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ABSTRACT
In single-molecule force spectroscopy experiments, a biomolecule is attached to a force probe via polymer linkers and the total extension of
the molecule plus apparatus is monitored as a function of time. In a typical unfolding experiment at constant force, the total extension jumps
between two values that correspond to the folded and unfolded states of the molecule. For several biomolecular systems, the committor,
which is the probability to fold starting from a given extension, has been used to extract the molecular activation barrier (a technique known as
“committor inversion”). In this work, we study the influence of the force probe, which is much larger than the molecule being measured, on the
activation barrier obtained by committor inversion. We use a two-dimensional framework in which the diffusion coefficient of the molecule
and of the pulling device can differ. We systematically study the free energy profile along the total extension obtained from the committor by
numerically solving the Onsager equation and using Brownian dynamics simulations. We analyze the dependence of the extracted barrier on
the linker stiffness, molecular barrier height, and diffusion anisotropy and, thus, establish the range of validity of committor inversion. Along
the way, we showcase the committor of 2-dimensional diffusive models and illustrate how it is affected by barrier asymmetry and diffusion
anisotropy.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5118362., s

I. INTRODUCTION

In single-molecule pulling experiments, mechanical force is
used to induce conformational transitions in biomolecules.1,2 Sup-
pose that the molecule of interest undergoes repeated folding and
unfolding transitions under constant force. The molecular exten-
sion, i.e., the end-to-end distance of the molecule, would then jump
between smaller and larger values. The interpretation of the result-
ing time series would be simple if the molecular extension could
be directly monitored experimentally. In this hypothetical case,

the folding and unfolding force-dependent transition rates of the
molecule could be directly obtained by counting the number of tran-
sitions per unit time. In addition, by binning this trajectory, one
could determine the probability density of the extension, the loga-
rithm of which is the free energy profile of the molecule, a procedure
known as Boltzmann inversion. Alternatively, from the trajectory,
one could determine the probability that a molecule with a specific
extension folds before it unfolds. This quantity describes the most
probable “fate” of the system at any given point of the trajectory and
is known as committor, splitting probability, or pfold.3 Assuming that
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the dynamics is diffusive, the height and shape of the free energy bar-
rier could be found by differentiation of the committor, a procedure
known as committor inversion.4,5

In reality, one cannot directly monitor the molecular exten-
sion itself because the experimental observable is actually the posi-
tion of the force probe attached to the molecule by long polymer
linkers. In the case of optical trapping measurements [Fig. 1(a)],
the measured extension (q) is the extension of the molecule (x)
plus that of the linkers attaching the molecule to mesoscopic beads
trapped by laser beams. What one measures is the time dependence
of the interbead distance, yielding a trajectory of the total exten-
sion of molecule and linkers [Fig. 1(b)]. The free energy profile
obtained by Boltzmann inversion of the observed trajectory of the
total extension is a convolution of the molecule and linker pro-
files. If the properties of the linkers are known, one can obtain
the free energy profile of the molecule by deconvolution.6,7 This
methodology requires large amounts of data and works best with
low molecular barriers, and it can thus be challenging to use in
practice.

As a viable alternative, the group of one of us investigated the
free energy profile obtained by committor inversion of the mea-
sured trajectory.5 If the dynamics of the total extension could be
described as diffusion of the free energy profile obtained by Boltz-
mann inversion, then both the committor and Boltzmann inversion
would give the same result. Consequently, one would still have to use
deconvolution to obtain the molecular profile. However, unless the
response of the apparatus is much faster than that of the molecule,
the dynamics of the total extension cannot necessarily be described
as a one-dimensional diffusive process.8 Committor inversion may,
therefore, lead to a different free energy profile than Boltzmann
inversion. Experimentally, committor inversion has been applied to
DNA hairpin folding, successfully recovering the free energy profile
obtained from deconvolution of the Boltzmann inverted one.5 It has

FIG. 1. Schematic of a single-molecule pulling experiment. (a) Example of
the experimental setup in force spectroscopy using optical tweezers. A small
biomolecule is attached via polymer linkers to two beads trapped by laser beams.
The molecular extension x is hidden within the observed extension q. (b) Trajectory
of the measured extension q(t) as a function of time. (c) The committor estimated
from the observed trajectory of the measured extension q(t) in the interval between
the red lines.

also been used to extract free energy barriers encountered when bac-
teriorhodopsin is pulled out of a membrane.9 This procedure has the
potential to become widely used as a viable alternative to deconvo-
lution of the profile obtained by Boltzmann inversion. However, the
range of validity of committor inversion in light of the limitations
imposed by probe/linker attachments to the molecule has not been
investigated.

