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Abstract

Introduction: High density lipoprotein (HDL) particles are heterogeneous and their proteome is 

complex and distinct from HDL cholesterol However, it is largely unknown whether HDL proteins 

are associated with cardiovascular protection.

Areas covered: HDL isolation techniques and proteomic analyses are reviewed. A list of HDL 

proteins reported in 37 different studies was compiled and the effects of different isolation 

techniques on proteins attributed to HDL is discussed. Mass spectrometric techniques used for 

HDL analysis and the need for precise and robust methods for quantification of HDL proteins is 

discussed.

Expert opinion: Proteins associated with HDL have the potential to be used as biomarkers 

and/or help to understand HDL functionality. To achieve this, large cohorts must be studied using 

precise quantification methods. Key factors in HDL proteome quantification are the isolation 

methodology and the mass spectrometry technique employed. Isolation methodology affects what 

proteins are identified in HDL and the specificity of association with HDL particles needs to be 

addressed. Shotgun proteomics yields imprecise quantification, but the majority of HDL studies 

relied in this approach. Few recent studies used targeted tandem mass spectrometry to quantify 

HDL proteins, and it is imperative that future studies focus on application of these precise 

techniques.
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1. Introduction

Cardiovascular disease (CVD) is the number one cause of morbidity and mortality 

worldwide [1]. However, reliable diagnostic tests of CVD risk are lacking and in nearly 1/3 

of patients, the first indication of CVD is an acute cardiovascular event (i.e. myocardial 

infarction). Epidemiological studies demonstrated inverse association of CVD risk with 

plasma concentration of HDL-C [2], but recent failures of clinical trials that 

pharmacologically elevate HDL-C [3,4], association of high HDL-C with cardiovascular and 

all-cause mortality [5], together with Mendelian Randomization genetic studies[6] provided 

strong evidence against a causal relationship between HDL-C levels and cardiovascular risk. 

However, numerous studies have shown that HDL-C does not capture HDL diverse 

functions [7] and therefore other HDL metrics need to be explored. Whether HDL proteins 

[8–10] are associated with the cardiovascular protection and whether they play a role in 

determining HDL antiatherogenic properties remains largely unknown [11].

HDL-C levels associate negatively with CVD risk, and HDL proteome is less complex than 

plasma to be analyzed (e.g., ~100 vs. thousands of proteins and 4 vs. >10 order of magnitude 

concentration range) [12,13], making HDL an attractive target to look for surrogate markers 

of atheroprotective function. A large number of studies have analyzed HDL protein cargo 

and its changes in a number of disease conditions. However, there is little congruency in 

proteins found in HDL. The major challenges stem from HDL complexity, definition, 

different approaches for isolation, and the heterogeneity of its particles. Moreover, technical 

challenges for the analysis of HDL proteome come from the high phospholipids content of 

HDL (30% of HDL by weight and ~100x molar excess over average protein in HDL)[12], as 

phospholipids are recognized electrospray ionization (ESI) suppressants.

In this review, we have attempted to reconcile proteomic studies presented up to May 2019, 

and to address challenging questions in HDL field, concerning the identity of HDL proteins, 

how different isolation techniques affect proteins attributed to HDL, and how to handle the 

issue of contaminant proteins in HDL. Lastly, we review mass spectrometric (MS) 

techniques applied to HDL analyses and suggest a guidance for future translational studies, 

which could provide definitive answers about utility of HDL proteome as a marker or 

mediator of CVD. Because several excellent reviews [10,14] provide thorough overview of 

HDL measurement techniques [15,16], isolation methodologies [9,17], as well as association 

of the HDL proteome with various disease conditions[18], these aspects will not be 

discussed here in detail.

2. How is HDL defined?

Lipoproteins are non-covalent complexes of proteins (generally called apolipoproteins) and 

several classes of lipids, in which the neutral lipid core (composed of cholesteryl esters and 

triglycerides) is surrounded by a monolayer of polar lipids, primarily phospholipids and 

unesterified cholesterol, together with protein(s). Lipoproteins were described as a distinct 

complex of proteins and lipids for the first time in 1929 [19]. HDL constitutes the most 

heterogeneous and protein enriched class of lipoproteins. The definition of HDL as a unique 

class of lipoprotein particle comes from studies using density ultracentrifugation (UC). 
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Given its high proportion of protein to lipids, HDL floats at a density range of 1.063 to 1.21 

g/mL, denser than larger and more buoyant classes of lipoproteins [20–22]. Since 1950’s, 

definition of HDL particles by their density range is the gold standard in the field. 

