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Abstract

Apart from floral morphology and colours perceived by the human eye, ultraviolet (UV) reflectance acts as an important 
visual advertisement of numerous flowering plant species for pollinators. However, the effect of UV signalling on attracting 
pollinators of particular plant species is still insufficiently studied, especially in the Afrotropics. Therefore, we studied the 
pollination system of Hypoxis camerooniana in montane grasslands of Mount Cameroon, West/Central Africa. We focused 
mainly on the effects of the flowers’ UV reflectance on its visitors. We experimentally removed UV reflection from petals 
either completely or partially. Thereafter, flower visitors were recorded and pistils were collected post-flowering to quantify 
germinated pollen tubes per treatments. The most important visitors were bees, followed by flies. Due to their contacts with 
reproductive organs bees are considered as the primary pollinators. Visitation rates were lower when UV reflectance was 
completely removed, whereas the decrease of frequency on half-treated flowers did not differ significantly from control 
treatments. The complete removal of UV also affected bees’ landing behaviour, but not that of flies. We showed that the 
presence of UV reflectance is more important than UV pattern for bees visiting flowers of H. camerooniana. We hypothesize 
that exploiting all flowers irrespective of their pattern can be more efficient for pollinators in the open grasslands of high 
altitudes to spot these relatively scarce flowers by their UV reflectance. Furthermore, we highlight the necessity of both 
experimental and natural controls in similar studies to control for additional effects of the used UV manipulations.

Keywords: Afromontane grasslands; floral traits; foraging behaviour; Mount Cameroon National Park; pollination 
interactions; UV manipulation.

  

Introduction
Unlike humans, many insect pollinators are sensitive to the 
ultraviolet (UV) part of the electromagnetic light spectrum in 
addition to the visible spectrum (Briscoe and Chittka 2001). 

Ultraviolet light is reflected by flowers of ~25 % of angiosperms, 
with the highest reflectance found in plant species with yellow 
flowers (Chittka et al. 1994; Papiorek et al. 2016). Consequently, 
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the UV vision helps floral visitors in recognition of individual 
flowers of such plants which differ in their UV colouration 
from other plants in the community (Johnson and Andersson 
2002). To increase distinction by certain groups of pollinators, 
some flowers create a contrasting pattern of UV absorbance 
and reflectance on the surface of their petals, whereas others 
contrast petals and reproductive parts by an inverse pattern of 
absorbance and reflectance of UV light. Floral guides (Penny 1983; 
Dinkel and Lunau 2001; Lunau 2006; Papiorek et  al. 2016) and 
the so-called bullseye patterns (Lunau 1992a; Koski and Ashman 
2014, 2015a, b), which has reflecting apices and absorbing bases 
of petals, are among the most commonly known examples of 
this phenomenon. These UV patterns are believed to improve 
the identification of the landing and/or foraging parts of flowers, 
or mimic such parts to the pollinator (Lunau et al. 2017). Their 
importance was shown in numerous studies revealing the 
influence of UV patterns on pollinator visitation preferences 
(e.g. Burr et al. 1995; Campbell et al. 2010; Horth et al. 2014; Koski 
and Ashman 2014; Peterson et al. 2015) and behaviour (Hansen 
et al. 2012).

