62 electrodes.

Note that, in natural speech, phonemes are not evenly
distributed across phonological categories. This may cause
the SVM model to bias toward the phonological categories
with the highest number of phonemes. Techniques to han-
dle such issue have been extensively explored in the ML lit-
erature (e.g., Batuwita & Palade, 2013). In our example, we
chose to balance the number for each phonological cate-
gory using the cosmo_balance_partitions function from the
CoSMoMVPA toolbox (Oosterhof, Connolly, & Haxby,
2016) in MATLAB (The MathWorks). This function gener-
ated multiple pairs of training and testing data set, with
PRP samples from each phonological category occurring at
least once across the training data set. The decoding accuracy
was calculated by averaging the accuracies across all the pairs.

Furthermore, we adopted a permutation test to deter-
mine whether the obtained decoding accuracy was statisti-
cally significantly. We randomly assigned the labels of the
phonological category in the training data set and estimated
the SVM model with the shuffled PRP data and then pre-
dicted the phonological category labels of testing data set.
This label shuffling and model cross-validation was iterated
10 times for each participant (n = 16) and each electrode
(n = 62), and a null distribution of the decoding accuracy
(n = 10 × 16 × 62 = 9,920) was obtained. The left (black)
histogram in Figure 3E shows an example null distribution
of the decoding accuracies. Then, the actual decoding accu-
racy averaged across seven frontocentral electrodes (FC5,
FC3, FC1, FCz, FC2, FC4, FC6; indicated by the red verti-
cal dashed line in Figure 3E) was tested against the null dis-
tribution. The p value was calculated using the formula:
p = (a + 1) / (n + 1) (Phipson & Smyth, 2010), where a is the
number of decoding accuracies from the null distribution
that exceeds the actual decoding accuracy and n is the total
number of decoding accuracies from the null distribution
(i.e., 9,920). In the example here, the p value is 1.008 ×
10−4, which is below .001, suggesting that the actual decod-
ing accuracy was statistically significant.
An Encoding Model Approach
In this example, we present a TRF model approach

based on regularized linear regression (Crosse et al., 2016)
to analyze EEG responses to continuous speech. In the fol-
lowing sections, we summarize the main procedures and
highlight relevant findings from an example participant.

Step 1: Extraction of input and output features. In this
analysis, the input (speech stimulus) features are amplitude
envelope, the most studied speech feature in the literature
focusing on continuous speech (Ding & Simon, 2014). How-
ever, other speech features have also been studied includ-
ing phoneme/phonetic features (Di Liberto, Crosse, et al.,
2018; Di Liberto & Lalor, 2017; Di Liberto et al., 2015;
Di Liberto, Peter, et al., 2018) and semantic features (Broderick
et al., 2018). The use of different speech features is assumed
to reflect hierarchical levels of speech processing (Brodbeck
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Figure 3. (A–C) Procedures to implement a decoding model using linear support vector machines (SVMs) to analyze EEG responses to continuous
speech stimuli. (a) Extraction of EEG responses time-locked to phoneme onset (PRPs) with a predefined time window (e.g., 0–600 ms).
(B) Examples of the PRPs at electrode FCz from one participant (from an unpublished data set in our lab). The corresponding phonemes are
grouped into phonological categories plosive, fricative, nasal, and vowel. (C) Procedures to classify PRPs into one of the four phonological
categories using linear SVM classifier (model). The SVM model is estimated with PRP data from 15 of the 16 participants and is validated to
see how well it can generalize to PRP data in the held-out participant. Decoding accuracy reflects the percentage that the SVM model correctly
identified the phonological categories in the held-out participant. (D) Results from one example participant (from an unpublished data set in our
lab). This plot shows the topographic distribution of decoding accuracies across 62 electrodes. (E) The left (black) histogram represents the null
distribution of decoding accuracies (n = 9,920) derived from permutation tests. The red vertical dashed line represents the actual decoding
accuracy averaged across seven frontocentral electrodes (FC5, FC3, FC1, FCz, FC2, FC4, FC6). The black vertical dashed line indicates the
99th percentile in the null distribution. If the actual decoding accuracy is higher than the 99th percentile in the null distribution, it indicates that
the actual decoding accuracy is statistically significant at an alpha value of .01. (F ) A contingency table (also called confusion matrix) of the
true versus predicted phonological categories from the decoding analysis. Each column corresponds to the true phonological category, and
each row corresponds to the predicted phonological category. The shade and the numbers of a given cell denote the occurrence of a predicted
phonological category in proportion to the total instances of a given true phonological category (i.e., probability).
et al., 2018; Di Liberto et al., 2015). The output (EEG)
features are time-varying amplitude in a frequency band
from 1 to 15 Hz. Previous studies have demonstrated that a
subset of frontocentral electrodes shows the highest model
performance (e.g., Di Liberto & Lalor, 2017; Di Liberto
et al., 2015). Hence, we may choose to focus on EEG from
this subset of electrodes. In this example, we will focus on
all the 62 electrodes for illustration purposes.

