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The Evolution of Statistical Methods in
Speech, Language, and Hearing Sciences
Jacob J. Oleson,a Grant D. Brown,a and Ryan McCreeryb
Purpose: Scientists in the speech, language, and hearing
sciences rely on statistical analyses to help reveal complex
relationships and patterns in the data collected from their
research studies. However, data from studies in the fields
of communication sciences and disorders rarely conform to
the underlying assumptions of many traditional statistical
methods. Fortunately, the field of statistics provides many
mature statistical techniques that can be used to meet
today’s challenges involving complex studies of behavioral
data from humans. In this review article, we highlight
several techniques and general approaches with promising
application to analyses in the speech and hearing
sciences.
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Method: The goal of this review article is to provide an
overview of potentially underutilized statistical methods with
promising application in the speech, language, and hearing
sciences.
Results: We offer suggestions to identify when alternative
statistical approaches might be advantageous when analyzing
proportion data and repeated measures data. We also
introduce the Bayesian paradigm and statistical learning
and offer suggestions for when a scientist might consider
those methods.
Conclusion: Modern statistical techniques provide more
flexibility and enable scientists to ask more direct and
informative research questions.
Data from the speech, language, and hearing re-
search domains present a number of challenges for
statistical analyses. Data are rarely normally dis-

tributed, sample sizes are often small, and experimental de-
signs include repeated observations from the same subjects
across conditions or over time. Furthermore, data are often
missing, and the patterns of missing data may be related to
key variables of interest. These characteristics are problem-
atic for many widely used traditional statistical methods and
analyses. Fortunately, the discipline of statistics has pro-
gressed to better accommodate the realities of study designs
involving human subjects and problems with complete data
availability. By relaxing problematic assumptions, modern
statistical methods can help researchers to conduct robust and
well-founded studies. Despite the availability of these newer
statistical methods, they remain underutilized in the speech,
language, and hearing sciences. In our companion article, we
review basic statistical principles for scientists and clinicians
in the speech, language, and hearing sciences. The goal of
this work is to elaborate on advanced statistical methods that
can be applied to common issues in these research fields.

As we note in the aforementioned companion work,
there is very rarely a single optimal statistical procedure for
a given analysis—each approach comes with benefits and
drawbacks, and different statistical philosophies provide dis-
tinct but valid perspectives on analytical problems. As such,
the goal of this work is to highlight promising methods
with which applied researchers may be unfamiliar. We do
not propose to provide a comprehensive description or
mathematical derivation of these techniques, as this would
be impractical and potentially unhelpful for a clinical and
research-focused audience. Instead, we encourage researchers
to consider further investigation of the most applicable
methods for their own work.

We begin by examining data that are recorded and ana-
lyzed as proportions, then we address designs using repeated
observations and longitudinal data. In addition to the ways
in which standard, frequentist statistical practice may be
improved through better procedure selection and appropri-
ate interpretation, there are alternative perspectives on
data analysis that may be useful to some practitioners.
We highlight two domains for additional reading. First,
we introduce Bayesian statistics: an alternative statistical
philosophy that provides analogues of most common fre-
quentist procedures, with some benefits particularly for
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small studies or complex longitudinal deigns. Second, we
briefly discuss statistical learning, also called machine learn-
ing (among other things). Techniques in this area sacrifice
many of the inferential abilities of traditional statistical
models, but excel at prediction in settings with large sample
sizes and substantial uncertainty about the relationship be-
tween explanatory factors and outcome variables.
Subject Data Recorded as a Proportion
Standard statistical practice can be improved by care-

ful consideration of the data properties. We illustrate this
idea through a scenario that arises regularly in this field:
Study participants are often tested repeatedly on yes/no or
correct/incorrect questions, and then those responses are
summarized into a percent correct score for analysis. Scores
on experimental tasks are reported as percent correct for
common areas such as speech recognition (McCreery et al.,
2015), word learning tasks (McGregor, Gordon, Eden,
Arbisi-Kelm, & Oleson, 2017), and speech production ac-
curacy in a specific condition (Dunn et al., 2014). In many
cases, the goal is to perform a hypothesis test to compare
the equality of proportions arising from two or more groups.
A simple approach is to perform a two-sample Student’s
t test or regression analysis on untransformed data. When
doing so, there are two primary assumptions to consider.
The first is whether the proportions are normally distributed,
and the second is whether there is homogeneity or equal
variances across all of the proportions. Particularly when
proportional speech recognition scores approach ceiling or
floor levels of performance, these assumptions are both
violated, and researchers frequently turn to transformations
to analyze their proportion data.