Lipoproteins also have characteristic electrophoretic mobility, with HDL migrating 

predominantly with alpha electrophoretic mobility [21]. Soon after isolation and 

characterization of HDL, it became evident that HDL particles carry proteins (namely 

apolipoprotein A-I (APOA1) and apolipoprotein A-II (APOA2)) distinct from those carried 

by larger lipoproteins, low-density lipoprotein (LDL) and very-low density lipoprotein 

(VLDL) [23]. This discovery lead Alaupovic to propose definition of lipoproteins based on 

their apolipoprotein composition rather than their density range [23–26]. Alaupovic defined 

three major classes of HDL particles – those containing only APOA1 (LpA-I), those 

containing APOA1 and APOA2 (LpA-I/LpA-II) and those particles containing only APOA2 

(LpA-II)[24,27]. From these studies, it became evident that HDL is composed by a 

heterogeneous mixture of particles, and that some particles containing APOA1 are not 

present in the density range of 1.063–1.21 g/mL, and thus do not fit HDL’s density 

definition.

Based on density, HDL can be separated into two distinct classes – a more dense HDL3 

(1.125–1.21 g/ml), and a lighter HDL2 (1.063–1.125 g/ml)[28,29] Density isolated HDL can 

be further fractionated by size on non-denaturing gradient gel electrophoresis. This 

technique distinguishes 5 individual particle species, 2 of them comprised in the HDL2 

range (designated HDL2a,b), and 3 species in HDL3 range (designated HDL3a,b,c)[30.]. 

These 5 classes of HDL can also be isolated by isopycnic UC [31]. Notably, these classes of 

HDL defined by density do not directly correspond to HDL classes defined by 

apolipoprotein composition, with both LpA-I and the LpA-I/A-II particles spanning the 

entire size range of HDL on gradient gel electrophoresis [32]. The distinction between 

definition of HDL by density or by apolipoprotein composition was corroborated by 

immunoaffinity purification of different density ranges of HDL [33], and further confirmed 

using native two-dimensional (2D) gel electrophoresis [34,35]. In native 2D gel 

electrophoresis, lipoprotein particles are first separated based on their charge (pI) in agarose 

gel and in the second dimension based on their size using gradient gel electrophoresis. 

Native 2D gel electrophoresis applied to plasma provides separation of a number of unique 

APOA1 containing species that include, but are not limited to small, very dense pre-beta-1 

particles, large particles with pre-beta electrophoretic mobility, as well as four species with 

alpha-electrophoretic mobility, including spherical HDL particles [35,36].

3. Approaches to HDL isolation

To analyze HDL and categorize its subspecies, i.e. by using 1D or 2D electrophoresis or size 

distribution, it is not necessary to isolate HDL particles from plasma. In this case, lipid or 

protein specific (e.g. anti-APOA1 antibody) staining can detect HDL subspecies. In contrast, 

to perform proteomic analysis, HDL has to be first isolated from plasma. A number of 

different techniques have been used to accomplish this task.

The density ultracentrifugation (UC) has been a “golden standard” method since it was first 

used to define lipoprotein classes [22]. Many variations of UC methods have been developed 
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over the years. Thus, sequential density UC uses a sequence of distinct steps to separate 

HDL from plasma proteins and from apolipoprotein B (apoB)-containing lipoproteins [37]. 

In contrast, gradient density UC, also called isopycnic ultracentrifugation, separates HDL in 

a single spin. This technique builds a density gradient by carefully overlaying layers of 

different densities with a single spin run until isopycnic equilibrium is reached [29]. 

Moreover, the specific density can be adjusted using different chemicals. Most frequently, 

aqueous KBr has been used, but achieving the density for HDL isolation using this salt 

results in high ionic strength of the solution that may exert possible adverse effects on 

stability of HDL. Besides, the sheer force particles experience in the ultracentrifuge may 

cause stripping of proteins from HDL particles. Indeed, several studies suggested that UC 

might partially disrupt HDL particles primarily by stripping a fraction of APOA1 and 

possibly other exchangeable apolipoproteins from the particles [38–40]. It should be noted 

that most of these studies used extremely long centrifugation times (24 – 96 h). Moreover, 

different extent of HDL sheering was observed in sequential versus gradient density UC [41] 

and different subpopulations of HDL particles may be affected to a different extent. For 

example, APOA1 only containing particles (LpA-I) appear to be more unstable than LpA-

I/A-II [42]. Attempts have been made to alleviate these problems by using agents that 

minimize or eliminate increased ionic strength. Thus, D2O in combination with KBr, 

sucrose, or heavy metal salts (e.g. CsCl) have been used to attenuate the ionic strength of the 

solution [38,43]. Another alternative is the use of iodixanol, that produces iso-osmotic 

solution at all densities[44]. However, data demonstrating how well each one of these 

techniques can separate HDL from plasma proteins are scarce. In some studies, a band at 

66–70 kDa in gel electrophoresis strongly suggested the presence of albumin after HDL 

isolation [39], while in others the separation appears free of plasma contamination [43]. 