Step 2: Model selection and cross-validation. The pro-
cedures are illustrated in Figure 4A. The analysis was im-
plemented using the multivariate TRF in MATLAB (The
MathWorks) toolbox (Crosse et al., 2016). As mentioned
above, the TRF was chosen to map the speech stimulus
amplitude to the EEG features at each electrode (i.e., predicting
Xie
EEG features from the speech features). A leave-one-trial-out
cross-validation strategy was adopted in the current example.
Data from 14 of the 15 trials were chosen as the training data
set for model estimation and the hold-out trial as the testing
data set for model validation. This process was repeated until
all the trials had served as the testing data set. The predictive
score of the fitted model was quantified as EEG prediction
accuracy, which reflects the Pearson correlation coefficient
between the predicted and actual EEG features across all
the 15 trials. Higher Pearson’s r value is taken as reflective
of better neural representation of the corresponding speech
feature (Di Liberto et al., 2015). Figure 4B displays the
results from an example participant. This plot shows the
Pearson’s r values across all the 62 electrodes.
et al.: Machine Learning for Speech-Evoked EEG Responses 595



Figure 4. (A) Procedures to implement an encoding model approach (temporal response function, TRF) to analyze EEG responses to continuous
speech stimuli. The TRF model is estimated with data from 14 of the 15 trials to predict EEG features from the speech stimulus features and
validated to see how well it can predict the EEG features of the held-out trial. Pearson’s r between the predicted and actual EEG features
reflects how well the TRF model can predict EEG features from speech stimulus features. (B) Results from one example participant (from an
unpublished data set in our lab) when temporal envelope was used as the speech feature. This plot shows the topographic distribution of
Pearson’s r values across 62 electrodes. (C) The left (black) histogram represents the null distribution of Pearson’s r values (n = 1,000) derived
from permutation tests. The red vertical dashed line represents the actual Pearson’s r value averaged across all 62 electrodes. The black
vertical dashed line indicates the 99th percentile in the null distribution. If the actual Pearson’s r is higher than the 99th percentile in the null
distribution, it indicates that the actual Pearson’s r is statistically significant at an alpha value of .01.
Furthermore, we adopted a permutation test to de-
termine whether the obtained EEG prediction accuracy
(Pearson’s r value) was statistically significantly. We shuffled
the timing of the speech stimulus feature values and modeled
the relationship between the shuffled speech stimulus feature
and the actual EEG responses (not shuffled) at each electrode.
This shuffling and modeling analyses were iterated 1,000 times,
and a null distribution of EEG prediction accuracies was
obtained. The left (black) histogram in Figure 4C shows an
example null distribution of EEG prediction accuracies that
were averaged across all the electrodes. Then, the actual EEG
prediction accuracy (indicated by the red vertical dashed line
in Figure 4C) that was averaged across all the electrodes was
tested against the null distribution. The p value was calculated
using the formula: p = (a + 1) / (n + 1) (Phipson & Smyth,
2010), where a is the number of EEG prediction accuracies
from the null distribution that exceeds the actual EEG pre-
diction accuracy and n is the total number of EEG prediction
accuracies from the null distribution (i.e., 1,000). In the
example here, the p value is 9.99 × 10−4, which is below
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.001, suggesting that the actual EEG prediction accuracy
was statistically significant.