Shown in Figure 1 are the two most popular trans-
formations of proportion data: an arcsine unit (AU) square
root transformation to approximate normality and equal

variances and a logistic transformation, log p
1−p

� �
, described in

more detail below. A rationalized AU (RAU) transformation
(RAU ¼ 146

π

� �
AU−23) is also regularly used and has even
Figure 1. Comparison of how the arcsine transformation and logistic
transformation relate to the raw proportion value.
more severe scaling. Before deciding which transformation
to perform, the first question to ask is whether a transfor-
mation is required at all. We may be able to perform the
analysis on raw proportion data, allowing for much more
intuitive interpretations, and without violating statistical
assumptions. We see from Figure 1 that both transfor-
mations are approximately linear (noncurved) between
0.3 < p < 0.7. Although it is not shown in this figure, the
variances are relatively stable in this range as well. There-
fore, some analyses of proportion data may not benefit
from a transformation, because the proportions are approxi-
mately normal and the variances are approximately equal.
In such cases, one can safely use a t test or regression anal-
ysis directly on the proportion data. When the proportion
data fall near the boundaries of 0 or 1, however, alter-
native approaches become critical. Always evaluate the
distribution of the residuals of the analysis to evaluate
departures from normality and equality of variances. If the
model residuals are irregularly distributed, it may be an
indication that these statistical assumptions have been
violated and that alternative analysis approaches or
transformation of the proportional data may be needed.

One alternative approach is to alter the data collec-
tion mechanism to reduce the chance of scoring at floor or
ceiling levels. Methodological approaches for measuring
speech recognition adaptively, such as using procedures that
adapt the level of the signal or masker or both (e.g. Leibold
& Buss, 2016), have been developed to minimize the poten-
tial for floor and ceiling effects and problems with het-
erogeneity of variance that can result. This is an instance
where changes in methodological approaches can help to
simplify statistical analyses by reducing the likelihood of
unequal variances across subjects or conditions that can
occur because of floor and ceiling effects. When such meth-
odological solutions are not possible, a common solution
to attempt to normalize proportional data in the field has
been to use an arcsine square root transformation to ap-
proximate normality and equal variances (Studebaker, 1985).
Traditional statistical tests (t tests, regression, analysis
of variance [ANOVA], etc.) are then performed on the
transformed variable. Although the arcsine transform does
often provide approximate normality and equal variances,
the transformation also results in values that are uninterpret-
able in a practical sense, such as reports of speech recognition
scores of –23% or 123% at the extremes. For example, see
the solid line in Figure 1 that denotes the transformation
performed by the arcsine procedure. Note that when a pro-
portion is higher than 0.7, then the arcsine-transformed value
is greater than 1.0. Transformations, by definition, change
the data, and such changes can influence the practical inter-
pretation of the data.

For example, consider a hypothetical study where
the effects of a novel hearing aid noise reduction algorithm
were compared across two signal-to-noise ratios (SNRs) for
a group of adults with hearing loss. At a 5-dB SNR, the
mean proportion correct without noise reduction is 80% and
the mean proportion correct with noise reduction is 85%.
At the 10-dB SNR, the mean proportion correct without
Oleson et al.: Evolution of Statistical Methods 499



noise reduction is 92% and the mean proportion correct
with noise reduction is 97%. At both SNRs, the benefit of
the SNR processing is 5% but because the variance in
the higher SNR conditions is compressed, the scientists
conducting this study decide to apply a transform to convert
all of the scores to RAU. For the RAU, the difference in noise
reduction benefit that was 5% is 7 RAU at the 5-dB SNR and
14-RAU at the 10-dB SNR. The RAU transform has ad-
dressed the problems related to inequality of variances across
conditions but has distorted the reader’s ability to interpret
the practical or clinical significance of these findings.

Rather than an arcsine transformation, another op-
tion is to take a logit transformation on the proportions,

v ¼ log p
1−p

� �
, and analyze v. In this case, we are not analyz-

ing the individual question level 0, 1 data such as would
be done in logistic regression, but rather, we are taking a
transformation on the proportion for each subject and
analyzing the transformed data in the same way that one
would use the arcsine transformation. The expression p