The specific colour vision, which includes UV, of some 
insects and spectral properties of flowers have evolved into 
mutualistic relationships between plants and their pollinators. 
One of the best understood systems of vision is that of bees 
(Dyer et al. 2015). von Helversen (1972) measured the capability 
of honeybees to distinguish colours and showed that bees 
best discriminate wavelengths at ~400 and 500 nm where the 
spectral sensitivity curves of UV, blue and green photoreceptors 
overlap. Peitsch et al. (1992) quantified this further, showing the 
trichromatic vision of 43 different taxa of hymenopterans with 
the sensitivity peak of UV light at 340 nm, blue light at 430 nm 
and yellow light at 535  nm. Some specific colour patterns of 
flowers, such as floral guides, are of such importance for bee 
flower recognition that they were included into melittophily, 
i.e. the pollination syndrome related to bees (Faegri and van 
der Pijl 1979; Lunau 1992a; Fenster et  al. 2004; Willmer 2011). 
However, the utility of these syndromes has been questioned 
recently (Ollerton et al. 2009), and some authors started using 
more precise systems, such as looking at single explanatory 
traits (e.g. Stang et al. 2009) or buzz pollination (e.g. De Luca and 
Vallejo-Marín 2013). The importance of UV patterns for bees 
was confirmed by a decreased frequency of flower visitation by 
different bee species after elimination of the UV reflection from 
petals of various plant species (Johnson and Andersson 2002; 
Peter and Johnson 2008; Welsford and Johnson 2012; Rae and 
Vamosi 2013; Brock et al. 2016).

Nevertheless, floral colour evolution has been influenced by 
numerous other factors (Grimaldi 1999; Friis et al. 2011; Song et al. 
2015), such as floral defence against solar radiation (Robberecht 
and Caldwell 1978; Koski and Ashman 2015a). It was shown 
that the absorbance of UV-A by plant tissues can be related to 
plant protection against harmful UV-B radiation (Robberecht 
and Caldwell 1978; Caldwell et al. 1983). The importance of UV 
colour reflectance and absorbance can be manifested along 
the gradient of UV irradiation, e.g. towards high altitudes and 
the equator (Johnson et  al. 1976; Beckmann et  al. 2014; Koski 
and Ashman 2015a). It was shown that UV irradiance as the 
selection agent affects the size of the UV-absorbing floral centre 
(bullseye), with increases towards the equatorial ecosystems and 
along altitudinal gradients as well (Koski and Ashman 2015a, 
b). Despite long-term research on floral UV signalling many 
questions remain unanswered. For example, it is unclear if the 
ability of pollinators to recognize the flower is caused by any 
UV-reflecting area on the flower or if it is related to specific UV 

patterns. Additionally, we only have limited knowledge on how 
the common experimental manipulation using UV-absorbing 
creams (e.g. Johnson and Andersson 2002; Peter and Johnson 
2008; Welsford and Johnson 2012; Rae and Vamosi 2013) generally 
affects the natural (i.e. unmanipulated) pollination system of 
the studied plant species.

To study the role of UV reflection in pollination we selected 
Hypoxis camerooniana (Hypoxidaceae) as model species. Hypoxis 
camerooniana is endemic to the mountains of south-western 
Nigeria and western Cameroon (Hutchinson et  al. 1968) and 
therefore, better understanding its pollination system can help 
to better focus potential conservation efforts for both plant and 
its pollinators. Due to growing at low latitudes and high alti-
tudes (above 2000 m a.s.l. on Mount Cameroon), H. camerooniana 
is exposed to intensive UV irradiance (Johnson et  al. 1976; 
Beckmann et al. 2014). It has yellow UV-reflecting petals (Fig. 1) 
and yellow UV-absorbing anthers, consequently creating a con-
trasting central pattern in the flower. Firstly, we aimed to gain 
insights in the unknown pollination system of this endemic 
plant. Secondly, to study the role of UV colour on the visitation 
frequency, behaviour and pollination success of H. camerooniana, 
we used the same approach as Johnson and Andersson (2002) 
by manipulating flowers with an UV-absorbing cream either by 
complete removal of the UV reflectance, or by maintaining the 
UV reflectance on half of petals, i.e. changing the UV pattern 
(Fig. 1). Our study extends the previous work of, e.g., Johnson 
and Andersson (2002) by including a natural unmanipulated 
control to test the influence of the experimental treatments on 
the flower visitation frequency.