Committor inversion yields the exact molecular free energy
profile in the limit of very stiff polymer linkers (i.e., when the
linker force constant is much larger than those of the molecular
extrema). However, for such linkers, the free energy profile obtained
from Boltzmann inversion is already quite close to the molecu-
lar one. Moreover, in this limit, the measured transition or hop-
ping rates become proportional to the diffusion coefficient not of
the molecule but of the probe (e.g., mesoscopic beads) attached to
the molecule.10 Consequently, here, we shall primarily consider soft
linkers for which the measured rates are meaningful. As first pointed
out by Thirumalai and co-workers, free energy profiles are most eas-
ily found using stiff linkers, but reliable estimates of the hopping
rates can only be made by using flexible handles.11

We will investigate whether transition path theory can aid in
the reconstruction of molecular free energy profiles from the infor-
mation encoded in the committor estimated from observed trajec-
tories. This will be done in the framework of a simple model where
the molecular and total extensions diffuse anisotropically on a two-
dimensional free energy surface. We previously used such surfaces
to determine the influence of the mesoscopic pulling device on the
observed rates and transition paths.12,13 Here, we obtain the com-
mittor both by analyzing Brownian dynamics trajectories of the
total extension—as in experiments—and by numerically solving the
Onsager equation.3 Additionally, we derive and validate analytic
expressions for the committor obtained in the high-barrier limit. We
then investigate how the extracted barriers depend on the stiffness of
the linker, the shape of the molecular free energy profile, and the dif-
fusion anisotropy. We find that although in some realistic cases this
procedure yields useful estimates of the heights of molecular barri-
ers, it is challenging to establish its validity in many other cases of
practical interest.

II. THEORY
Let x be the molecular (hidden) extension and q be the total

(observable) extension [Fig. 1(a)]. Let a constant force be exerted
on the system so that the resulting free energy surface has the
form

G(q, x) = Go(x) +
κl
2
(x − q)2. (1)

Here, the first term on the rhs is the molecular free energy in the
presence of force and the second describes the coupling due to a
harmonic linker with spring constant κl. For the sake of simplic-
ity, we will assume the constant force to be subsumed in Go(x),
which is symmetric about its maximum at x = 0 and has two min-
ima, corresponding to metastable states, at x1 = −x0 and x2 = x0
(Fig. 2). It is straightforward to generalize the results presented
below to an asymmetric Go(x) and to anharmonic (e.g., wormlike
chain) linkers, albeit at the expense of complicating the analytical
expressions.

J. Chem. Phys. 151, 154115 (2019); doi: 10.1063/1.5118362 151, 154115-2

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 2. Two-dimensional potential surface G(q, x). We assume that Go(x) (black
solid line) is symmetric about its maximum at x = 0 and has minima at −x0 and
x0. The potential of mean force along q, G(q), is shown as the blue solid line. The
extensions are shifted by constants so that the barrier occurs at zero.

We assume that the dynamics on the surface in Eq. (1) is dif-
fusive with position-independent diffusion coefficients Dx and Dq
along the x and q coordinates, respectively. The value of Dq is essen-
tially determined by the Stokes-Einstein diffusion coefficient of the
beads in a laser tweezer experiment and for large beads may thus be
slower than Dx. By simulating Brownian dynamics, one can obtain
long trajectories describing the evolution of the system on the two-
dimensional surface in Eq. (1). The system will spend most of the
time in one of the two metastable states, rarely but rapidly jump-
ing from one to the other. We can now mimic the typical situation
of force spectroscopy experiments and assume that only the compo-
nent q(t) of the simulated trajectory is observable [see Fig. 1(b) for an
example trajectory]. From such trajectories, one can then calculate
the “observed” committor ϕ(q) [Fig. 1(c)], defined as the probabil-
ity of reaching the folded minimum before the unfolded minimum,
starting from a given value of q.