Consequently, the wide range of UC approaches used for HDL isolation may result in 

substantial variations in HDL proteome, either by stripping proteins from HDL particles or 

by co-isolating a variable number of plasma proteins as well as more buoyant lipoproteins 

(LDL). Moreover, dense fractions of larger lipoproteins may overlap in density with HDL, 

e.g. lipoprotein(a) (Lp(a)).

Immunoaffinity chromatography (immunosorption) with antibodies specific for APOA1 is 

an alternative method for HDL isolation reflecting Alaupovic’s apolipoprotein based 

definition of lipoprotein classes, here defined by the presence of APOA1 (LpA-I particles). 

After the first reports of the existence of particle defined by APOA1 (Lp-A-I) [45,46], a 

number of studies in 70’s and early 80’s employed immunosorption to characterize the 

distribution of different apolipoproteins and to define lipoprotein particles based on 

apolipoproteins. However, use of immunoaffinity chromatography on preparative scale was 

first reported by Albers[47] and Kane[48] laboratories in 1984. In their approach, purified 

antibodies against APOA1 were immobilized on Sepharose beads and captured APOA1-

containing particles were eluted using gentle acidic conditions, after extensive washing of 

unbound apoB-containing lipoproteins and plasma proteins. Nearly quantitative recovery of 

plasma APOA1 was achieved, and characterization of the LpA-I particles revealed they were 

relatively enriched in total protein content, at the expense of decrease in phospholipid and 

cholesterol content, when compared to particles isolated by UC [48]. Cheung further showed 

LpA-I particles can be subfractionated to APOA1 only (LpA-I) and APOA1/ APOA2 (LpA-
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I/LpA-II) containing particles. Each of these particle populations is unique with distinct size 

distribution and composition from each other as well as from HDL2 and HDL3 isolated 

based on density [47]. In contrast to UC, the immunoaffinity isolated LpA-I particles include 

pre-beta HDL, a unique particle that contains over 90% of protein in the form of 

APOA1[49]. Furtado et al extended subfractionation of LpA-I particle beyond APOA2 and 

used anti-APOA1 immunosorption combined with immunoaffinity columns against 16 HDL 

proteins to define 16 unique HDL particles [50]. Collectively, the immunoaffinity isolation is 

a method of isolation of LpA-I particles that reflect the native particles as present in serum 

better than HDL isolated by density UC and include particles with density higher than 1.21 

g/mL (sometimes termed very-high density lipoprotein, VHDL). However, it should be 

noted that APOA1 is found also on APOB containing lipoproteins and the immunoaffinity 

approach will co-purify these large APOA1 containing particles [51,52]. Furthermore, an 

analysis of subjects with APOA1 deficiency demonstrated that population of particles that 

do not contain APOA1 exists in the HDL size and density range [53] and these particles are 

not captured by immunoaffinity aimed at APOA1. Furthermore, establishing specific 

association with immunoaffinity beads is not trivial and requires careful control of washing 

as well as controls for non-specific binding to the carrier beads as well as to the non-specific 

binding to the antibody itself [54].

In addition to isolation based on density or APOA1 content, it has been suggested that HDL 

can be isolated based on its size using size exclusion chromatography (SEC) with fast 

protein liquid chromatography (FPLC) systems [55,56]. Fractions eluting from SEC are 

collected and HDL range is selected based on phospholipid and cholesterol in the HDL size 

range. Although SEC separates proteins in their native forms, many plasma proteins have 

molecular weights in the same range as HDL, e.g. albumin dimer (~135 kDa), IgG (150–180 

kDa), complement C3 (180 kDa), and many exist in protein complexes that would fall into 

the same range. Thus, the SEC merely enriches plasma for HDL. To circumvent this 

problem, Davidson lab extended this approach by applying the isolated HDL enriched 

fractions to lipid binding resin, a lipid removal agent (LRA) which efficiently binds lipids as 

well as lipid binding proteins [57]. Unfortunately, the proteins bound cannot be easily 

dissociated from the resin, and the method is only suitable for proteome analysis after 

digestion directly on the resin [57,58]. Moreover, a number of other proteins in plasma bind 

lipids although they are not considered to be classically defined as associated with HDL.

Ionic properties of HDL (as an alpha migrating lipoproteins) have been explored in an 

attempt to isolate HDL using anion-exchange chromatography [59–61]. Although this 

method separates HDL from other lipoproteins, it does not isolate it from other plasma 

proteins with similar ionic properties. Analogous to SEC Davidson’s group applied the LRA 

lipid capture approach to the anion exchange separated phospholipid containing fractions 

[62].