Materials and Methods

Study locality

This study was carried out at the montane grasslands above 
Mann’s Spring (~2250 m a.s.l.) on Mount Cameroon, the highest 
mountain in western and central sub-Saharan Africa (4095 m 
a.s.l.; Cable and Cheek 1998). It is situated in the Southwest 
region of Cameroon (4.203°N and 9.170°E), offering a wide range 
of habitats (see Cable and Cheek 1998) and hosting a great 
biodiversity including endemics with exceptional ecological 
features (Bergl et  al. 2007). Especially ecotones along the 
timberline, found also at Mann’s Spring, harbour many species 
which are not found elsewhere on the mountain

Study plant

The genus Hypoxis contains an estimated 90 species in Africa, 
North and South America, South-Eastern Asia and Australia, 
with the centre of diversity in Southern Africa (Singh 1999). 
These plants are characterized by their bright yellow flowers, 
lanceolate and densely hairy leaves. They are weak competitors 
and thus grow mostly in places with low vegetation cover. 
Hypoxis camerooniana (Hypoxidaceae) is a perennial pyrophytic 
herb, restricted to high elevations of the Cameroonian Volcanic 
Line (Cable and Cheek 1998; GBIF Secretariat 2019). Its leaves are 
tristichous, 50 cm long and 0.5–2 cm wide, covered with golden 
hairs, recurved and ± prostrate to erect. On a scape up to 25 cm 
tall 5–7 flowers can be found (African Plant Database 2019). 
On Mount Cameroon, we always observed only 1 or 2 active 
flowers per plant. The flowers have a short lifespan, they open at 
daybreak and usually last 1 day or less.

Hypoxis species are used across Africa as traditional medicine 
and were reported to have a wide spectrum of pharmacological 
properties (Ncube et al. 2013). Hypoxis hemerocallidea has already 
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been known for its strong UV reflectance and due to its relatively 
robust flowers was used for manipulative experiments with 
UV-absorbing cream (Johnson and Andersson 2002). Outside 
of the two sweet-smelling species H.  fischerii var. zernyi and 
H. goetzei East African Hypoxis flowers appeared to be without 
scent (Wiland-Szymańska 2009). So far, no nectar has been 
found in any Hypoxis species (Johnson and Andersson 2002; 
Rudall 2002; Ren et al. 2019).

Some studied Hypoxis species are pollinated by solitary bees 
and honeybees (Singh 1999; Johnson and Andersson 2002), 
while the autogamous H. decumbens attracts ‘generalist insects, 
like dipterans’ (Raimúndez and Ramirez 1998). Furthermore, 
pollen- and tepal-feeding beetles were observed in Southern 
and Eastern Africa (Steiner 1998; Wiland-Szymańska 2009). No 
data on pollination and visitation of H. camerooniana exist.

UV manipulation

The study was carried out in October and November 2016. 
To manipulate the UV patterns on flowers, we followed the 
approach of Johnson and Andersson (2002). The studied 
specimens of H.  camerooniana were randomly selected in the 
study area. At daybreak, just after opening of selected buds, 
four different treatments were applied: (i) UV100  % treatment, 
i.e. complete removal of UV reflectance from the flower using 
UV cream on all petals of the flower; (ii) FAT100 % treatment, i.e. 