Discussion
Summary of the Review

In the current review, we presented a step-by-step guide
of two applications of ML-based approaches to analyze
speech-evoked neurophysiological responses with empirical
results. In Application 1, we showed the utility of a
decoding model using the SVM to classify speech-evoked
neurophysiological responses from traditional designs with
simplified, controlled stimuli (i.e., FFRs to Mandarin lexi-
cal tones; Xie et al., 2018). In Application 2, we demon-
strated the utility of a decoding model (SVM) to classify
phonological categories (plosive, fricative, nasal, and vowel)
from PRPs evoked by natural continuous speech and an
encoding model (i.e., TRF) in predicting EEG responses
based on acoustic features (temporal envelope) in natural
continuous speech.
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Clinical Utility of ML-Based Approaches:
An Example With Developmental Dyslexia

A major focus of speech-evoked neurophysiological
responses is to characterize aberrant neural processing in a
range of communication disorders. ML-based approaches
paired with natural stimuli may be a potent tool to identify
and quantify these aberrant neural processes. For example,
in developmental dyslexia, a neurological disorder affecting
reading and spelling (Démonet, Taylor, & Chaix, 2004),
difficulties have been evidenced in phonemic and phonolog-
ical processing (Di Liberto, Peter, et al., 2018; Ramus
et al., 2003). Di Liberto, Peter, et al. (2018) demonstrated
the utility of ML-based approaches, specifically encoding
models similar to the one described in the current review, to
assess phonological processing deficit in developmental
dyslexia by characterizing EEG responses to natural con-
tinuous speech stimuli. Consistent with prior work, they
found that children with developmental dyslexia, relative to
age-matched and reading level–matched typically develop-
ing children, exhibited reduced neural encoding of phonetic
features in natural continuous speech stimuli. The robustness
of phonetic feature encoding was related to psychometric
measures of phonological skills.

Several aspects of their methodologies support the
clinical utility of ML-based approaches. First, EEG responses
were collected to an audio story of only 9 min, not requiring
participants to sit for an extended period of time. Second,
EEG responses were recorded with no explicit responses to
the speech stimuli required from the participants, eliminating
task demands from participants. Third, the study adopted a
cross-group strategy for model cross-validation, such that
the encoding models were trained with data from a subset
of typically developing children and tested on data from
the remaining typically developing children or that from
children with dyslexia.
Advantages of ML-Based Approaches to Study
Speech and Language Processing

The ML-based approaches facilitate the investigation of
speech and language processing with ecologically valid par-
adigm (e.g., continuous natural speech) while moving away
from traditional designs with simplified, controlled speech
sounds (Martin et al., 2008; Skoe & Kraus, 2010; Tremblay
et al., 2003). As discussed earlier, the use of natural stimuli
offers at least three advantages (Hamilton & Huth, 2018).
The first advantage is being more generalizable to speech
and language processing in ethological settings. The second
advantage is the ability to directly compare effect sizes across
studies on different levels of speech and language features.

The third advantage is that multiple hypotheses sur-
rounding speech and language processing can be tested
within a single experiment using continuous, natural stimuli.
For example, our second application demonstrated that the
encoding of acoustic features (e.g., temporal envelope) and
the encoding of phonological categories could be studied
from the same EEG recording to natural continuous speech
Xie
stimuli. The advantage of experimental efficiency with natu-
ral stimuli can also be achieved with a shorter assessment
time. For example, Di Liberto and Lalor (2017) demonstrated
that, to obtain reliable estimate of phoneme-level process-
ing using continuous speech, the needed EEG data can be
substantially reduced from at least 30 min to only 10 min of
recording by adopting a cross-group strategy for model
cross-validation (i.e., the model is estimated using data
from a proportion of participants in a group and validated
using data from the held-out participants). In the above-
mentioned clinical example, Di Liberto, Peter, et al. (2018)
adopted a similar method for model cross-validation and
used EEG data from only 9 min of recording.

