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Purpose: Clinicians depend on the accuracy of research
in the speech, language, and hearing sciences to
improve assessment and treatment of patients with
communication disorders. Although this work has
contributed to great advances in clinical care, common
statistical misconceptions remain, which deserve
closer inspection in the field. Challenges in applying
and interpreting traditional statistical methods with
behavioral data from humans have led to difficulties
with replication and reproducibility in other allied
scientific fields, including psychology and medicine.
The importance of research in our fields of study for
advancing science and clinical care for our patients
means that the choices of statistical methods can
have far-reaching, real-world implications.
Method: The goal of this article is to provide an
overview of fundamental statistical concepts and
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methods that are used in the speech, language, and
hearing sciences.
Results: We reintroduce basic statistical terms such as
the p value and effect size, as well as recommended
procedures for model selection and multiple comparisons.
Conclusions: Research in the speech, language, and
hearing sciences can have a profound positive impact on
the lives of individuals with communication disorders, but
the validity of scientific findings in our fields is enhanced
when data are analyzed using sound statistical methods.
Misunderstanding or misinterpretation of basic statistical
principles may erode public trust in research findings.
Recommendations for practices that can help minimize
the likelihood of errors in statistical inference are
provided.
Supplemental Material: https://doi.org/10.23641/
asha.7849223
S tatistical techniques are not magical or mysterious;
rather, they are tools designed to quantify scientific
evidence in various ways. Each method is built upon

a mathematical foundation and has well-defined appropri-
ate uses and requirements. Understanding more about these
foundations, as well as the assumptions made by statistical
procedures, can help investigators to adopt the most appro-
priate statistical method for the problem at hand, leading
to more reliable and replicable results. Most traditional
statistical methods follow the frequentist philosophy, in which
models are fit via maximum likelihood or ordinary least
squares. There are, of course, alternate perspectives on
statistical inference, including Bayesian statistics and al-
gorithmic modeling/machine learning. In addition, there are
many techniques in nonparametric inference and variations
on likelihoods (e.g., partial likelihood, semipartial likeli-
hood, quasilikelihood, pseudolikelihood). Our focus in this
article, however, is primarily on frequentist hypothesis test-
ing using maximum likelihood, which is at the core of most
applied science, as well as introductory statistics curricula.
We expect that readers of this article have had at least one
basic course in statistics. Researchers in speech, language,
and hearing sciences are used to designing studies to learn
about specific topics of interest, and many do perform their
own statistical analyses to answer their hypothesis ques-
tions. Therefore, our goal is not to review all of the basics
of statistics; rather, our goal is to highlight common errors
and misconceptions in statistical approaches that can help
scientists to avoid common statistical pitfalls in their re-
search. In a companion article, some advanced methods for
analyzing data in speech, language, and hearing sciences
will be highlighted (Oleson, Brown, & McCreery, 2019).
Disclosure: The authors have declared that no competing interests existed at the time
of publication.
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The use of statistical methods with underlying as-
sumptions that do not match the data can have potentially
serious consequences for the accuracy and reproducibility
of scientific results. A recent analysis in major behavioral
psychology journals indicated that approximately half of
articles published between 1985 and 2013 contained at least
one statistical error, and around 12% of published articles
contained a statistical error that would have altered key
findings of the study (Nuijten, Hartgerink, van Assen,
Epskamp, & Wicherts, 2016). Widespread findings of er-
rors in statistical reporting and interpretation are believed
to have contributed to an inability to replicate key scien-
tific findings from the literature in psychology (Pashler &
Wagenmakers, 2012) and medicine (J. P. Loannidis, 2005).
Problems with replication of statistical results erode public
trust in science and can reduce the impact of scientific find-
ings. Fortunately, many current problems related to the
lack of transparency and reproducibility in scientific re-
search can be resolved through increasing statistical profi-
ciency of scientists and promoting open and transparent
practices in the sharing of the code used for statistical anal-
yses and data (Peng, 2015). To be clear, clinical and scien-
tific experts do not need to become statistical experts, but
they should recognize the statistical principles involved in
their study design and their statistical analysis plan. More-
over, they should seek out collaborations with statistical
experts to be involved with the study design and the statis-
tical analyses. Study teams should include statistical exper-
tise early in the development process to help design the
study, to set up a clear and appropriate analysis plan, and
to ensure appropriately analyzed and presented results.