a control for UV100  %, all petals were covered with duck preen 
gland fat, a non-UV-absorbing cream compound; (iii) UV50  % 
treatment, i.e. the UV cream was used on three out of six petals, 
covering every second petal; and (iv) FAT50 % treatment, i.e. a con-
trol for UV50 %, every second petal was treated with the non-UV-
absorbing compound. Both UV cream and non-UV-absorbing 
cream were applied carefully using cotton swabs. Besides these 
four treatments, natural (Natural control) non-manipulated 
flowers were studied to control for the effect of any treatment 
on flowers. The UV-absorbing chemicals were equal amounts 
of Parsol 1789® (butyl methoxydibenzoylmethane) and Parsol 
MCX® (ethylhexyl methoxycinnamate) dissolved in the duck 
preen gland fat as a solvent (at 40:60 w/w) by gentle heating 
(Andersson and Amundsen 1997; Johnson and Andersson 2002). 
On each day of the experiment, 10 plant specimens were selected 
in the grasslands and randomly treated, two replicates of each 
treatment per day, resulting in a total of 50 experimental plants. 
When two flowers were found on a single experimental plant, 
we applied the same treatment for both. Each experimental 
flower was recorded by a security camera (VIVOTEK IB8367-T 
with IR night vision) for 24  h following Mertens et  al. (2018); 
however, most of the flowers were short-lived and closed at the 
beginning of the night after ~12 h of recording. Due to the short 
lifespan of flowers, all their visitors were certainly observed. 
Afterwards the recordings were watched, and all floral visitors 

Figure 1. A flower of H. camerooniana: (A) a normal photograph, (B) a UV photograph of a non-manipulated flower, (C) a UV photograph with half absorbent cream 

treatment (UV50 %), (D) a UV photograph with full absorbent cream (UV100 %) treatment.
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were noted. Besides arrival of visitors we also identified them 
to the most detailed taxon level as possible, and we noted their 
behaviour (both landing behaviour and activity after landing, 
e.g. feeding on pollen) and touches to reproductive organs, 
which allows us to better distinguish between visitors and 
potential pollinators.

After camera removal, stigmas of the recorded flowers were 
collected and stored in ethyl alcohol. Germinated pollen tubes 
were stained and counted later in the lab using fluorescence 
microscopy following the methods described by Dafni et  al. 
(2005) to see how changes in visitation frequency potentially 
caused by the experimental treatment affect the plant’s 
pollination success.

To check the floral UV pattern, UV photographs were taken 
using a Canon EOS 80D DSLR camera with a Helios 44-2 lens; 
UV conversion (i.e. replacing the internal hot mirror filter by a 
custom UV band pass filter) was done by LifePixel (Mukilteo, 
USA). During the picture taking, a 5-W UV flashlight was used 
for lighting (Fig. 1). To demonstrate the effect of experimental 
treatment, we measured reflectance of three flowers per 
treatment type (FAT100  %, Natural control and UV100  %) with 10 
repeated measures per flower, using an Ocean Optics (Largo, 
USA) Jaz spectrometer. The graph depicts the mean of the 
repeated measures per treatment for the range of 300–700 nm 
(Fig. 2A). The bee and fly colour visual system was then mapped 
using the Troje model for flies (Troje 1993; Fig. 2B) and the colour 
hexagon for bees (Chittka 1992; Fig. 2C).

Statistical analyses

To standardize the sampling effort (differences in flower 
longevity, as well as in the case of one or two flowers per 
experimental plant), all visits were transformed to visitation 
frequencies (no. of visits per hour and flower). This visitation 
frequency data (no. of visits per hour and flower) did not show 
normal distribution due to an overabundance of null values. 
In consequence, we used non-parametrical tests, being a 
permutational analogue of ANOVA and MANOVA in PRIMER 
6 v.  6.1.13 and Permanova+ v.  1.0.3 (Anderson et  al. 2008). 
Post hoc tests were used to compare the frequencies between 
the different treatments, with the recording day treated as 
random effect. Similarly, the effects of treatments on insect 
behaviour were tested by a permutational MANOVA. To check 
differences in amount of morphospecies and pollen tubes (i.e. 
the non-frequency data) we tried to implement generalized 
mixed-effect models, specifically Poisson, quasi-Poisson and 
zero-inflated distributions. However, due to a combination of 
the high overabundance of zero values and the negative values 
of the maximum likelihood estimations of the models, we were 
not able to apply these parametric methods and therefore, the 
non-parametrical tests (permutational analogue of ANOVA) 
were applied as well. The dependency of the number of pollen 
tubes on visitation frequency was tested by linear regression in 
STATISTICA (Statsoft, Inc 2011).