Alternatively, one can obtain the exact ϕ(q) as a conditional
equilibrium average of the two-dimensional committor, ϕ(q, x),
which can be accurately obtained by solving the two-dimensional
Onsager equation3 on a grid with the appropriate boundary condi-
tions (see Sec. III). Specifically, the observed committor ϕ(q) is given
by

ϕ(q) = ∫
∞

−∞
dxϕ(q, x)e−βG(q,x)

∫ ∞−∞ dx e−βG(q,x) , (2)

where β = 1/kBT, kB is Boltzmann’s constant, and T is the abso-
lute temperature. The denominator in Eq. (2) is the exponential of
the negative of the free energy profile G(q) along q, given within a
constant by

e−βG(q) = ∫
∞

−∞

dx e−βG(q,x) = ∫
∞

−∞

dx e−β(Go(x)+κl(q−x)2
/2). (3)

G(q) can be obtained from the observed trajectory by Boltzmann
inversion. If the linker spring-constant is known, then Go(x) can, in
principle, be obtained from G(q) by deconvolution,6 which amounts
to a numerically challenging inverse Weierstrass transform.8

For a one-dimensional diffusive process on Go(x) with
position-independent diffusion coefficient, the committor ϕo(x) is
given by

ϕo(x) = ∫
xo
x dy eβGo(y)

∫ xo
−xo

dy eβGo(y)
. (4)

Thus, by differentiating both sides with respect to x, one can obtain
the following inversion formula:5

β[Go(x) −Go(x0)] = ln[ ϕ
′

o(x)
ϕ′o(x0)

], (5)

which expresses the molecular free energy profile in the interval
−xo ≤ x ≤ xo in terms of the derivatives of the committor, denoted as
primes. Note that ϕo(−x0) = 1 and ϕo(x0) = 0 by definition.

For multidimensional diffusive dynamics, there is no analytic
relation between the free energy surface and the committor analo-
gous to Eq. (5). Nevertheless, one can formally use this relation to
define a new free energy profile GCI(q) (CI = committor inversion)
using the committor ϕ(q) obtained from the experimental trajectory
in the interval −xo ≤ q ≤ xo,

β[GCI(q) −GCI(q0)] = ln[ ϕ
′(q)

ϕ′(q0)
]. (6)

Since the dynamics along q cannot be, in general, described by one-
dimensional diffusion,8,12 then in general,4 GCI(q) ≠ G(q). In other
words, the committor-inverted and Boltzmann-inverted profiles are
not necessarily the same. It has been conjectured5 that, in fact,GCI(q)
is very similar to the hidden molecular free energy profile Go in the
barrier region. This assumption does not have any obvious theoret-
ical justification, and in the following, we will systematically explore
its validity.

We shall now derive approximate analytic expressions for ϕ(q)
and GCI(q) when the molecular free energy is symmetric and has
a high barrier. We begin with the calculation of G(q). When the
barrier of Go(x) is high, the major contribution to the integral in
Eq. (3) comes when x is near to the minima of Go(x), which are
located at x = ±xo. Thus, one can approximate the integral from
−∞ to ∞ as a sum of two integrals, one around x1 = −xo and the
other around x2 = xo. Then, we expand G(q, x) in Eq. (2) around xi
(i = 1, 2) to the second order as Gi(q, x) ≈ G(q, xi)+(x−xi)G′(q, xi)
+ (x − xi)2G′′(q, xi)/2, where the primes denote derivatives with
respect to x. By extending the range of integration in both integrals
to (−∞,∞) and evaluating the resulting Gaussian integrals, we find
(to within a constant)

e−βG(q) = e−βκ(q+xo)2
/2 + e−βκ(q−xo)

2
/2, (7)

where 1/κ = 1/κl + 1/G′′o (xo) and G′′o (xo) = G′′o (−xo) > 0. If we
choose the constant in the definition of G(q) so that G(q = ±xo) = 0,
then

βG(q) = ln
⎡⎢⎢⎢⎣

cosh(βκx2
o)

cosh(βκxoq)
⎤⎥⎥⎥⎦

+
β
2
κ(q2 − x2

o). (8)

Let us now evaluate the integral in Eq. (2) that determines ϕ(q) in
an analogous way. We break the integral into two parts, one around
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−xo and the other around xo, and expand G(q, x) about these points
to the second order as before. We then approximate the commit-
tor around −xo as ϕ(q, x) = 1 and set ϕ(q, x) = 0 in the inte-
gral around xo. Evaluating the resulting Gaussian integrals, we find
that

ϕ(q) = 1
1 + e2βκxoq

(9)

for−xo ≤ q ≤ xo. This approximate expression is valid for high molec-
ular barriers. In this regime, ϕ(q) does not depend on the diffu-
sion anisotropy and, more importantly, it has no direct dependence
on the molecular barrier height or shape (although indirect effects
from correlations between the well curvature and barrier height may
occur).