Consider a research study in which we want to com-
pare differences in the mean speech perception for children
with hearing loss to children without hearing loss. There
are multiple statistical approaches that could be applied to
analyze differences between groups. Although scientists in
nearly every discipline are familiar with the use of a two-
sample Student’s t test in this situation, confusion may arise
when the assumptions of independence, normality, and
equal variances are violated. An investigator must decide
whether to immediately jump to a nonparametric analysis,
implement a Welch adjustment for unequal variances, em-
ploy a repeated-measures analysis of variance (ANOVA),
or transform the outcome variable, among many other op-
tions. All of these possible alternatives may produce the same
conclusion, meaning the statistical approach we choose is
inconsequential in many cases. On the other hand, we might
obtain wildly different results depending on our choice of
statistical method; understanding why the violation of as-
sumptions can alter the behavior of statistical procedures is
critically important to good statistical practice and making
inferences based on the results of statistical analyses.

In most cases, there is not a single statistical approach
that must be applied to solve a given research question,
even when there is a clear tradition or common practice.
Importantly, every statistical method comes with advantages
and limitations. Practitioners should be familiar with the
benefits and drawbacks of the procedures they employ and
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use that knowledge to choose methods that credibly answer
the research question of interest. Our goal is not to provide
detailed mathematical explanations of these tradeoffs but
rather to focus on intuitive and practical recommendations
when performing analyses, reporting results, and interpreting
findings. We begin by discussing significance reporting and
introducing the basic ideas behind hypothesis testing. We
next discuss the ubiquitous use of the p value and what every
user of a p value should know. The discussion of statistical
significance via the p value is followed by measures of clini-
cal significance through the appropriate use of effect sizes.
We conclude by offering thoughts on regression analysis,
model selection, and multiple comparisons.
Statistical and Clinical Significance
Significance Reporting

Research findings are often reported in terms of sta-
tistical and clinical significance, but it is very easy for both
the producers and consumers of research to misuse or mis-
interpret these tools. Statistical and clinical (or practical)
significance provide different pieces of important informa-
tion. Ideally, both statistical and clinical significance should
be described in reports and analytical results. Recall that
statistical tests are generally devised as a choice between the
null hypothesis (e.g., the average speech perception score
for children with hearing loss is the same as the average
speech perception score for children with normal hearing)
and an alternative hypothesis (e.g., the average speech per-
ception scores differ between children with and without
hearing loss). To test a hypothesis is to ask whether we have
enough scientific evidence to “reject the null hypothesis”
and conclude that there is enough scientific evidence to con-
clude that the alternative hypothesis must be true (e.g., the
speech perception means for children with hearing impair-
ment and children with normal hearing are different). When
we “do not reject the null hypothesis,” we write that there
is not enough evidence to conclude that the group means
differ; we do not make positive conclusions (e.g., “the two
group means are actually equal”). The phrase “statistical
significance” simply indicates that we have satisfied a pre-
specified rule (how far apart the means are relative to the
standard error), which allows us to reject the null hypothe-
sis in favor of the alternative hypothesis. This is most com-
monly assessed using p values, which we discuss in more
detail in the p Values section. The result of our reject or do-
not-reject decision can be either correct or incorrect. If we
reject the null hypothesis in favor of the alternative hypothesis,
but the null hypothesis is actually true, then we have made a
Type I error. For example, a Type I error occurs when we
claim two groups have different means when the means are in
fact equal. If we do not reject the null hypothesis, but the al-
ternative hypothesis is the true one, then we have made a
Type II error. This transpires when we do not claim that
two group means are different when they really are different.

Clinicians and researchers should recognize that sta-
tistically significant findings are not always practically or
89–497 • March 2019



clinically significant. Statistical and clinical significance are
often decoupled for large data sets because p values are
strongly affected by the sample size. For example, we may
find that the mean ages between two participant groups
are significantly different statistically but that the observed
mean difference is only 0.08 years (1 month). Unless this
difference occurs at a point in development where the out-
come of interest is likely to change rapidly over a short pe-
riod, an age difference of 1 month between groups is unlikely
to be clinically important. Reporting just the p value with-
out highlighting the practical implications of the 1-month
difference could be misleading.

Confidence intervals can help to contextualize signifi-
cance tests and effects. Confidence intervals give a range of
plausible values for a particular effect of interest. As such,
they can be used to test hypotheses by checking whether
the lower and upper bounds contain the hypothesized value
of the quantity of interest. In addition, confidence intervals
can also give an impression of clinical significance, which is
discussed in more detail below in the Effect Sizes section in
the context of “effect size.” Briefly, an effect size can be as
simple as reporting parameter estimates such as the sample
mean, the mean difference between two groups, or the slope
estimate in a regression analysis. Confidence intervals are
subject to the same Type I and Type II error rates as signifi-
cance testing more broadly, and the specific intervals given
are often misinterpreted by researchers. Nevertheless, confi-
dence intervals provide additional clinical effect informa-
tion beyond the simple statistical significance of a finding
and are discussed in more detail in the Effect Sizes section.