Indeed, our first application suggests that ML-based
approaches may also improve experimental efficiency of
traditional experiments with simplified, controlled stimuli.
In this application, a decoding model can classify FFRs to
Mandarin lexical tones with averages of less than 100 trials.
This contrasts with traditional analysis approach guidelines
that have called for averaged FFRs over thousands of trials
(Skoe & Kraus, 2010). The number of FFR trials needed
for the ML-based approaches is within a range for tradi-
tional approaches to study auditory cortical processing with
EEG. That means that the ML-based approaches open up
the opportunity to noninvasively study multiple levels of
speech and language processing (i.e., subcortical and corti-
cal auditory processing) truly simultaneously. This would
further improve the experimental efficiency of traditional
experiments. Indeed, Xie et al. (2018) not only analyzed the
FFRs as the example presented in this review to examine
early encoding of speech signals but also examined cortical
responses to the speech signals using the same EEG
recordings.

ML-Based Approach as a Potent Tool in the
Clinical Diagnosis of Communication Disorders

Communication disorders are often multifactorial and
broad based (Baum, Stevenson, & Wallace, 2015; Bishop &
Leonard, 2014; Dronkers & Baldo, 2010; Goswami, 2015),
affecting different subprocesses ranging from acoustic
encoding to semantic/syntactic processes. Often, these defi-
cits can span different hierarchical levels of speech and
language processing. For example, in developmental dys-
lexia, difficulties have been evidenced in acoustic processing
(Goswami et al., 2002; Power et al., 2016) and phonemic
and phonological processing (Di Liberto, Peter, et al.,
2018; Ramus et al., 2003). Current clinical diagnostic pro-
tocols require the implementation of many different types
of speech and language standardized assessments (e.g., tests
of phonological processing, receptive vocabulary, auditory
comprehension) to gain a full picture of an individual’s com-
munication ability (Bishop, 2004; Johnson & Myers, 2007;
Tomblin, Records, & Zhang, 1996). This poses a challenge
for difficult-to-test populations such as young children
and individuals with poor attentional abilities, as diagnostic
sessions tend to last for several hours and usually multiple
days.
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ML-based approaches combined with EEG method-
ology may be a potent tool to complement standard behav-
ioral assessments of speech and language ability and provide
a critical link between clinical observations of communica-
tion deficits with their underlying neurobiology. As discussed
above, ML-based approaches allow the examination of
hierarchical levels of speech and language processing from
a single recording and with shorter recording time (e.g., only
EEG responses to only 9 min of natural continuous speech
in Di Liberto, Peter, et al., 2018). Such efficiency from
ML-based approaches may greatly cut down the time needed
for assessments of speech and language ability. A reduction
in the assessment time and efforts could benefit test popula-
tions such as young children and individuals with poor
attentional abilities. Moreover, as highlighted in the clinical
example, the EEG recordings do not require explicit responses
from participants. This may provide a diagnostic tool to
assess hard-to-test populations (e.g., nonverbal children)
that may be limited in the ability to initiate (e.g., verbal
or motor) responses to the test materials. Furthermore,
the cross-group strategy of model cross-validation in above-
mentioned clinical example suggests that, like behavioral
assessments, we may build a normative database and uti-
lize the normative data to predict whether a new client
falls into the “typical” range or is at risk for communica-
tion deficits.