Using Eqs. (9) and (6) and requiring that GCI(q = ±xo) = 0, we
find that

βGCI(q) = 2 ln[ cosh(βκx2
o)

cosh(βκxoq)
], (10)

which using Eq. (8) for G(q) can be rewritten as

GCI(q) = 2G(q) + κ(x2
o − q2). (11)

These approximate expressions are valid for sufficiently large molec-
ular barriers. In this regime, GCI(q) contains no explicit informa-
tion about the molecular barrier height and shape, as determined by
G0(x).

III. METHODS
A. Free energy surfaces

We model force spectroscopy experiments at constant force as
a diffusive process on the two-dimensional free energy surface G(q,
x), given by Eq. (1) [Fig. 2], where q and x are the total and molecu-
lar extension, respectively, Go(x) is the molecular free energy in the
presence of force, and κl is the linker stiffness. We used two ana-
lytic forms of the molecular free energy. A symmetric potential is
given by a bistable matched-harmonic with Go(x) = ΔG‡

o f (x/x‡),
where

f (x) =
⎧⎪⎪⎨⎪⎪⎩

−2x2 0 ≤ ∣x∣ ≤ 1/2
2(∣x∣ − 1)2 − 1 1/2 < ∣x∣

, (12)

and ΔG‡
o and x‡ are the activation barrier and the distance to the

transition state, respectively, in the presence of force. An asymmetric
potential is given by the negative logarithm of a linear combination
of two Gaussian distributions,

βGasym
o (x) = − ln

⎛
⎝

w√
2πs2

1

e−(x+x0)
2
/2s2

1 +
1 −w√

2πs2
2

e−(x−x0)
2
/2s2

2
⎞
⎠

, (13)

where s1, s2, and ±x0 are the Gaussian widths and centers, respec-
tively. In particular, we considered a potential displaying a small
barrier by using s1 = 0.15, s2 = 1, and w = 0.4 and a potential dis-
playing a larger barrier by using s1 = 0.2, s2 = 0.6, and w = 0.5. In
both cases, the minima are located at ±x0, with x0 = 1.5.

B. Two-dimensional committor using the Onsager
equation

The Onsager equation3 for a n-dimensional diffusive process z
is

∇ ⋅D(z) exp[−βG(z)]∇ϕ(z) = 0, (14)

where D(z) is a position-dependent diffusion tensor. If we assume
a two-dimensional diffusion on the free energy surface G(q, x),
with a diagonal and position-independent diffusion tensor, then the
Onsager equation becomes

−Dx∂xβG(q, x)∂xϕ(q, x) + Dx∂
2
xϕ(q, x)

−Dq∂qβG(q, x)∂qϕ(q, x) + Dq∂
2
qϕ(q, x) = 0. (15)

After discretizing this equation, an iterative relaxation method can
provide an accurate numerical solution ϕ(q, x). We thus consider a
mesh on the plane (q, x) such that both continuous variables take N
+ 1 and M + 1 discrete values, respectively, qi ≡ iΔq and xj ≡ jΔx,
with Δq = (qmax − qmin)/N and Δx = (xmax − xmin)/M. We evaluate
the committor on the mesh, ϕij ≡ ϕ(qi, xj), by solving the (central)
finite difference version of Eq. (15),

(2Dq

Δq2 +
2Dx

Δx2 )ϕij = Dq
ϕi+1,j + ϕi−1,j

Δq2 + Dx
ϕi,j+1 + ϕi,j−1

Δx2

−Dq∂qβGij
ϕi+1,j − ϕi−1,j

2Δq

−Dx∂xβGij
ϕi,j+1 − ϕi,j−1

2Δx
, (16)

where ∂qβGij and ∂xβGij are the gradients of the potential evalu-
ated on the mesh. We set boundary conditions ϕij = 1 for all points
(q <−x0, x <−x0) and ϕij = 0 for all points (q > x0, x > x0). This defini-
tion of the boundaries assumes that an experienced practitioner will
be able to separate true transitions from mere recrossing events by
looking at the entire trajectory. Additionally, we set reflective bound-
ary conditions on all remaining points on the border of the mesh,
i.e., ϕi ,j = ϕi+1,j for i = 0 or i = N − 1 and ϕi ,j = ϕi ,j+1 for j = 0 or
j = M − 1. We then solve Eq. (16) iteratively by initially setting all
ϕi ,j on the rhs of the equation inside the boundaries equal to 1/2.
Figure 3(a) shows an example of the numerical solution ϕ(q, x) of
Eq. (16).