4. Mass spectrometry techniques applied to HDL proteomics

A typical workflow for HDL proteomic analysis starts with an untargeted approach to 

determine HDL protein composition in a given studied condition. The most common 

approach is referred to as bottom-up or shotgun proteomics[63] and uses unbiased data-
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dependent acquisition (DDA). HDL proteins are enzymatically digested into peptides that 

are then analyzed by liquid chromatography tandem mass spectrometry (LCMS). In this 

nominally unbiased discovery strategy, a full MS1 spectrum of peptides at a given time in 

the gradient elution is acquired, followed by tandem (MS2) mass spectra of most abundant 

precursor ions detected in the MS1 spectrum. The number of MS2 scans will depend on the 

instrument used (typically ranging from 5 – 20 scans). During chromatographic separation, 

the mass spectrometer cycles between the acquisition of MS1 scans and MS2 dependent 

scans, stochastically acquiring MS2 scans on as many precursor ions as possible, to achieve 

identification of large number of peptides and thereby proteins. Excellent reviews are 

available regarding shotgun methodology [64,65].

Identification of proteins is then accomplished by matching the experimental MS2 spectra to 

theoretical MS2 spectra derived from in silico digestion of proteins in protein databases. 

Common, vendor-free computational proteomic platforms include MaxQuant, that uses 

Andromeda as the search algorithm [66], Mascot database search [67], Trans-Proteomic 

Pipeline using Sequest [68], Comet [69], or X!Tandem [70] search engines, openMS [71], 

with further validation of peptide-spectrum-matches (PSM) and protein identifications with 

tools like those included in Trans-Proteomic Pipeline [72–75]. Vendor specific search 

engines are also available commercially. Further in depth discussion of peptide and protein 

identification can be found elsewhere [76]. The DDA approach has been so far the most 

common approach employed for HDL proteome studies.

5. HDL proteome

Although approximately 90% of HDL protein mass is derived from two proteins, APOA1 

and APOA2, the list of proteins reported to reside on HDL has been growing steadily. In 

2015, the Davidson/Shah Laboratory compiled a list that contained 95 HDL proteins 

detected by 17 different studies (http://homepages.uc.edu/~davidswm/HDLproteome.html). 

In this review, we aimed to update the list of proteins associated with HDL and ask questions 

about the relationship of the HDL proteome and its methods of isolation and analysis. We 

reviewed studies reporting HDL proteome up to April 2019 and compiled data from 37 

different studies on HDL (43 lists of proteins, as some studies reported different isolation 

methodologies to isolate HDL). Studies that had made HDL protein list available on-line, or 

that provided the list upon our request are included (Supplemental Table 1) (Supplemental 

data is also available at HDL Proteome page, http://faculty.washington.edu/tvaisar/). The 

compiled list includes a wide range of techniques used for isolation of HDL from plasma. 

Twenty-six studies used UC as the isolation methodology either for direct analysis [77–89] 

or with subsequent fractionation by 1D [90–92], 2D [93,94], or native gel electrophoresis 

[84], OFF-gel fractionation [95,96], anion exchange chromatography [97] or a combination 

of fractionation techniques [84,98–100]. While most studies used the 1.21 g/mL density 

cutoff, one study used ultracentrifugation with a density cutoff of 1.24 g/mL in an attempt to 

capture VHDL [101]. Immunoaffinity isolation with antibodies against APOA1 was used in 

5 studies [50,83,102–104]. Size exclusion chromatography (SEC) isolating fractions 

corresponding to the size range of HDL (based on cholesterol and phospholipid content) was 

used in 9 studies [55–57,62,105–109]. From those, 4 studies performed LCMS analysis 

directly on the collected fractions [55,56,108,109], while five used further enrichment of 
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lipid binding proteins by capture on calcium silicate hydrate resin. A single study used an 

approach where a histidine-tagged APOA1 was used as a bait for enrichment of the HDL 

from plasma using a metal chelate chromatography (AALP method) [82].

The consolidated list of proteins identified in each study is available in Supplemental Table 

2. We classified the methods of isolation as ultracentrifugation (UC), immunoaffinity for 

APOA1 (AFF), size exclusion chromatography (SEC), size exclusion chromatography in 

combination with lipid binding resin (SEC_LRA) and the use of histidine-tagged APOA1 

(AALP). If the UC was followed by fractionation, we further classify the study by the 

technique that was employed as 1D gel (UC_1D), 2D gel (UC_2D), OFF gel fractionation 

(UC_OFF), anion exchange chromatography (UC_AEX) or a combination of fractionation 

techniques (UC_Frac).