1−p is
known as the odds, making v the log-odds. Analyzing data
on the log-odds scale assumes the data are linear in the
log-odds (not in the proportion). A one-unit increase in the
x variable relates to β unit change in the log-odds, where β
is the regression coefficient associated with x. Testing and
inference on v now relates to an odds ratio, which has a
widely known and understood meaning. This is often inter-
preted on the odds ratio scale by exponentiating β. Warton
and Hui (2011) showed that performing regression on logit-
transformed data or using logistic regression, and random
effects models involving the logit link function had higher
power than arcsine-transformed linear models. Similar to the
arcsine transformation, the primary goal of the logit trans-
formation in this context is to approximate normality and
stabilize the variance. The logit transformation maps propor-
tions, which are between 0 and 1, to the whole real number
line. The transformation also guarantees a reverse mapping
back to the proportion scale, which guarantees that our pre-
dicted proportion will be between 0 and 1 no matter what.
In Figure 1, the dashed line shows how the transformation
compares to the arcsine transformation. We see more curva-
ture near the boundaries of 0 and 1. Thus, the logit trans-
form resolves the problems related to variance and mitigates
the problems associated with interpretation of effects that
can occur with arcsine or other transformation methods.
Although interpretations of the odds ratio can be confusing
to some when compared to interpreting differences of means
and proportions, it offers far more practical value than the
arcsine transformation.

Data transformations are an important and necessary
component to meeting statistical assumptions for data analy-
sis. When analyzing data on a transformed scale, be aware
that the assumptions are met on that transformed scale. There-
fore, interpretations must also be made on the transformed
scale (reverse transforming the bounds of a confidence
interval does not, in general, produce a confidence interval
on the original scale). Data transformations should be re-
ported in the statistical methods of manuscripts or research
500 Journal of Speech, Language, and Hearing Research • Vol. 62 • 4
reports to promote transparency in the statistical methods
and also allow consumers to assess the impact of any data
transformations on the interpretation of the findings.
Repeated-Measures ANOVA
Perhaps, the most commonly used experimental de-

sign in speech, language, and hearing sciences involves test-
ing the same subject under multiple conditions or across
multiple time points. Historically, these repeated observations
would be analyzed using repeated-measures analysis of
variance (RM ANOVA) or multivariate analysis of vari-
ance (MANOVA) to test for differences between groups,
across conditions, or growth over different points in time.
Generally speaking, both RM ANOVA and MANOVA
are used to create a statistical model where the means result-
ing from multiple conditions can be tested for equality
while adjusting for correlation resulting from the same sub-
ject being measured under each of the conditions. From
the user perspective, the biggest drawback of these methods
is likely in how they treat missing values. The ANOVA-
based methods assume the data are missing completely at
random (MCAR; Little & Rubin, 2002). MCAR implies
that any missing values are MCAR and not by any mech-
anism that is either observed or unobserved, or related to
variables of interest in the study. For example, consider a
study measuring speech understanding in quiet, in speech-
spectrum noise, and in a noise composed of two talkers (e.g.,
Corbin, Bonino, Buss, & Leibold, 2016). Participants are to
be measured in all three conditions, and we want to compare
the mean speech perception scores in all three conditions
against each other. Suppose participants cannot complete the
two-talker condition because it is more difficult than the
other masking conditions, and we base our analyses only
on those that did well and could complete the two-talker
masker condition. Because we do not observe the part of the
population that would perform poorly, our estimate in that
condition will be biased downward.

In the example above, subjects that are only able to
complete one or two of the three conditions will be removed
by statistical software for an RM ANOVA, often without
an error message or prominent warning. Therefore, the re-
sults of the study analyzed with RM ANOVA will have a
reduced sample size, degrees of freedom, and power to
detect a statistically significant difference. Even if that MCAR
assumption is met, then the study performing RM ANOVA
will be unbiased but underpowered. On the other hand, if
the MCAR assumption is not met, and there is some sys-
tematic mechanism related to missingness, then the results
of the RM ANOVA will be biased because the subset of
individuals on which the analysis is based can no longer be
considered a random sample of the population. Suppose
our study participants are missing a condition completely
at random. Then, if they finish the speech understanding in
quiet and in noise conditions, and perform above average
on those two conditions, we could reasonably infer that
the individual would also perform above average on the
two-talker masker condition assuming that the results in
98–506 • March 2019



conditions are positively correlated with one another. On
the other hand, if only the best performing individuals
finished all three conditions and the individuals who would
have performed poorly in the two-talker masker dropped
out, then we would not have accurate data on the popula-
tion in that condition, and we would naively analyze only
the individuals who do well, leading us to biased results.
This scenario where the value of the missing observation
depends on scores that we have observed but does not de-
pend on any other unobserved factor is known as missing
at random (MAR). In longitudinal studies, this means that
an individual who dropped out of the study would remain
along the same trajectory as that which was observed.

When a study has missing data, then the reason for
missingness should be examined and presented in manu-
scripts or research reports. A justification should be reported
to support the assumption being made. We can sometimes
distinguish between MCAR and MAR by fitting a model to
predict the observed probability of nonresponses from
known covariates. If the coefficients in the logistic regres-
sion predicting missingness are significantly different from
zero, then the missing data are likely not MCAR.