Results

Visitors of H. camerooniana

Considering all 50 observed plants, a total of 281 visitors were 
recorded. During daytime the flowers were mostly visited by bees 
(192 visits) and flies (59 visits), the only other considerable group 
of visitors were skipper butterflies (four visits). All other visitors 
(five visits) were evaluated as accidental and thus merged 

(Fig. 3). All bee visitors were composed of a single abundant 
morphospecies of solitary bee (187 visits) and the substantially 
rarer honeybee (Apis mellifera; five visits). The less abundant 
flies were considerably more taxonomically diverse, compared 
to bees, with nine recognized morphospecies. Bees visited the 
studied flowers mainly during morning hours, whereas fly 
visitation was distributed throughout the day [see Supporting 
Information—Figs S2 and S3]. Contrastingly, night visitors were 
rare (21 visits by 10 morphospecies) and consequently, with much 
lower visitation frequencies [see Supporting Information—Fig. 
S1]. Based on contacts with reproductive organs (Fig. 3; Table 1) 
bees may be considered as the main pollinator.

Effects of UV pattern on visitors

Individual treatments significantly affected visitation frequency 
during the day (Fps  =  6.71; df  =  4; Pperm < 0.001). UV100  % was 
significantly lower than all other treatments except UV50 %, which 
differed from FAT50 % and Natural control. The highest visitation 
frequency was observed on untreated plants, but these did 
not significantly differ from the other two control treatments 
(FAT100 %, FAT50 %; Fig. 4). During the night, there was no significant 
treatment effect on frequency of flower visitors (Fps  =  0.36; 
df  =  4; Pperm  =  0.851). Visitation frequency was significantly 
affected by the treatment for both bees (Fps = 6.13; df = 4; Pperm 
< 0.001) and flies (Fps = 3.92; df = 4; Pperm = 0.009). In both visiting 
groups, FAT100 % and FAT50 % treatment has a significantly higher 
frequency than UV100 %, but UV50 % was significantly lower than 
FAT50 % for flies only (Fig. 4). The non-treated control (Natural con-
trol) significantly differed from UV-manipulated plants for bees 
only (Fig. 4). There was no significant effect of treatment on the 
number of morphospecies observed on the flowers (Fps = 2.08; 
df = 4; Pperm = 0.103).

Effects of treatments on visitor behaviour

We found a significant effect of treatment on bee landing 
behaviour (Fps = 5.04; df = 4; Pperm = 0.004), but not on fly landing 
(Fps = 1.08; df = 4; Pperm = 0.373). On UV100 %-treated flowers, bees 
landed mostly on anthers, whereas in other treatments bees 
usually landed on the petals before moving to anthers and 
stigma (Fig. 5). When collecting pollen, bees usually touched 
both anthers and stigmas, whereas flies had considerably fewer 
contacts with the reproductive organs during their visits (Table 
1). There was no significant effect of treatment on bees (Fps = 0.49; 
df = 4; Pperm = 0.770) and flies (Fps = 0.44; df = 4; Pperm = 0.903) behav-
iour after landing. Bees spent 95 % of the flower visit duration by 
collecting pollen, while flies spent most time (68  %) crawling, 
sitting and flying between individual floral parts [see Supporting 
Information—Fig. S4].

Effect of treatment on the plant

The number of germinated pollen tubes significantly differed 
among treatments (Fps = 3.66; df = 4; Pperm = 0.010), mainly due to a 
significantly higher number of pollen tubes germinated in non-
manipulated flowers (Fig. 6). The pollen tube count increases 
with number of visits by bees (r = 0.57, P < 0.001; Fig. 7), but not 
of flies (r = −0.0073, P = 0.962).