Overall, 566 proteins have been reported to be associated with HDL. Strikingly, only 2 

proteins, APOA1 and apolipoprotein L1 (APOL1) were identified in all studies (Figure 1A) 

and only 21 proteins were found by ~75% (30) studies. Moreover, less than 25 % of proteins 

(139) were identified by at least 5 different studies, while more than 50 % (297) were 

detected by a single study (Figure 1A).

Hierarchical clustering analysis of the identified proteins and isolation methodologies shows 

that only a small subset of proteins is consistently found even when the same isolation 

technique is used. Thus, even studies employing the same isolation methodology identify 

divergent sets of proteins in addition to a proportionally smaller ensemble of core proteins 

(Figure 1B).

We applied an unbiased multiple correspondence analysis (MCA), a version of principal 

component analysis for categorical data, to detect relationships between studies with similar 

profiles of identified proteins, and to test whether certain groups of proteins contribute to the 

variance across different HDL studies. MCA was performed with a subset of proteins shared 

by at least 5 different studies (139 proteins) (Supplemental Table 3). We then applied 

hierarchical clustering based on the eigenvalues obtained from MCA to determine which 

studies identified similar protein ensembles. MCA (individual symbols) together with 

hierarchical clustering (colored polygons) clearly demonstrate the method of HDL isolation 

plays an important role in determining the ensemble of proteins detected in HDL (Figure 2). 

Studies using the same isolation technique tend to cluster together, although there are 

notable differences within a single isolation technique and there is overlap between different 

techniques. The yellow cluster includes HDL isolation by UC (green and black symbols) and 

some AFF (crossed red diamonds) studies, while the purple cluster comprises HDL isolation 

by AFF, SEC_LRA (crossed blue circles) and SEC (green crossed squares). Thus, the 

studies employing AFF span both UC-based as well as SEC_LRA approaches, while 

SEC_LRA studies bridge AFF and SEC studies. For UC-based methods, the analysis also 

shows a clear distinction in identified proteomes, with studies employing UC and 1D and 2D 

electrophoresis segregated from other UC studies (blue cluster), likely due to the smaller 

number of proteins identified when these techniques were applied (Figure 2).
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Analysis of the association of individual proteins with the first two principal components 

(dimensions1 and 2, Dim1 and Dim2) revealed the contribution of each protein to the 

distinction of the different studies (Figure 3A). Indeed, proteins with minimal correlation 

with either principal component (yellow square) are the ones most consistently found across 

the studies (Supplemental Table 4A). Proteins with the highest correlation with Dim1 (blue 

oval) are those mostly responsible for distinguishing the studies using AFF, SEC and 

SEC_LRA methods from the UC studies (Supplemental Table 4B), while those along Dim2 

(red circle) contribute to the differentiation among various UC studies (Supplemental Table 

4C). To gain further insight into the relationship of the isolation techniques and the identified 

proteins, we set a threshold of 0.2 in each dimension and performed functional annotation 

analysis on the 3 resulting groups of proteins. The group of proteins that do not contribute to 

differentiation of isolation techniques (<0.2 along both Dim1 and Dim2 in Figure 3A, 

yellow square) is highly enriched in functional categories related to lipoprotein biology (e.g. 

lipid transport, neutral lipid metabolism, lipoprotein particle remodeling, lipoprotein 

metabolism) as well as protein related to activation cascade and defense to bacterium (Figure 

3B). In contrast, proteins mostly correlated with Dim1 and thus distinguishing AFF and SEC 

isolation methods from UC studies represent functional categories related to protein 

activation cascade, inflammatory response, immune response, exocytosis and regulation of 

catalytic activity (Figure 3C). The group of proteins mostly correlated with Dim2 and 

primarily explaining the variance among different UC-based studies represent predominantly 

functional categories of lipoproteins particle remodeling and lipid transport (Figure 3D).

6. Which proteins are truly associated with HDL?

The large number of proteins reported to be associated with HDL begs the question of how 

so many proteins can fit on a finite number of particles given the constraint of apparent HDL 

size (~60 – 350 kDa). Moreover, the low consistency of the proteins identified in HDL, even 

within the studies using the same isolation technique, raises an urgent question of which 

proteins truly reside on HDL (whichever way it is defined) and which proteins are 

contaminants of the isolation methodology. As showed above, the protein cargo of HDL 

varies according to the isolation methodology. This can be, in part, a consequence of 

different “definitions” of HDL as well as of the capacity of some techniques to remodel 

HDL proteome or conversely preserve more loosely associated proteins. However, each 

technique also carries the potential of co-isolating proteins that do not belong to HDL, but 

may appear in the HDL proteome due to various reasons (imprecise density for UC, non-

specific binding on the affinity resin for AFF isolation, lipid binding proteins in plasma that 

are not related to HDL for SEC_LRA, to name just a few). Determining which proteins 

belong to HDL and which proteins are contaminants is essential due to several reasons. First, 

it is reasonable to assume that HDL proteins may be associated with HDL biological 

functions. Second, HDL protein cargo maybe a marker of disease state, and therefore it is 

important to ensure that the biomarker protein is a stable trait of HDL and that its presence 

in HDL is not susceptible to variations in the isolation technique. For example, albumin 

(ALB), the most abundant protein in plasma (50% of plasma protein mass and ~50x higher 

abundance than APOA1), is generally considered a contaminant, although a previous study 

found ALB reduced in HDL of type I diabetes subjects [107]. ALB also co-elutes with HDL 
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on SEC (as a dimer and tetramer) and it is known to bind free fatty acids and other lipids. 