Unlike p values, the practical size of an effect does
not change based on a sample size and provides a crucial
piece of information that should be reported. In general,
more time and space in scientific reports should be devoted
to the discussion of the practical significance and scientific
impact of detected effects. To be most impactful, scientific
publications should convey both the evidence of an effect
(statistical significance) and the practical impact of the
detected effect (clinical significance). In addition, because
different scientific audiences may have different tolerances
for Type I errors, we recommend that researchers report
actual p values, rather than just whether or not an effect
is significant. Whereas preference or convention leads many
researchers to be satisfied with a 5% Type I error rate
(p < .05), others may prefer 1% or 0.1%, especially if the
consequences of such an error would have a major impact
on the field or alter an established scientific premise or
clinical practice. In the next two subsections, we discuss
p values and effect sizes in greater detail.
p Values
Although every introductory statistics class requires stu-

dents to memorize their definition, p values have long been
misunderstood and are often misused, misinterpreted, and
increasingly criticized. At least one journal (Basic and Ap-
plied Social Psychology) has even taken the step of banning
p values (Trafimow & Marks, 2015), and another has
suggested using a more conservative p-value threshold to
determine statistical significance to .005 (J. P. A. Loannidis,
2018). These controversies have led to ongoing debate and
discussion across a wide range of scientific fields about the
appropriateness of p values as the main criterion for judg-
ments about statistical significance. To shed more light on the
proper use and interpretation of p values, the American Sta-
tistical Association released a statement in 2016 (Wasserstein
& Lazar, 2016) with six principles to consider for the proper
use and interpretation of the p value. They are the following:

1. p values can indicate how incompatible the data are
with a specified statistical model.

2. p values do not measure the probability that the stud-
ied hypothesis is true or the probability that the data
were produced by random chance alone.

3. Scientific conclusions and business or policy decisions
should not be based only on whether a p value passes
a specific threshold.

4. Proper inference requires full reporting and transparency.

5. A p value, or statistical significance, does not measure
the size of an effect or the importance of a result.

6. By itself, a p value does not provide a good measure
of evidence regarding a model or hypothesis.

As we tackle the question of the usefulness of the p
value, we need to understand what it is and what it is not.
By definition, the p value is the probability of observing a
test statistic, which is as extreme as or more extreme than
that which was observed, assuming that the null hypothesis
is true. If this probability is sufficiently low (e.g., below an
acceptable Type I error rate) for the purposes of a given
study, then we consider this sufficient evidence that the
null hypothesis is likely not true and that we may favor the
alternative hypothesis. The p value is not a tool for decid-
ing which of two competing hypotheses is more likely,
given the observed data.

In the frequentist statistical paradigm (the most com-
mon approach to statistics and data analysis), the hypothesis
is not random, so we do not assign a measure of probability
directly to it. From this perspective, the actual hypothesis
is either true or false, and this fact does not change simply
due to our inability to know the truth with certainty (e.g.,
the two means are equal, or they are not equal). Instead, we
measure the likelihood that the data could have arisen if
the null hypothesis were true. In order to accomplish this,
we assume that the null hypothesis is true (e.g., the mean
speech perception rates are equal for children with hearing
impairment and children with normal hearing) and then
define a rule to reject the said hypothesis if the observed data
would be sufficiently improbable if that hypothesis were in-
deed true (e.g., these means are more than 2 SDs apart). If
the observed data would have been unlikely to have arisen
under the conditions specified in the null hypothesis (e.g.,
the sample means for our two groups are too far apart for
them to have come from two distributions with the same
mean), we consider that evidence against the null hypothesis.
Oleson et al.: Essential Statistical Concepts 491



This process does not allow for a probability comparing the
two competing hypotheses.