The practical drawbacks to RM ANOVA do not end
in the treatment of missingness. For details, we refer readers
to Long (2011) but enumerate several salient points here.
First, in both RM ANOVA and MANOVA, the computer
software generally fits orthogonal polynomials to the data.
Thus, instead of using time variables (t, t2, t3, etc.), which
are highly correlated with each other, to represent curvi-
linear trends in the data, the software creates uncorrelated
polynomials instead. See Hedeker and Gibbons (2006)
for an example of how uncorrelated polynomials are con-
structed. Although the statistical fit to the data might be
good, and orthogonal polynomials provide other statistical
and computational benefits, the resulting parameter esti-
mates are largely uninterpretable in a practical sense. Sec-
ond, RM ANOVA is the most basic model, in terms of
correlation structure, that we could fit. The primary driver
of the RM ANOVA model is a subject-specific random
effect. This random effect is meant to separate out the vari-
ance from within the subject, σ2e , versus variation between
subjects, σ2b . Therefore, it accounts for the correlation that
occurs when data are collected from the same person across
conditions or over time. Intuitively, a subject is assumed
to deviate from (either above or below) the population mean
level of the effect by the same amount at every condition or
time point. This constant effect may be unrealistic for many
studies. For example, our speech perception participants
often exhibit more variance between subjects in the noise
and two-talker masker conditions than in the quiet condi-
tion (e.g. Corbin et al., 2016).

Another implication of constant rate of change is that
the correlation between any repeated measures will all be

the same, measured by the intraclass correlation ρ ¼ σ2b
σ2
b
þσ2e

.

This assumption is more broadly known as sphericity. Vio-
lation of the sphericity assumption results in the F test
being too liberal. The sphericity assumption is most often
assessed via Mauchly’s Test of Sphericity (1940). Mauchly’s
test is criticized for failing to detect departures from sphe-
ricity in small samples and overdetecting them in large
samples. Due to these criticisms, many argue that an adjust-
ment should always be used (Howell, 2012). Because the
F test in the RM ANOVA is too liberal when sphericity is
determined to not be met, the correction is to reduce the
degrees of freedom in the test, making the F statistics ap-
proximately follow an F distribution, and subsequently
increasing the p value. The two most popular adjustments
are the Geisser and Greenhouse (1958) adjustment and the
Huynh and Feldt (1970) adjustment. They estimate the
deviation from sphericity through a measure called ϵ and
adjust the F distribution degrees of freedom based on the
size of ϵ. With all of these concerns, the reduction in degrees
of freedom and reduction in the F statistic in the resulting
RM ANOVA will likely be underpowered.

Third, MANOVA, which is the application of ANOVA
that allows for multivariate dependent variables, takes
the correlation between conditions to the other extreme.
MANOVA fits a unique correlation to every pairwise com-
bination of conditions. For studies involving more than
just a few conditions, MANOVA needs to estimate a large
number of parameters, further reducing the degrees of
freedom and the power of the test.

Fourth, RM ANOVA and MANOVA do not read-
ily account for additional predictor variables. Research
questions may involve adjusting for categorical covariates,
continuous covariates, or time-varying covariates. Often,
these covariates to adjust for may be age, degree of hearing
loss, or socioeconomic status, and ANOVA methods force
us to categorize these variables rather than treating them
as continuous. This is the same argument for using regres-
sion-based techniques rather than analysis of covariance
that was discussed in the companion paper (Oleson, Brown,
& McCreery, 2019).

The linear mixed model (LMM) is an alternative
that can overcome the deficiencies listed for both RM
ANOVA and MANOVA. LMMs are called by other names
including linear mixed effects regression, variance compo-
nent models, multilevel models, hierarchical linear models,
mixed models, or two-stage models. There is a great deal
of literature on mixed models. See Hedeker and Gibbons
(2006); Fitzmaurice, Laird, and Ware (2011); or Long
(2012) for excellent overviews of longitudinal data analy-
sis methods with mixed models. Although different dis-
ciplines refer to these models using different names, the
same fundamental mechanics form the basis of these sta-
tistical approaches. These models better accommodate
missing data, because they make a less restrictive assump-
tion that the data are MAR rather than MCAR. In addi-
tion, these models allow individual growth curves, and
distinct correlations among pairs of conditions, or differ-
ent patterns of correlation (e.g., decay over time). Finally,
LMMs readily allow for predictor variables of various
numbers and types.

RM ANOVA has a long history in the fields of speech,
language, and hearing sciences as an appropriate analytical
Oleson et al.: Evolution of Statistical Methods 501



technique. When there are only a few test conditions with
no missing data and approximately equal correlations be-
tween the test conditions, then an RM ANOVA analysis is
satisfactory. Our three-condition speech understanding
example is an example of a situation where RM ANOVA
is a valid analytical tool to use if all data are completely
observed. Even so, the LMM will yield the same analysis
but with greater versatility.