Moreover, previous study suggested that albumin may associate with APOA1[110] and it 

has been shown that ALB may participate in the cholesterol efflux, one of key biological 

functions of HDL[111]. Thus, in the case of an abundant plasma protein found in HDL 

associated with a disease, it would be important to compare its HDL and plasma levels. 

Correlation between plasma and HDL levels could clarify whether or not altered HDL level 

is a merely consequence of its altered plasma level. For immunosorption, a number of non-

specifically associated proteins may copurify together with true specifically associated 

proteins. It is, therefore, critically important to include negative controls to identify proteins 

specifically associated with the target protein, i.e. immunosorption on beads coupled with 

pre-immune IgG or the use of beads coupled with an indifferent protein [54]. Furthermore, 

strong correlation with ALB may be considered a simple test of a likely contaminant. A 

more direct test of protein’s association with HDL would be co-immunoprecipitation, where 

a protein of interest is immunoprecipitated and the precipitate is probed with specific 

antibody against APOA1 (to test association with APOA1 containing HDL particles) or 

other key HDL protein (e.g. APOE to test for presence on APOE-only particles). However, 

immunoprecipitation has limitations in quality of the antibody used, i.e. its specificity for the 

antigen and the ability to quantitatively precipitate its antigen. Besides the isolation 

methodology, the storage conditions may affect HDL structure and function [112,113]. 

However, storage is likely to impact functionality of HDL more than its composition.

7. Application of quantitative proteomics to HDL

Shotgun proteomic analysis is suitable for enumeration of HDL associated proteins, but its 

application to protein quantitation is limited [12]. It may be used in small studies and to 

create a peptide library containing information about peptides and fragments aiding further 

development of more quantitative methods. However, this application of shotgun proteomics 

may be limited as peptides appearing with high number of PSMs may not provide best 

signal in quantitative targeted methods [114]. In the context of translational studies, targeted 

methods providing robust and sensitive protein quantification are essential [115,116].

Selected reaction monitoring (SRM, also called multiple reaction monitoring (MRM)) is the 

standard approach in quantitative MS-based proteomics [117–119]. This method of 

acquisition requires selection of representative peptide candidates (at least two or three) for 

each protein (i.e. previous knowledge of the peptides detected well in the sample). In a 

typical SRM experiment, three to five fragment ions per precursor are monitored 

individually, using triple quadrupole mass spectrometers. With the development of 

instrumentation, SRM assays have become highly multiplexed allowing quantification of 

more than 400 proteins in single analysis [117–120]. A multiplexed SRM assay for HDL 

proteins (apolipoproteins A-I, C-II, C-III, E, B, and J) demonstrated similar performance of 

SRM to that obtained with commercially available immunoassays for each of the 6 analytes 

tested [12]. An SRM assay for pooled HDL samples was also developed, and 7 out of 9 

proteins correlated well (Spearman rho >= 0.8) with immunoassays [121]. Moreover, 37 

proteins were quantified by SRM in HDL of hemodialysis patients, and results showed 

elevation in a cluster of kidney disease associated-proteins [81]. A protocol to quantify by 

SRM 37 HDL proteins is available [37].
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An alternative methodology for quantitative proteomics is paralleled reaction monitoring 

(PRM) that can be performed on quadrupole-orbitrap or quadrupole-time of flight (QTOF) 

mass spectrometers. Similar to SRM, PRM is a hypothesis-driven experiment, where the 

peptides must be selected before starting the experiment, but PRM has some potential 

advantages over SRM. First, it requires only selection of the precursors, as full MS2 

spectrum is acquired, and a subset of fragment ions can be selected post factum to improve 

signal and eliminate possible noise contamination. Second, fragment ions are obtained with 

high resolution, further improving selectivity [122,123]. In a recent work, we compared 

SRM and PRM methodologies for quantification of HDL proteins, and concluded both 

methods are suitable for targeted quantification of HDL proteome with the needed 

confidence required for translational studies [124]. Moreover, both, PRM and SRM 

techniques were able to differentiate HDL abnormal composition in diabetic subjects with 

fenofibrate/rosiglitazone-induced hypoalphalipoproteinemia. This was an interesting result, 

given HDL proteome alterations were detected before subjects developed a striking 

reduction in HDL levels. Altered levels of paraoxonase/arylesterase 1 (PON1) and 

apolipoprotein CII (APOC2) were further confirmed by immunoblot and ELISA 

experiments [125]. With current instrumentation, the downside of PRM is that acquisition 

speed is slower than that obtained with triple quadrupole mass spectrometers and thus limits 

its ability to multiplex on the same scale.