In some settings, researchers do desire a method to
compare the likelihood of competing hypotheses. In such
settings, Bayesian statistical approaches may be more useful.
In the Bayesian paradigm, one can evaluate the probability
of the null hypothesis being true versus the probability of
the alternative hypothesis being true, because the Bayesian
interpretation of probability is fundamentally different from
the frequentist interpretation. Broadly speaking, Bayesian
probability is a tool to quantify knowledge and uncertainty.
Bayesian statistics uses probability to describe what is known
before data are collected and to update that knowledge
based on how much is learned after collecting data. More
detail on Bayesian statistics is given in this issue in Oleson
et al. (2019) and McMillan and Cannon (2019).

p values suffer from other drawbacks besides the con-
fusing definition. Consider a two-sample problem to com-
pare two group means such as testing whether the mean
speech perception score of the population that is hard of
hearing is significantly different from the mean speech per-
ception score of the population with normal hearing. Al-
though the null assumption that population means are equal
is statistically useful, in real-world settings where we cannot
randomly assign group membership, we know a priori that
the two population group means are not the exact same value.
In our example of speech perception scores, it seems improb-
able that a language outcome score for the group with
hearing impairment has the same population mean as the
group with normal hearing. Our primary interest is to
determine whether a statistically detectable and clinically
relevant difference exists. Even in experimental settings, if
there is a difference worth testing, there is often a good
reason to suspect that at least an infinitesimal difference
between group means exists. Nevertheless, we assume that
the population means are equal in a null hypothesis. In
order to demonstrate evidence of a difference between them,
we must first naively assume that there is no difference.
Whenever the population means are even slightly different,
we know that we can make a p value small enough to declare
statistical significance simply by choosing a large enough
sample size (e.g., a high enough power). Indeed, researchers
who fail to reject null hypotheses are often advised to in-
crease their sample size. This practice is not statistically ap-
propriate in part because it does inflate the Type I error. In this
sense, p values by themselves often tell us more about sample
size than anything practically meaningful about the size of
the effect. Moreover, p values are constructed under the sta-
tistical model that we assumed: Any departures from the as-
sumptions of that model impact the reliability of the p value.

If we use common, incorrect statistical practices in
speech, language, and hearing science research, including sam-
pling from finite populations without correction, obtaining
correlated samples that are not accounted for, or sampling
from populations with different distributions from those as-
sumed by particular statistical procedures, the applicability
and reliability of p values are greatly diminished. Therefore,
the statistical analysis that is used should be carefully de-
termined to appropriately reflect the problem at hand and that
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the relevant assumptions should always be considered and
checked prior to making inferences based on statistical results.
Effect Sizes
An “effect” or “effect size” is a measurement of a phe-

nomenon of interest, whether an expected change in an out-
come in response to a treatment, a difference between group
means, or a ratio of the odds of an outcome in two groups.
Importantly, the specific effect size that is chosen should
provide insight concerning a meaningful study question.

Effect sizes can be subdivided into two groups: “stan-
dardized” or “relative” effect sizes and “unstandardized”
or “absolute” effect sizes. Unfortunately, which kind of effect
is being presented in a given analysis is not always clear.
Cohen’s d is a commonly used relative effect size, whereas
our previous example of 1-month difference in age is an
example of an absolute effect size. Many formulas for the
power of statistical procedures and sample size of study
designs are given in terms of Cohen’s d, because the power
to reject a null hypothesis depends on the relative extreme-
ness of the alternative hypothesis; Cohen’s d gives a stan-
dardized measure of how far an estimated effect is from a
hypothesized value, relative to its standard error. This gives
a convenient scale on which to compare and interpret mean
differences but suffers from the same problem as p values:
Cohen’s d does not measure the practical significance of a
difference but is instead more closely related to statistical
significance. Using our previous example, if we detect a
statistically significant difference in mean age between two
groups, we can equivalently expect that the difference in
means is large relative to its standard error. Lenth (2012)
provides an excellent summary of the shortcomings of com-
parisons of relative effect sizes. A clinically meaningful ef-
fect is typically better evaluated by examining the magnitude
of the absolute mean difference.

Absolute effect sizes for hypothesis tests comparing
means are simply the difference between the means of in-
terest. Statistical software for most statistical modeling
frameworks will output absolute effect sizes based simply
on the parameters reported by statistical software. Obtain-
ing relative effect sizes in the style of Cohen’s d in modern
statistical models can be somewhat more complex given
the potential difficulty of estimating the standard error of
the difference between groups, which is the denominator
term in the calculation of Cohen’s d. Although methods
exist to compute relative effect sizes for more complicated
models (Brysbaert & Stevens, 2018; Selya, Rose, Dierker,
Hedeker, & Mermelstein, 2012; Westfall, Kenny, & Judd,
2014), we generally prefer to rely on more interpretable
absolute effect sizes.