Discussion
Our study demonstrated that H.  camerooniana is mainly 
pollinated by bees, confirming previous studies on pollination 
of Hypoxis plants (Singh 1999; Johnson and Andersson 2002), 
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with the notable exception of H. decumbens, pollinated by flies 
in Venezuela (Raimúndez and Ramirez 1998). In addition to 
the previous studies of the genus based on visitation rates, we 
have confirmed that bees are the most efficient pollinators of 
H. camerooniana since: (i) bees were the most common visitors; 
(ii) in a large percentage of visits they are in contact with 
reproductive organs, which is expectable for these voracious 
pollen feeders; and (iii) their visits significantly increased 
numbers of germinated pollen tubes in stigmas. Contrary to 
Johnson and Andersson’s (2002) observations on H. hemerocallidea 
in South Africa, there were only few visits of honeybees 
compared to the abundant visits by a single morphospecies of 
small solitary bees. Moreover, honeybees seemed to be mostly 

searching for nectar, although we did not observe any nectar in 
flowers of H. camerooniana, consistent with other Hypoxis species 
(Johnson and Andersson 2002; Rudall 2002; Ren et al. 2019).

UV and visitor frequency

The UV signal of flowers influenced the particular visitor 
frequency in different ways. Bees visited flowers more often when 
at least half of the petals reflected UV. However, although not 
significant, even the control flowers treated with non-absorbing 
cream differed in bee (but not fly) visitation frequencies from 
untreated flowers. The drop in visitation frequency between 
the treatments and their respective controls is consistent with 
the previous study of H. hemerocallidea (Johnson and Andersson 

Figure 2. (A) reflectance of natural H. camerooniana flowers and those with experimental treatment and control (see Materials and Methods for more details). (B) Fly 

colour visual system displayed using the Troje model. (C) Bee colour visual system displayed using the colour hexagon model.
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2002) in which fewer honeybees (A. mellifera) visited flowers with 
the floral UV reflectance obscured. While in alpine communi-
ties of New Zealand, Campbell et al. (2010) found experimentally 
manipulated flower colour, and not UV reflectance, to be more 
important for the visitation rates, other studies on UV pollinator 
visitation preferences showed similar results to ours (Peter and 
Johnson 2008; Rae and Vamosi 2013; Horth et al. 2014; Koski and 
Ashman 2014). Ultraviolet reflectance was revealed as highly 
important for bees pollinating Eulophia zeyheriana (Orchidaceae; 
Peter and Johnson 2008), whereas the general visitation rates of 
various visitors declined after manipulation of UV reflectance 
in two Rudbeckia species (Horth et  al. 2014), Mimulus guttatus 
(Phrymaceae; Rae and Vamosi 2013), and Argentina anserine 
(Rosaceae; Koski and Ashman 2014). Therefore, UV reflectance 
plays an important role in pollinator attraction, but it can differ 
among flowering species, since other floral traits, such as scent, 
shape and colour, could be equally important.

Additionally, we have shown that having at least some UV 
reflectance is more important for selection of H.  camerooniana 
flowers by bees than its UV pattern (sensu Koski and Ashman 
2014), as flowers with fully covered petals by the UV-absorbing 
cream differed in bee visitation from those with all petals 
fully reflecting UV. Flies, however, although also showing a 
higher visitation frequency when the flower is fully or partially 
reflecting UV, did not significantly differentiate between UV100 % 
and the Natural control. These results are discordant with the 
previous study of yellow UV-reflecting flowers of A.  anserine 
(Koski and Ashman 2014) which demonstrated that the 
presence of UV pattern increased visitation by both bees and 
syrphid flies relative to both fully UV reflective or absorptive 
flowers. Nevertheless, bees were repeatedly described to prefer 
flowers with some colour pattern above the unicoloured ones 
(e.g. Waser and Price 1985; Papiorek et al. 2016).