Recently, another type of mass spectrometry acquisition approach called data independent 

acquisition (DIA) has been developed [126,127]. Like PRM experiments, DIA is currently 

performed in quadrupole-orbitrap or quadrupole-time of flight mass analyzers. During DIA 

workflow, the mass spectrometer acquires an MS1 scan, followed by a series of MS2 scans 

with sequential isolation of wide precursor ion windows covering the m/z range of the MS1 

scan. The term DIA refers to the fact that MS2 spectra are acquired without obtaining 

specific precursor ion mass from a survey MS1 scan [128]. A well-known DIA acquisition 

method is termed sequential window acquisition of all theoretical mass spectra (SWATH-

MS) [127]. Isolation windows of 10 or 25 m/z, are commonly employed in a DIA 

experiment, compared to PRM or SRM with isolation windows of 1 or 2 m/z. Reviews of the 

DIA technique, [129–131] its different data processing methodologies [132] and a tutorial 

on DIA/SWATH analysis [128] are available elsewhere.

DIA has some important advantages over shotgun and SRM or PRM that make it an 

outstanding tool for early stage studies of HDL proteome. First, it does not require a list of 

predefined proteins (and peptides) alleviating the need of previous knowledge or method 

development. Second, because full MS2 spectra are acquired across a wide range of m/z, one 

can re-examine the data (selecting new peptides and proteins) after acquisition [133]. A 

comparison between HDL proteomics of type 1 diabetes patients and controls was 

undertaken using DIA methodology [107]. However, this study did not presented data 

regarding repeatability and reproducibility of DIA methodology, and failed to validate by a 

different methodology the presence of one of its putative hits, factor H related protein 2, in 

HDL.

DIA showed reproducible results when applied to plasma proteomics [134] and was also 

reproducible across multiple independent laboratories [135]. Whether or not DIA will be 
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successfully applied to HDL proteomics in a clinical setting, giving comparable results to 

established SRM or PRM methodologies remains to be seen.

8. The urgent need for standardization of HDL proteome quantification

The utility of targeted methods such as SRM and PRM has already been demonstrated for 

HDL proteome quantification [12,124]. To facilitate rapid progression from preliminary 

discovery studies to translational studies, a workflow employing DIA analysis either 

building from the list of proteins summarized here or using DIA generated chromatogram 

libraries (DIA combining narrow 2 m/z windows and concept of gas-phase fractionation) to 

rapidly select detectable proteins and corresponding best peptides to build SRM or PRM 

based targeted methods. Critical to high quality translational quantitative studies is inclusion 

of internal standards (IS) (either exogenous peptides or stable isotope labeled analogs), and 

quality control samples (QCs). To control for the variance introduced during the process of 

isolation, QC samples for the isolation should be included, i.e. the same plasma isolated 

multiple times in parallel with the study samples, especially when isolation has to be carried 

out in batches. The use of IS should ideally control for the trypsin digestion, as well as for 

the variation of the LCMS analyses. Labeled proteins are especially useful in this approach 

(e.g. 15N-APOA1) [12,124,125]. However, a stable isotope labeled peptide for each 

measured peptide (one per protein of interest) or a single peptide spiked in all samples to 

correct for mass spectrometry variability may be acceptable. In this scenario, using QC 

samples to control for digestion variability is necessary. A heavy labeled peptide for each 

protein of interest would provide the additional benefit of controlling for variabilities during 

the chromatographic run (i.e. ion suppression from co-eluting peptides).

In addition, all samples belonging to a given study should be digested concomitantly. 

Alternatively, inclusion of a single, well-characterized standard sample with each digestion 

and LCMS batch can be used to control for inter-batch variability [136,137]. A single 

standard sample could be used for absolute quantification, if the concentrations values were 

assigned based on independent biochemical or immunological assay or used as arbitrary 

reference value [137]. In summary, employment of a robust and precise quantitative 

methodology, together with appropriate quality controls is necessary for the successful 

application of HDL proteomics to translational studies. Several recent studies show that 

HDL proteomics is moving in that direction [136,138,139].