Confidence intervals provide another perspective on
absolute effect sizes. Although they suffer from some of
the same interpretability challenges as the p value, they do
give us more direct information on the range of plausible
values for the parameter of interest. Consider the difference
between speech perception scores between two groups again.
For two independent groups, a two-sample independent
89–497 • March 2019



groups confidence interval is typically computed using the
difference in the means and a weighted average of the vari-
ances of the two groups (a pooled variance). Note that we
say typically because we are assuming equal variances be-
tween the two groups and that the difference in means ap-
proximately follows a normal distribution, and any deviations
from those assumptions would require alternate methods.
The confidence interval is then centered at the mean differ-
ence, and we add and subtract the standard error (square
root of the pooled variance) times our critical value. The
result is an upper limit and a lower limit of confidence of
where we believe the true population mean difference might
be. The interpretation challenges come from the fact that
the performance guarantees (confidence levels) concern the
repeated process of how confidence intervals are constructed
in general, rather than the specific numbers produced in
one single statistical analysis. For example, in a study where
the mean difference in language standard scores between
two groups of children is 4.51, with a valid 95% confidence
interval of [3.30, 5.72], we have confidence that intervals
constructed in this way will contain the true language stan-
dard score 95% of the time. No such statement can be made
about the specific interval of 3.30–5.72. Even so, this range
does give plausible values that are consistent with the
observed data—a valuable addition to the practical under-
standing of the absolute size of an effect.

When reporting study results, it is important to re-
port measures representing both the statistical significance
and clinical significance of the study. Absolute effect sizes
generally carry the most information regarding clinical im-
portance for the study and should be reported. Generally,
this should be in terms of the parameter estimate and the
confidence interval for the estimate. Relative effect sizes
can also be informative in some situations but carry addi-
tional complexity and can conflate statistical and practical
significance for practitioners and readers.
Regression Topics
Regression and ANOVA

A common statistical technique employed in the field
is regression analysis. In its most basic form, a regression
analysis includes one dependent variable that is related to
the outcome via a line, although regression models can be
made much more complex. The goal is generally to test
whether all or some of the independent/explanatory vari-
ables in the model are related to the dependent/outcome
variable. Those independent variables may be continuous
or categorical. In the event that there is a single categorical
independent variable, then the resulting regression model
is commonly referred to as ANOVA. Although classical
regression and ANOVA were developed separately, ANOVA
is simply a special case of regression, where regression can
accommodate more complicated relationships between the
dependent variable and the independent variables.

In a regression-type model, the slope parameter esti-
mates themselves provide a measure of effect size. In cases
where multiple groups are present (such as in ANOVA or re-
gression with categorical variables), the effect of interest may
be given by the estimate of a contrast or a single parameter
estimate comparing one group to a reference group. See
Bring (1994) for a full discussion of regression effect sizes.
In Walker et al. (2014), regression models were used to in-
vestigate relationships among predictor variables and service
delivery for a group of children who were hard of hearing.
The independent variables were gender, test site, maternal
education level, immediate family history of hearing loss,
and degree of hearing loss measured by better-ear pure-tone
average. They found that, after controlling for all of the vari-
ables, only degree of hearing loss was significantly related
to the dependent variables age at first diagnostic evaluation
(β = −0.36, p = .003), age at hearing loss confirmation
(β = −0.42, p = .001), and age at hearing aid fitting (β =
−0.37, p = .011). By reporting the β (slope) values, we can
immediately determine how better-ear pure-tone average is
related to each of these age-related outcome variables. They
also found that only gender was significantly related to
length of the delay between hearing loss confirmation and
enrolling in early intervention (β = −3.34, p = .024). Through
reporting of the β value as an effect size, we immediately
know that girls had an estimated delay that was 3.34 months
shorter than boys, and we can readily assess the clinical im-
pact those months will have on the children.

In ANOVA, we are often confronted with the need
to adjust our outcome variable of interest by a covariate
that is continuous. A classical approach to performing this
adjustment is analysis of covariance (ANCOVA). Recall
that ANOVA is designed to compare group means by mea-
suring the between-group variance relative to the within-
group variance. ANCOVA is a method that mathematically
adjusts the group means to take into account the values of
the covariate (e.g., age) and then performs ANOVA on the
covariate-adjusted means. However, just as ANOVA is
equivalent to a regression analysis that includes only a cate-
gorical variable, ANCOVA simply adds a continuous vari-
able to be adjusted for to that regression model. For example,
an ANCOVA that examines differences in speech recogni-
tion for children who are hard of hearing and children with
normal hearing adjusting for age is the same as a linear
regression analysis that includes age and hearing status
(normal hearing or hard of hearing) as predictor variables.
General linear hypothesis tests can still be performed within
the regression model framework. General linear hypothesis
tests include what many in the field call post hoc tests.
Technically, post hoc tests are those tests, usually pairwise
comparisons, that are only considered after the results of
the global tests are found. If these pairwise comparisons are
planned from the beginning of the study, then they are not
technically post hoc tests.