It must be stipulated that UV reflectance is just one chan-
nel of communication of plants with insects (Chittka et al. 1994; 

Johnson and Andersson 2002). Additionally, other traits or factors 
need to be considered when looking at the pollination system. 
For example, the community context (Peter and Johnson 2008; 
Campbell et al. 2010), positioning of flowers and inflorescences 
(Lunau 1992b; Johnson et al. 2003a, b; Rae and Vamosi 2013; van 
der Kooi 2016), other optical principles of flower colouration 
(e.g. van der Kooi et  al. 2014, 2016) and learning ability of 
visitors (Giurfa et al. 1995; Hammer 1997; Dyer et al. 2015). The 
learning ability of visitors is difficult to include into such field 
experimental studies. Supplementary controlled studies with 
naïve bees would be greatly beneficial to further disentangle the 
factors important in shaping the studied pollination system.

UV and bee behaviour

The significant difference in the bee landing behaviour implies 
that the floral UV pattern can play an important role in 
orientation of bees on visited flowers. On the flowers completely 
covered with the UV-absorbing cream, bees mostly landed 
directly on the anthers and immediately started to collect 
pollen, whilst they landed mostly on petals of the flowers 
that at least partly reflected UV (i.e. all other treatments). This 
has proven that a disturbance of the UV pattern may change 
bees’ behaviour. Likewise, other colour patterns, such as floral 
guides or bullseye patterns, are considered to increase the 
plants’ reproductive success by helping pollinators to orientate 
to the flower centre (Waser and Price 1985; Dinkel and Lunau 
2001; Leonard and Papaj 2011; Papiorek et  al. 2016). However, 
bees actually make their first antennal contact preferably at 
the UV-absorbing floral area, irrespective of its spatial position 
within a flower (Papiorek et  al. 2016). Therefore, one would 
expect bee visitors of H.  camerooniana to prefer the centre of 
flowers with the UV-absorbing anthers, which is not the case. 
We thus hypothesize that in H. camerooniana, the UV-reflecting 
petals probably act as a landing platform, making flowers more 
visible for potential pollinators in its typical habitat of burnt 
montane grasslands, since the general UV reflection of similar 
grasslands vegetation is low (<5 %; Caldwell et al. 1983).

Methodological biases of UV manipulation

When Johnson and Andersson (2002) used the genus Hypoxis 
for the experimental manipulation of floral UV reflectance to 
study the response of insect pollinators, they did not include 
the experimentally untreated plants (Natural control). They thus 
did not control for the effect of experimental manipulation on 
natural insect behaviour. In our experiment, which based the 
methodology largely on the referred study, we demonstrated 
that such experimental setting is useful to investigate the 
effect of floral UV signalling on visitors. But at the same time, 
we discovered that experimental controls (i.e. flowers covered 
by the non-UV-absorbing cream compound; FAT100 %, FAT50 %) can 
differ from the untreated natural flowers. The experimental 
controls showed lower (but not statistically significant) 
visitation rates than the natural control for bees. Furthermore, 
the numbers of germinated pollen tubes on stigmas of natural 
control flowers of H.  camerooniana were significantly higher 
compared to all treated flowers, apart from the control with 
fully covered non-UV-absorbing cream. These lower visitation 
rates and lower number of germinated pollen tubes could be 
explained by several factors, e.g. less evaporation of scents 
or changes in the glossiness of the flower. It also proved that 
we did not cause pollination during handling of experimental 
flowers.

Additionally, we showed that this effect can be visitor-specific. 
Flies, generally a more olfactory-oriented group than bees 

Table 1. Proportion of visits during which bees and flies touched 
reproductive organs of H. camerooniana. See Materials and Methods 
for the description of treatments.