Saletta, Goffman, Ward, and Oleson (2018) used
LMMs in a study where the data are set up in a standard
repeated condition format to examine motor control in
children with specific language impairment. Study partici-
pants were each measured under five different conditions,
and the stated hypotheses were to compare the group
means for the five conditions. The dependent variables
were speech stability and duration, and they wished to re-
late each to the independent variables group (specific lan-
guage impairment, typically developing) and task (five
conditions). Each study participant was asked to respond
to each of five separate conditions. Complicating this
analysis was the fact that the variance for each task was
different. They used a random-intercept LMM to account
for within-subject correlation and allowed the variances
under each task to differ. Relaxing assumptions about
equality of variances across conditions can be very useful
in studies with human subjects where these assumptions
are rarely met.

Gantz, Dunn, Oleson, and Hansen (2018) demonstrated
another example of the utility of mixed models. In this study,
and many longitudinal studies in the field, participants
with cochlear implants returned for follow-up appointments
at varying time intervals over the course of the study. How-
ever, each participant may return a different number of
times, and the measurement times differed from subject to
subject. A continuous time model like this with continuous
covariates cannot be analyzed by the RM ANOVA or
MANOVA methods because these approaches are based on
the rigid assumption that time points are fixed and identi-
cal for each subject. Such an analysis is relatively straight-
forward to perform as an LMM using modern statistical
software, such as R or SAS. In this particular example,
and in many studies of longitudinal growth, the longitudi-
nal trend was nonlinear, exhibiting a sharp increase in
speech understanding immediately postimplant of the co-
chlear implant, with the growth expected to ultimately
reach some plateau. The authors used a piecewise regres-
sion model with a random intercept, random slope, and
fixed effects for age at implant and duration of hearing loss.
This approach allowed for variability in how time points
were represented in the model and allowed the analysis to ac-
count for individual differences in the slope of longitudinal
growth across participants, which is a trend that is often ob-
served among people who receive cochlear implants.

Bayesian Statistics
Bayesian methods are not currently prevalent in the

fields of speech, language, and hearing research, but they
502 Journal of Speech, Language, and Hearing Research • Vol. 62 • 4
can provide a valuable alternative analysis tool to answer
many research questions. There are many excellent text-
books describing Bayesian methods for interested investi-
gators. These include, but are certainly not limited to,
Gelman et al. (2013), Congdon (2006), Cowles (2013),
and Kruschke (2014). In general, for any frequentist sta-
tistical analysis, a Bayesian alternative exists. Bayesian
methods and their frequentist counterparts will very often
lead to the same decisions/conclusions. In situations where
the methods will lead to the same conclusions, the choice
between the two paradigms is generally philosophical in
nature. Most of the practical differences stem from the
fact that Bayesian statistics uses a different interpretation
of probability. Many practitioners find it more natural to
think about the Bayesian paradigm’s “probability” of
something being true, rather than to consider the more
traditional statistical inference defined as what one would
expect to see given a specified null hypothesis under re-
peated sampling.

One area where Bayesian methods are becoming
more popular is in statistical modeling of complex scien-
tific phenomena. Indeed, the Bayesian paradigm is particu-
larly effective in hierarchical designs when one can divide
complex processes into smaller, well-defined components
using conditional probability. In situations like this, it may
be difficult to find and fit a corresponding frequentist
model that can answer the same research questions that a
Bayesian hierarchical model (BHM) can answer. In the
remainder of this section, we introduce the fundamentals
of how Bayesian statistics work and explore reasons why
the Bayesian approach to probability can provide more in-
tuitively interpretable results. We conclude by presenting
an application that utilizes the hierarchical structure of
Bayesian modeling.

Bayesian inference is based on what is known as the
posterior distribution, p(θ | Y), where Y is the outcome
variable and θ represents the parameters of interest (popu-
lation means, differences, regression effects, etc.) The pos-
terior distribution contains the information needed for
statistical inference and summarizes our knowledge of the
parameters of interest based on (a) what we assumed at the
beginning of the study and (b) what we have learned
about θ after observing all of the data, Y. What we as-
sume at the beginning of the study is known as the prior
distribution p(θ), and what we learn from the data is
known as the likelihood, p(Y | θ). The prior summarizes
our knowledge about θ before collecting data and can
be either vague/uninformative or highly informative, de-
pending on how much is known a priori. This distribu-
tion can be based on previous studies and should reflect
scientific plausibility.