Moreover, regression models and their generalizations
offer a great deal of flexibility to include additional covari-
ates, add random effects, modify the residual error struc-
ture, do nonlinear transformations, and more. The addition
of random effects to a regression model to create subject-
specific curves and account for within-subject correlation is
Oleson et al.: Essential Statistical Concepts 493



referred to as linear mixed-effects regression models or linear
mixed models. More details on mixed models can be read
in our companion article (Oleson et al., 2019). Although
ANOVA and ANCOVA are familiar statistical procedures
with a lot of history, it is preferable to use the regression
framework for the task of comparing group means.

Model Selection
Often, we encounter the situation of deciding what

independent variables to include in our regression model.
This process of deciding which variables to include, and
which to not include, is known as model selection. For ex-
ample, Walker et al. (2014) were interested in predictors of
the dependent variable age at hearing aid fitting. The inde-
pendent variables were gender, site at testing, maternal
education level, immediate family history of hearing loss,
and degree of hearing loss. The variables included in the
final model were included because of specific hypotheses
about the factors that influence hearing aid use from theory
and the previous literature on hearing aid use in children.
Model selection refers to deciding what subset of the full
list of independent variables should be included in the final
model.

Model selection is broader than just regression and
arises in all forms of statistical inference. Investigators must
identify a model that can address the research questions of
interest using the variables that were collected as data. Ide-
ally, scientific theory should be the foundation for the pro-
cess of model selection, comparing among a small set of
scientifically plausible models. Some approaches to model
selection are based on the principle of parsimony: The best
statistical model is that which includes all the essential vari-
ables and nothing more. In practice, however, the most
parsimonious model for a specific research question can be
difficult to identify. In many exploratory studies, we gather
data without a full understanding of what the important
relationships are, which covariates need to be adjusted for,
and what patterns of correlation in longitudinal studies are
likely to be appropriate. Although model selection is a large
topic area and an active field of statistical research, common
techniques in a frequentist setting can be broadly divided
into two categories: algorithmic approaches and researcher-
driven exploration. The process of model selection is cru-
cially important and can impact the outcome and reliability
of hypothesis testing procedures, as well as the inferences
and conclusions of a research study.

At the core of any model selection procedure is the
ability to compare selected models of interest to determine
which better fits the data. This comparison can be accom-
plished for nested models in a regression setting using F tests,
which test the null hypothesis that the collection of vari-
ables to be added to the model does not explain a significant
amount of variability in the outcome above and beyond the
currently included variables. More generally, we can com-
pare frequentist models using information criteria such as
the Akaike information criterion (AIC). Models with smaller
AIC values are considered to have better fit to the data.
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Algorithmic model selection approaches build on these con-
cepts by sequentially considering modifications to a model.
For example, forward selection starts with a base model
and proceeds to consider adding terms to a model. Terms
are added at each step if they meet an inclusion threshold,
which can be based, for example, on p values or information
criteria. Similarly, backward selection starts with a large
model and considers terms for removal. Researcher-driven
exploration may use some of the same tools to compare
models, but decisions on what models to explore and select
are made by the researcher. This process of model selec-
tion may be informed by scientific knowledge, formal
model comparisons, or conscious/subconscious preference
for certain model features or results.

Although it is clear why informal exploratory analy-
sis can lead to problems with inflated Type I error rates
and reproducibility, many practitioners are surprised to
discover that formal techniques such as stepwise model se-
lection are similarly problematic. In each case, the output
generated by statistical software after a model selection
routine is performed is indistinguishable from output ob-
tained from a prespecified analysis. For most statistical
procedures, the reported results are based on the assump-
tion that data were collected according to a simple random
sample from a large population, and then a single model
was fit. These assumptions are not met when data-driven
model decisions are made, and these assumption violations
can endanger the validity of statistical inference.

To illustrate this point, we highlight several simula-
tion results from a regression example. Replicate data sets
(50,000) are simulated with 10 hypothetical covariates and
a normally distributed outcome measure and are generated
under the global null hypotheses that all of the regression
coefficients are zero. Each data set has n = 100 observa-
tions. Two primary hypothesis tests are of interest. First,
we consider the setting where one covariate addresses a pri-
mary study question, and the other nine covariates are in-
cluded to adjust for potential confounding. In the second,
we consider the overall F test for the (true) null hypothesis
that all of the covariate beta coefficients equal zero. For
prespecified analyses conducted without model selection,
we have theoretical guarantees that the Type I error rate
will not exceed whatever nominal threshold we specify.