Bees Flies

Treatment Stigma Anthers Stigma Anthers

UV100 % 85.7 92.9 0.0 57.1
F100 % 76.7 95.3 15.4 23.1
UV50 % 59.4 90.6 28.6 57.1
F50 % 84.8 97.0 47.6 57.1
Natural 74.3 95.7 45.5 63.6

Figure 3. Frequency of all H. camerooniana flower visitors and visitors in contact 

with reproductive organs during daytime. Different colours indicate different 

morphospecies.
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(Roy and Raguso 1997), were not affected by the experimental 
controls at all. For this group, the UV manipulation treatments 
(UV100 %, UV50 %) did not significantly differ from the Natural control. 

Figure 4. Effect of UV pattern manipulation on visitation frequencies of H. camerooniana for (A) day; (B) night; (C) bee; and (D) fly visitation during the day separately. 

Note: scaling of the Y-axis is not standardized due to the substantially lower number of visits between day and night, and between bees and flies. Means (bars) and 

SE (whiskers) are shown. The same letters above the columns indicate non-significant differences in the pairwise post hoc tests. See Materials and Methods for the 

description of treatments.

Figure 5. Effect of UV pattern manipulation on bee landing behaviour of 

H. camerooniana flowers. See Materials and Methods for the description of treatments.

Figure 6. Effect of UV pattern manipulation on the number of germinated pollen 

tubes in stigmas of H. camerooniana. Means (bars) and SE (whiskers) are shown. 

The same letters above the columns indicate non-significant differences in the 

pairwise post hoc tests.
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Although, they were visited by significantly less flies than the 
controls (FAT100  %, FAT50  %). We thus speculate that the effect of 
UV manipulation is at least partly compensated by the potential 
attraction of Muscidae and Sarcophagidae flies (which created 
most of the diversity of recorded fly visitors) to the duck preen 
gland fat. Bees, as generally more visually oriented insects, 
expressed higher, but still non-significant, differences among 
natural and experimental controls. Furthermore, the thickness 
of the cream layer or amount of cream in the treatments has 
not been considered in our study but might play a role in the 
attraction of flies.

In summary, although the duck preen gland fat is a commonly 
used vector for the UV-manipulating agents (e.g. Johnson and 
Andersson 2002; Peter and Johnson 2008; Welsford and Johnson 
2012; Rae and Vamosi 2013), it affects natural insect behaviour. 
Consequently, we strongly encourage ‘calibration’ of results by 
controlling for the chemical vector’s (duck preen gland fat in our 
case) effects in similar experimental studies.

Conclusion
The primary pollinators of H. camerooniana in the Afromontane 
grasslands of Mount Cameroon were bees. When UV reflectance 
was completely removed visitation rates of bees decreased, 
whereas the decrease of frequency on half-treated flowers was 
not significant (although it decreased as well when considering 
all daytime visitors). The complete UV reflectance removal 
changed the landing behaviour of bees as well, confirming that 
altering the natural UV patterns affects both visitation rates and 
behaviour.

Furthermore, based on our results we also encourage the 
inclusion of a natural control in the experimental designs of 
similar manipulative studies to control for the substances used 
in floral manipulation.

Supporting Information
The following additional information is available in the online 
version of this article—

Figure S1. Frequency of nocturnal visits of Hypoxis 
camerooniana flowers.

Figure S2. Diurnal changes in bee visitation frequencies 
on flowers of Hypoxis camerooniana after manipulation of their 
ultraviolet (UV) reflectance. Means (bars) and SE (whiskers) 
are shown.

Figure S3. Diurnal changes in fly visitation frequencies on 
flowers of Hypoxis camerooniana after manipulation of their 
ultraviolet (UV) reflectance. Means (bars) and SE (whiskers) 
are shown.

Figure S4. Bee (A) and fly (B) behaviour on flowers of Hypoxis 
camerooniana after manipulation of their ultraviolet (UV) 
reflectance. There was no significant effect of treatment on 
both bee (Fps = 0.49; df = 4; Pperm = 0.770) and fly (Fps = 0.44; df = 4; 
Pperm = 0.903) behaviour after landing.

Data
An excel file with the data used for analyses and graphs is 
available in the online version of this article.
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