The likelihood, p(θ | Y), is the foundation of most
frequentist techniques and gives the Bayesian model for
the data. This probability distribution describes what kind
of data, Y, we would expect to see for a given set of parame-
ters, θ. For example, if we wanted to perform a Bayesian
two-sample test, we would say that Y follows a normal dis-
tribution with unknown means for observations coming
98–506 • March 2019



from each of two groups and an unknown common vari-
ance. A Bayesian regression analysis would assume that
Y follows a normal distribution with unknown variance
and that the mean is defined by a linear combination of
covariates. For comparison, the p values in frequentist
statistics are generated under the assumption that the values
in θ are specified by the null hypothesis.

These three components (prior, likelihood, posterior)
are the foundation for Bayesian inference. First, an investi-
gator specifies the data model (form of the likelihood), as
well as what is known about the parameters at the begin-
ning of the study (prior). Next, data are observed and as-
sumed to have come from the specified likelihood or data
model. Finally, Bayes’ rule is used to combine the prior
and likelihood to obtain the posterior distribution: the
summary of what the final state of knowledge is for those
parameters after updating our prior knowledge with the
observed data information. When this posterior distribu-
tion is obtained, the investigator may interpret the results;
these are often presented as point estimates (posterior
means) and credible intervals (intervals which contain the
true value with some percent posterior probability). A key
benefit of credible intervals is that we can interpret them
in terms of the probability that many practitioners incor-
rectly ascribe to frequentist confidence intervals. For exam-
ple, a 95% frequentist confidence interval for the difference
in two group means might be (–1.25, –0.55). The frequentist
interpretation is strictly in terms of the procedure: “confi-
dence intervals constructed in this way can be expected to
contain the true mean difference in 95% of studies.” We
can make no statement about how likely the true difference
is to lie between –1.25 and –0.55, because frequentist prob-
ability cannot define what it means for this event to be
“likely” or “unlikely”—just because we do not know whether
the confidence interval contains the true value does not
make that event random, from a frequentist perspective.
Bayesian procedures, on the other hand, use probabilities to
describe uncertainty. It is therefore sensible, if we obtained
the same values from a Bayesian credible interval, to inter-
pret them as: “given the prior and model, we believe that
the true mean difference lies between –1.25 and –0.55 with
95% probability.” The details of implementing these proce-
dures are generally handled by software, but an understand-
ing of the general pattern is nevertheless important for any
application of Bayesian statistics.

One of the biggest hurdles for new practitioners of
Bayesian statistics is learning how to quantify knowledge
using probability distributions. For example, we might
not know beforehand if the impact of socioeconomic status
is going to have a positive or negative impact on our speech
understanding measure. We might nevertheless be fairly
certain it should not be very large in magnitude—say between
–10 and 10. A distribution that satisfies these assumptions
is a normal distribution with a mean of 0 and an SD of ap-
proximately 3. An even less informative distribution would
be a normal distribution with a mean of 0 and an SD of 10.
This kind of prior specification/elicitation requires careful
reasoning and consultation with subject matter experts.
Although Bayesian statistics has been around longer
than frequentist statistics, it did not gain widespread use
until the last few decades, when advances in computing
power and development of modern sampling algorithms
vastly increased the range of problems to which the para-
digm can be easily applied. Estimating a posterior distribu-
tion is a difficult computational problem in all but the
simplest of cases. Modern Bayesian computing takes many
forms, but the standard for applied research has long
been to use algorithms to generate many samples from
the posterior and use summary statistics of those samples
to estimate parameters of interest. Bayesian methods are
now readily implemented using SAS PROC MCMC,
OpenBUGS, JAGS, Stan, and multiple packages in R, just
to name a few.

Although switching to Bayesian methods can be an
adjustment, they are becoming ever more popular and
more widely accepted and are based on a sound philosoph-
ical foundation. The Bayesian approach lends itself to a
common sense interpretation of probability, and the use of
priors presents a formal means to incorporate scientific
knowledge and expertise into statistical models. Mixed
models and hierarchical linear models are particularly well
adapted to the Bayesian paradigm, falling under the gen-
eral umbrella of BHM.