For a chosen Type I error rate of 0.05, we observe
that choosing large or small models presents no problems in
the absence of model selection. In line with our theoretical
expectations, the observed Type I error rate for the analysis
of just the single variable of interest produced a Type I
error rate of 0.0502, whereas an analysis of all 10 covariates
with pairwise interactions produced a comparable Type I
error rate for this comparison of 0.0496. The overall F-test
results were similar.

In the presence of forward stepwise model selection
based on AIC, however, the hypothesis test concerning our
primary variable of interest had a Type I error rate of 0.0645,
and the overall F test had a Type I error rate of 0.4314.
Therefore, just by applying basic model selection algorithms,
we are increasing our probability of incorrectly rejecting
89–497 • March 2019



the null hypothesis. Although these results are quite trou-
bling, especially for overall F tests, the situation in real
analyses may be even worse, as actual data tend to exhibit
correlation among the independent variables or various types
of confounding, driving up variability of parameter esti-
mates and the likelihood of incorrect conclusions. With this
in mind, it is incumbent upon practitioners to clearly delin-
eate between exploratory analyses and confirmatory analy-
ses in scientific reports and to clearly describe any model
selection procedures that were employed in a study. By
default, p values only attain their advertised performance
for prespecified models. Code and complete results of the
simulation are provided in Supplemental Material S1.

Multiple Comparisons
Statistical models may require comparisons of several

effects within an overall model. Traditionally, scientists
have been trained to adjust their statistical assumptions to
be more conservative to account for multiple comparisons
to avoid the increasing risk of statistical errors as the num-
ber of comparisons increases (e.g., Aickin & Gensler, 1996).
However, there are also costs to many approaches to ac-
counting for multiple comparisons, including reducing sta-
tistical power. There are different schools of thought when
it comes to multiple comparisons and many relevant sum-
mary articles. See overviews by Saville (1990), Bender and
Lange (2001), or Cao and Zhang (2014) for more in-depth
discussions of this issue. Rather than provide a review of
the myriad methods of accounting for multiple comparisons
in statistical models, we lay out some general points to con-
sider regarding the topic.

The primary reason that researchers are advised to
do a multiple-comparisons adjustment is to strictly control
the overall (familywise) Type I error rate. In summarizing
the alternative approaches for adjusting for multiple com-
parisons, we will consider three different general approaches.
We could (a) perform no adjustment and accept individual
Type I error rates, (b) adjust our alpha level to preserve a
predetermined familywise error rate, or (c) adjust the alpha
level to allow for a specified acceptable false-positive
error rate.

The first approach to multiple testing is applicable
when an alpha level adjustment may not be required.
Bender and Lange (2001) argue that multiple comparisons
should be used in confirmatory studies for the primary
outcome of interest and that they are not necessarily re-
quired for exploratory studies. The researcher should
clearly define the primary outcome and identify which com-
parisons correspond to that outcome. This may be a small
subset of analyses that are performed, where the rest of the
analyses are secondary and perhaps dependent upon the re-
sults of the primary question. If we have a truly controlled
and confirmatory analysis, then we do want to reasonably
control this alpha level. There is also the question of mak-
ing Type II errors where we do not detect an important dif-
ference. In speech, language, and hearing studies, where
sample sizes tend to be small, the alpha level adjustments
reduce the significance level, which also increases the Type II
error. It is critical to report absolute effect sizes in these
situations.

The most common approach implemented for multiple
comparisons is to adjust the alpha level to preserve a prede-
termined familywise Type I error rate. The Bonferroni
adjustment is the most common technique used. For all
pairwise comparisons, some will choose a Tukey–Kramer
adjustment, but there are many more ways of adjusting alpha
to control familywise error rates. Although it is clear that
these adjustments are conservative, it may not be as clear
the assumptions that are being made by such an adjustment.
In an adjustment to control the overall Type I error, a criti-
cal assumption is that all null hypotheses are correct and
that we want to jointly make only a 5% chance of falsely
rejecting at least one of those. However, we happen to know
that it is highly unlikely that all null hypotheses are true, as
we outlined in the Significance Reporting section. These
adjustment techniques make the most sense in a highly con-
trolled confirmatory study with a single outcome of inter-
est. In many studies, especially those that include various
covariates (e.g., age, hearing loss severity, gender), we do
expect many of the null hypotheses to be false and would
be surprised not to find significant evidence against them.
For example, a study in which age is adjusted for as a known
confounder is expected to find a significant effect due to
age. As an alternative example, a study with a placebo arm,
a known effective treatment arm, and a novel treatment
would be expected to reject the null hypothesis that the
existing treatment and placebo produce the same mean.
Assuming the global null hypothesis as a basis for Type 1
error rate correction is often unrealistic and unnecessarily
conservative.