9. Expert Opinion

There is great need to establish new metrics for HDL protective properties. The complexity 

of HDL proteome parallels its functional diversity and may be related to its pleotropic 

functions and HDL proteins may serve as biomarkers of disease. To establish clinical 

relevance of HDL proteins as metric of HDL protective capacity, precise and robust 

quantification of HDL protein cargo in large prospective and cross-sectional cohorts is 

critical. So far, studies performed in different laboratories and employing a range of HDL 

isolation techniques indicate that consistent quantification of HDL proteins is not 

straightforward. Two key parameters for precise HDL proteome quantification are the 

reproducible isolation methodology and precise quantitative mass spectrometry method. 
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Multiple HDL isolation methodologies are available, each one with its own advantages and 

limitations. The immunosorption offers gentle isolation with wide range of “non-classical” 

proteins (non-apolipoproteins) identified, however, it has great potential for non-specific 

binding and detection of contaminant proteins. Even when combined with capture of lipid 

binding proteins (SEC-LRA), SEC has limitation in its potential for capturing “non-HDL” 

and non-specific proteins, as well as limited throughput due to lengthy FPLC separation. In 

contrast, UC isolation can be highly reproducible, but may alter HDL proteome by stripping 

proteins and has limited throughput due to laborious process. The lack of consistency among 

different studies, even those using the same isolation technique, is currently hampering the 

advance of HDL field towards clinical relevance. This confounding issue, caused by co-

purification/identification of non-specific proteins, can be limited in targeted methods by 

focus on only well-established proteins or proteins clearly associated with a disease 

condition. The majority of proteomic studies reported so far focused on enumerating HDL 

proteins and detection of differentially abundant proteins using shotgun proteomics. 

However, quantification of proteins by shotgun proteomics has limitations, including 

inherent lack of repeatability, with more than half of 550 proteins described reported by a 

single study, and limited quantitative response of the spectral counting and MS1-based label 

free quantification, and low throughput, limiting number of the samples analyzed. The later 

limitations of throughput and precision may be partially improved by using multiplex 

isobaric labeling techniques (e.g. ITRAQ, TMT) although caution in experimental design 

must be exercised [140]. To ensure precision, repeatability and throughput necessary for 

translational studies, quantitative methodologies must be employed for HDL proteome 

analysis. Furthermore, use of internal standards for increased precision, quality controls and 

standardization are further critical steps to achieving high quality, quantitative results in 

translational studies.

It is imperative that future studies focus on precise quantification of HDL proteins. Key 

questions awaiting to be answered in the field are: which proteins are truly associated with 

HDL; how the complex proteome correlates with HDL functions; and whether HDL protein 

biomarkers could predict CVD risk better than the current metrics available.
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Article highlights

• HDL proteome is complex and accurate detection of HDL proteins is a 

challenge.

• More than 550 proteins have been reported in HDL, but only a small subset of 

them are consistently found across multiple studies, even when the same 

isolation technique is used.

• HDL definition and related isolation techniques are important determinants of 

the ensemble of proteins detected in HDL.

• Translational studies are essential for establishing the relevance of HDL 

proteome to disease pathology.

• Targeted methods providing robust and sensitive quantification are critical for 

translational studies.
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Figure 1. 
Proteins associated with HDL in 37 reported studies. A) Plot showing the number of 

proteins associated with HDL shared by multiple studies. B) Heat map of proteins identified 

in each study. The studies were manually grouped based on the HDL isolation methodology. 

The proteins were grouped by hierarchical clustering. Teal indicates presence of the protein, 

black absence of the protein.
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Figure 2. 
Multiple correspondence analysis (MCA) and hierarchical clustering of individual studies. 

MCA was performed with a subset of proteins that were identified in at least 5 different 

studies (n = 139). Individual studies were grouped by hierarchical clustering based on the 

eigenvalues for each study obtained from the MCA (e.g. based on similarity of the protein 

ensemble identified). The clusters of closely related studies are represented by colored 

polygons. Each study is further denoted by an individual symbol corresponding to the HDL 

isolation methodology used.
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Figure 3. 
MCA correlations and functional annotation analyses of proteins reported in HDL. A) 

Correlation analysis of the individual proteins within the first two principal components 

(Dim1 and Dim2) of MCA. The yellow square indicates the group of proteins with 

correlation < 0.2 with either dimension. Proteins highly correlated with Dim1 (correlation > 

0.2) are highlighted in the blue ellipse, while proteins with correlation > 0.2 with Dim2 are 

highlighted by the red ellipse. B) Functional annotation analysis of proteins that do not 

contribute for variance in either dimension in MCA (correlations < 0.2 with Dim1 and 

Dim2). C) Functional annotation analysis of proteins with correlation > 0.2 with Dim1. D) 

Functional annotation analysis of proteins with correlation > 0.2 with Dim2.
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