Consider the previous example of speech perception
scores that are measured over time. These scores follow
nonlinear trajectories, increasing over time and eventually
reaching an asymptote. Rather than take various trans-
formations of the dependent variable or the time variable
to try and create a linear relationship, we can instead use a
nonlinear function to directly measure the growth pattern.
However, nonlinear models are likely to require multiple
random effects to adequately model individual growth tra-
jectories, and standard software will have a hard time fit-
ting models with more than two random effects. Bayesian
models, on the other hand, make it easier to fit such models.
Oleson, Cavanaugh, Tomblin, Walker, and Dunn (2016)
used a Gompertz growth function to evaluate how children
who were born deaf but were implanted before the age of
2 years compared to children who were implanted between
the ages of 2 and 4 years. The outcome variable was lan-
guage as measured by the Phonetically Balanced Kindergarten
score, which was used for children from approximately ages
1 to 5 years, and the Consonant–Nucleus–Consonant score,
which was used for children from approximately ages 5 to
17 years. The nonlinear trajectory described above can be
seen in the individual trends shown in Figure 2A. In order
to fit a plausible nonlinear model to these data, the use
of a random effect is typically required for each parameter
in the nonlinear function. In this case, the random effects
are also related between two different language measures.
A corresponding frequentist model would require two out-
come measures to accommodate separate but correlated
trends that would share the same three random effects for
the nonlinear growth function. In addition, we would need
to be able to obtain approximate maximum likelihood esti-
mates and to have a significance test for a group effect. Such
Oleson et al.: Evolution of Statistical Methods 503



Figure 2. Figure 2A shows the individual trends for participants who took the Phonetically Balanced Kindergarten (PBK)
and Consonant–Nucleus–Consonant (CNC) tests repeatedly over time. Each line represents a single participant. Figure 2B
demonstrates the Bayesian hierarchical model fitted lines for PBK and CNC with the black line denoting children
implanted with a cochlear implant before the age of 2 years and the grey line denoting children implanted between the
ages of 2 and 4 years.
a model is unlikely to be fit in standard software without
many simplifying assumptions being made. On the other
hand, we can devise a Bayesian hierarchical linear model to
fit this situation by breaking the model down into simpler
conditional pieces.

Begin by defining the data model, which assumes that
language score follows a normal distribution with some
mean and some unknown variance. The process model fol-
lows and defines what form the mean of the normal distri-
bution follows. The authors assume the mean follows a
Gompertz growth curve, which specifies an intercept,
a growth rate, and a maximum threshold. There was a
random subject effect for each of those parameters that
allowed for subject-specific growth patterns. The final step
in a BHM is to specify appropriate prior distributions for
each of the remaining parameters. The parameters in this
model, after breaking the system down into smaller and
more understandable conditional processes, are typically
estimated through sampling algorithms, most commonly
Markov Chain Monte Carlo. The results of the fitted
model in this example, showing the estimated group level
curves, can be seen in Figure 2B. Individual-specific
growth curves can be viewed in Oleson et al. (2016). In
addition to such visualizations, these models allow us to
compare both the achieved asymptote and the growth
rates between the two groups. The authors found signifi-
cant effects in both maximum speech perception and the
growth rate.

Although Bayesian statistical modeling has not been
widely used in speech, language, and hearing sciences, there
are numerous advantages of this modeling approach that
can be useful for scientists in these fields compared to
traditional frequentist statistical methods. For additional
information about Bayesian statistical approaches, including
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examples of Bayesian applications, see the article by
McMillan and Cannon (2019) in this research forum.

Statistical Learning
Another approach to data analysis that has become

much more widely used in the last few years carries many
names, and researchers from different backgrounds prefer
different methods within it. Commonly invoked names
include machine learning, statistical learning, deep learn-
ing, pattern recognition, data mining, informatics, data
science, predictive modeling, artificial intelligence, and so
forth. To be sure, each of these terms tends to include a
different array of techniques on average, but the degree
of common ground is substantial. Given our background
as statisticians, it is perhaps unsurprising that we favor the
high-level classification of Leo Breiman, who referred to
many of these techniques as “algorithmic models,” in con-
trast to the “data models” of traditional statistics (Breiman,
2001). His division split statistical models into the former
group, in which the data-generating mechanism is assumed
to be complex and unknown—something to be estimated—
and the latter, in which we make specific assumptions about
the data-generating mechanism (likelihood) and then pro-
ceed to estimate parameters.

In statistical learning, and more specifically for
“supervised” learning techniques, the focus is on the use
of algorithms to determine good rules for predicting some
outcome measure from a set of explanatory variables. The
outcome may be categorical or continuous, depending on
the technique, and the explanatory variables may take
any number of forms. Although all the usual covariates are
equally of interest in this paradigm (e.g., exposure vari-
ables, treatment indicators, demographic factors), some
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algorithms excel at using highly nontraditional data sources,
such as images, video, or audio.