Refining ML-Based Approaches
ML-based approaches are not limited to those

highlighted in the current review and are constantly evolv-
ing. Several refinements may be applied to the existing
ML-based approaches to better characterize speech-evoked
neurophysiological responses. First, more advanced methods
may be used for feature selection from the EEG data and
improve the interpretability of the EEG features. For exam-
ple, Yi et al. (2017) described an application of ML-based
approaches to decode FFRs to vowel stimuli. In that study,
they first constructed a spectral feature space from a data-
base of vowel stimuli using principle component analysis.
The vowels were the same as the stimuli used for FFR re-
cordings but were produced by different speakers. The spec-
tral feature space contains 12 spectral components that
explain 80% of the variance of the vowel database. They
then projected single-trial FFRs onto the spectral feature
space and derive 12 spectral features that were used for the
decoding analysis. The decoding performance of single-trial
FFRs were significant above chance even when only 50 trials
per stimulus were used for training the decoding model.
Interestingly, the spectral feature most relevant to the decod-
ing analysis contains three extrema corresponding with the
first three formants of the vowel stimuli.

Second, other more sophisticated ML-based approaches
may be adopted to capture the relationship between the
evoking speech stimuli and evoked neurophysiological re-
sponses and yield better performance. For example, de
Cheveigné et al. (2018) compared models based on canoni-
cal correlation analysis and an encoding model similar to
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that implemented in the current review in the ability to
quantify EEG responses to continuous speech. They found
that the canonical correlation analysis models yielded sig-
nificantly higher correlation values between stimulus and
EEG features relative to the simple encoding model.

Finally, in the context of decoding analysis, we may
include EEG data from multiple electrodes to yield higher
decoding performance relative to single electrodes. The ben-
efit to decoding performance from a larger number of
electrodes has been shown in various applications of decod-
ing models to EEG data, such as decoding the attended
speech stream from a mixture of two simultaneous talkers
(Mirkovic et al., 2015) and decoding motor imagery hand
movements (Zich, De Vos, Kranczioch, & Debener, 2015).
However, decoding performance may asymptote beyond a
certain number of electrodes even if more electrodes are
included, because only data from a subset of electrodes are
informative of the processes of interest while other elec-
trodes seem redundant (e.g., Mirkovic et al., 2015; Zich
et al., 2015).

The informativeness of different EEG electrodes is
related to the underlying neural sources of the processes of
interest. To more directly utilize source information to de-
code speech-evoked neurophysiological responses, we may
collect these responses using MEG, which provides more
accurate source localization of the speech-evoked neuro-
physiological responses than EEG. Consistently, a recent
study collected neural responses to continuous speech stim-
uli using MEG and suggest that the processing of acoustic,
lexical, and semantic features in continuous speech involves
different brain areas with different temporal dynamics
(Brodbeck et al., 2018).
Limitations of ML-Based Approaches
Although the ML-based approaches hold many ad-

vantages, there are still several limitations. First, it may be
difficult to interpret the stimulus features that the models
used to relate to neural activity. Recent work has made an
effort to fill this gap by implementing models where fea-
tures can be preselected. For example, the encoding models
highlighted in this review (i.e., TRF) require for the experi-
menter to preselect the features of interest as a critical
component of the model (e.g., temporal envelope vs. pho-
netic features; Di Liberto et al., 2015). As discussed above,
our previous work on developing ML-based approaches to
classify FFRs to vowel stimuli has further shown that in-
terpretable features (i.e., spectral cues) can be derived from
ML-based models (Yi et al., 2017). The other main limita-
tion is that the ML-based approaches are computationally
intensive for both the machine and the human operator.
To implement the ML-based approaches, a certain degree
of expertise on programming and ML is required, which
many practicing clinicians may not possess. In turn, this
may limit the clinical translation of such analysis approaches
in the context of providing supplemental information for
diagnostic evaluations.
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Conclusions
In conclusion, current ML-based approaches are use-

ful complements to traditional approaches to analyze neu-
rophysiological responses to speech signals. These analysis
approaches allow for a more efficient examination of dif-
ferent aspects of natural speech and language processing
using ecologically valid paradigms in both typical and clin-
ical populations.
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