The third approach is to adjust the alpha level to allow
for an acceptable error rate. This differs from approaches
that attempt to control the overall Type I error rate because
the goal is to control the proportion of our “significant”
results that are incorrect, rather than the probability of
making any such mistakes. The false discovery rate (FDR;
Benjamini & Hochberg, 1995) and the procedures for con-
trolling it were developed for this purpose. This method
makes more intuitive sense for how we think about testing,
but it does not guarantee an overall prespecified Type I er-
ror rate. FDR-adjusted p values control the number of false
discoveries (Type I errors). For example, an FDR of 0.05
implies that, on average, 5% of significant tests will result
in false positives under the null hypothesis. The FDR-
adjusted p value can be far less conservative than a Bonferroni
adjustment but still addresses the goals of controlling Type I
errors when multiple comparisons are made.

Discussion
The goals of this article were to (a) present statistical

concepts and methods that we regularly see implemented
and misunderstood in speech, language, and hearing sci-
ences research and (b) offer additional insights or alterna-
tives to those concepts and methods. Like other disciplines,
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the field of statistics has evolved over time to accommo-
date the realities of modern research involving human sub-
jects. Although the traditional statistical methods that we
have discussed in this article still have relevance and spe-
cific uses, often other tools can better and more accurately
answer the research question of interest and offer greater
flexibility for more complex research designs. It is up to
scientists in the field to continue educating themselves in
modern statistical practice to find statistical approaches
that fit their specific goals and to work with statistical ex-
perts throughout the research process.

This education begins with a better understanding of
the p value and its worth. When the p value is reported in
conjunction with an appropriate measure of the effect size,
then it gives the researcher important information about
the study findings, both statistically and clinically. It is im-
perative to consider the information actually conveyed by
a particular measure of effect size and how it informs the
statistical results and practical implications of a given study.
Although many of the concepts described in this review
are basic statistical principles, the misunderstanding or mis-
interpretation of these concepts is a substantial threat to the
validity of our research findings. To help minimize the po-
tential for statistical errors, researchers in the speech, lan-
guage, and hearing sciences can do the following:

1. Understand how p values are calculated and what
p values represent. The 2016 recommendations of the
American Statistical Association regarding p values
(Wasserstein & Lazar, 2016) can help scientists to
avoid common misconceptions about p values and
understand the difference between statistical and
clinical significance.

2. Report measures of statistical and clinical or practi-
cal significance as part of articles or reports summa-
rizing research findings. Presented together, metrics
of statistical and clinical significance enhance the in-
terpretation of research and make the effects mean-
ingful for clinicians and patients who are much more
likely to be interested in the magnitude of the effect
in terms of a specific outcome rather than the statis-
tical significance alone.

3. Include confidence intervals for effect sizes. The appro-
priate use of confidence intervals conveys the potential
range of plausible values around an effect and can al-
low consumers of research to understand the influence
of variability on the precision of reported effect sizes.

4. Choose statistical approaches that allow for modeling
complexity over methods with more rigid assump-
tions such as ANOVA or ANCOVA. Using flexible
methods such as regression or mixed models can ex-
pand the breadth of research questions that can be
evaluated beyond examining differences between
groups or across conditions.

5. Develop model selection procedures based on scien-
tific knowledge and theory that are parsimonious
solutions to complex phenomena. Different itera-
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tions of the same statistical model should be com-
pared using established information-based methods,
such as comparisons using AIC or Bayesian infor-
mation criterion.

6. Use methods for controlling for multiple comparisons
within statistical models that are specific to the goals
of the research rather than always using overly con-
servative approaches that control for familywise error
rate, such as Bonferroni adjustment. Decisions about
the appropriate method for controlling for multiple
comparisons should occur prior to the statistical anal-
ysis based on the goals of the comparisons and design
of the study.

The goal of reporting results from statistical analyses
in articles should be to present new clinically relevant find-
ings or suggest future research opportunities. Readers of
the work should be able to replicate the experiment and the
analysis. The statistical methods should be written with
enough detail that a data analyst could read it and replicate
the analysis. Furthermore, code and data should be pro-
vided when feasible to promote transparency and reproduc-
ibility. Statistical methods are designed to provide good
results under uncertainty but always include the possibility
of error. With this in mind, replication is an essential part
of scientific progress, and wherever possible, researchers
should facilitate these efforts. There are many opportunities
to apply these principles in the speech, language, and hear-
ing sciences, and it is our hope that this article will help ori-
ent investigators to the problem of selecting appropriate
and robust statistical models.
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