These techniques can be quite powerful, and prod-
ucts based on them have become ubiquitous in modern life.
Accordingly, they have generated much interest among
researchers. Nevertheless, to successfully apply statistical
learning techniques, there are several prerequisites and
costs as well as benefits. The principle drawback of these
techniques is the lack of formal inference—quantifying
evidence. Unlike the previously discussed techniques, one
will generally be unable to produce p values or Bayesian-
credible intervals when applying statistical learning models.
A second and related drawback is the general lack of
interpretability. Often called black box models, the predic-
tive rules learned by these techniques may be the combi-
nation of the results of many decision trees, hundreds of
nested linear combinations of input covariates, or many
other ensembles of basic components—these techniques are
good at prediction, not providing interpretable rules for
clinicians or evaluating evidence for researchers. We there-
fore propose three criteria that should be met before these
techniques are seriously considered for an analysis in the
speech, language, and hearing sciences:

1. The goal of a study is to make predictions, or to make
a tool to generate predictions.

2. The number of observations is large.

3. An appropriate algorithm can be found to match
your data.

The first point is clear: Choose techniques that match
your study goals. The second serves to highlight the point
that the more observations you have available, the more
likely a given algorithm will be to learn nuanced and ro-
bust prediction rules. The final point may be relatively
straightforward, or very difficult, depending on your level
of expertise and the problem at hand.

For analyses with one observation per subject, many
“off-the-shelf” tools with robust and flexible software
support will perform quite well: random forests, gradient
boosted machines, and support vector machines, among
others. For longitudinal analyses, more care is needed. For
nontraditional data sources such as images, audio, or video,
one may need to construct a custom neural network, or
apply one of many available published neural network ar-
chitectures. Further description of any of these options is
beyond the scope of this work, but for the subset of practi-
tioners with interest and sufficient data, hopefully this pro-
vides a starting point for further research.

We use data from Tomblin et al. (2015) to showcase
the utility of a statistical learning model. In this longitudinal
study, language outcomes of children with mild to severe
hearing loss during preschool years were recorded. In our
example analysis, we consider the problem of predicting
whether or not a child will have a language score above the
normed average (100) in the third year based on all available
data recorded up to that time. The binary outcome was
taken to be 1 for the above 100 group, and 0 otherwise, and
we apply gradient boosted trees as implemented in the
Xgboost software package (Chen et al., 2018). The vari-
ables used in the prediction are age at testing, age the
hearing aid was fit, family income, mother’s education level,
father’s education level, better ear pure-tone average, speech
intelligibility index, residual speech intelligibility index
(Tomblin, Oleson, Ambrose, Walker, & Moeller, 2014), hours
per week of hearing aid use, and previous year’s language
scores.

Unlike traditional statistical analyses, we do not
obtain coefficient estimates or p values. Instead, a proba-
bility is estimated for each observation under cross vali-
dation, allowing us to infer how well the model is expected
to perform for predicting new observations. In this case,
the accuracy was estimated to be 0.8512, with a sensitiv-
ity of 0.8506 and a specificity of 0.8519. In addition to
predicting the outcome, we do obtain relative measures
of variable importance. The top five variables driving the
prediction were Year 2 language score, Year 2 pure-tone
average score, biological father’s education, biological
mother’s education, and the age at which the hearing aid
was fitted. Such a summary does not describe the type of
relationship between these predictors and the outcome; it
simply indicates that one exists.

The sample size in this example analysis is on the
small side for a machine learning problem (n = 168), but the
algorithm works nonetheless. When compared to a
traditional logistic regression model, additional advan-
tages present themselves. The logistic model has decent
performance with accuracy measured under cross-validation
of 0.816, sensitivity of 0.8313, and specificity 0.8000. Never-
theless, five observations were automatically excluded due
to missing Year 2 language scores, and many other less
informative covariates had to be dropped from the model
for the same reason. If prediction is truly the focus of a
study, then the ability to apply robust machine learning
models that handle missing data automatically is very
convenient.
Discussion
In this work, we aimed to highlight important areas

where research studies in the speech, language, and hearing
sciences would benefit from greater use of more modern,
general, or philosophically distinct statistical methods.
There is no one-size-fits-all approach to data analysis, so it
is important for researchers to be aware of ways in which
even standard practice may be suboptimal and to be aware
of promising alternative approaches.

Box (1979) argued that “all statistical models are
wrong, but some are useful.” As we have alluded to through-
out the review article, many statistical methods should ulti-
mately lead the researcher to the same conclusion, as long
as the signal that we are detecting is sound. We do not
expect that all of the assumptions behind a chosen statis-
tical method are perfectly met, but we do expect that the
model and its assumptions are a close enough match to
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reality to be useful. Another statistical principle to follow
is credited to Albert Einstein, “Everything should be made
as simple as possible, but not simpler.” Good statistical
practice indicates that we should choose the simplest sta-
tistical method to address the research question of interest.
If the model is too simple, then we may miss an important
signal, but if the model is too complex, then we may detect
a signal that is not real. There are many opportunities to
apply these principles in the speech, language, and hearing
sciences, and it is our hope that this review article will
help orient investigators to the problem of selecting appro-
priate and robust statistical models.
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