C. Brownian dynamics simulations
We generated trajectories along q and x using

q(t + Δt)= −β∂qG(q, x)DqΔt + (2DqΔt)1/2Rq(t),
x(t + Δt)= −β∂xG(q, x)DxΔt + (2DxΔt)1/2Rx(t),

(17)

where Rq(t), Rx(t) are independent Gaussian random numbers with
zero mean and unit variance, respectively, and Δt is the time step.
The diffusion coefficient Dx of the molecule is kept constant, and
that of the apparatus Dq is varied such that Dq/Dx ranges from 10 to
10−2. We chose the time step such that DxΔt = 5 × 10−4. Figure 1(b)
shows an example of the measured extension as a function of
time.
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FIG. 3. Molecular free energy profile from committor inversion. (a) Full two-dimensional committor ϕ(q, x) for the free energy surface G(q, x) and Dq/Dx = 1. Isolines of
the free energy surface are shown as black solid lines separated by 1 kBT. Isolines of the committor are shown as red solid lines. (b) The observed committor ϕ(q) is
obtained in two independent ways: from a numerical solution of Onsager’s equation (exact, red solid line) and from Brownian dynamics trajectories (blue diamonds). The
analytic prediction from Eq. (9) is shown as a dark red dashed line. (c) The free energy barrier extracted by committor inversion, GCI(q), from the exact and trajectory-
estimated committor (red solid line and blue diamonds, respectively). Both barriers are compared to the hidden molecular profile Go (gray solid line), to the analytic
prediction from Eq. (11) (dark red dashed line), and to the Boltzmann-inverted free energy profile G(q) (orange solid line). The free energy surface G(q, x) has param-
eters similar to those obtained for the 20TS06/T4 DNA hairpin,19 ΔG‡

0 = 8.1 kBT, Δx‡ = 1.5 [x], and κl = 2.6 kBT /[q]2, where [q] = [x] denotes units of length for the
extension.

D. Estimating the committor from diffusive
trajectories

To calculate the committor directly from a trajectory, we fol-
lowed the procedure described by Chodera and Pande.4 For a
trajectory of duration τ, the committor is estimated by

ϕtraj(q) = ∫
τ

0 dt δ(q − q(t))c(t)
∫ τ

0 dt δ(q − q(t))
, (18)

where the hitting function c(t) keeps track of whether q(t) hits the
folded state before the unfolded one immediately following time t
and assumes a value of unity if so, and zero otherwise. This implies
that c(t) uses q only and does not make use of any indirect infor-
mation about the hidden variable x. In practice, we discretized the
trajectory q(t) in space and time and considered the resulting dis-
crete chain j(k), where k = 0, . . ., N is the time index and j = 0, . . .,
M labels the bins along the extension q. The discretized committor
estimated from the trajectory is, therefore, given by

ϕtraj(i) =
∑N

k=0 δij(k)c(k)
∑N

k=0 δij(k)
, (19)

where δij is the Kronecker delta. Thus, for each bin i (along q), ϕtraj(i)
is the ratio between the population committed to the folded state and
the total population. In order to calculate GCI(q) with Eq. (6), we
discretized the observed trajectory in 30 bins between q = −x0 and
q = x0, numerically evaluated the gradient, and smoothened it with
a Savitzky–Golay filter.

E. Code
We generated, analyzed, and visualized data with custom code

based on Numpy,14 Scipy,15 Ipython,16 Numba,17 and Matplotlib.18

IV. RESULTS AND DISCUSSION
We first verified that the observed committor ϕ(q) is an

equilibrium conditional average of the full two-dimensional com-
mittor ϕ(q, x). In order to model a typical force spectroscopy
experiment, we performed Brownian dynamics simulations on the
two-dimensional potential G(x, q) with Dq/Dx = 1 [see Eq. (2)].
For G0(x), we used the matched-harmonic potential of Eq. (12)
and parameters similar to those experimentally obtained for the
20TS06/T4 DNA hairpin.19 We estimated the observed committor
by using Eq. (19) from the Brownian dynamics trajectories, which
contained 54 transitions between the minima q = −xo and q = xo.
Following a completely independent route, we calculated ϕ(q, x)
by numerically solving the Onsager equation [Eqs. (15) and (16),
Fig. 3(a)] and obtained ϕ(q) as the conditional average in Eq. (2).
Figure 3(b) shows these two independent ways to estimate ϕ(q) and
compares them to the analytic prediction from Eq. (9) (dashed line).
We find that the results from the Brownian dynamics simulations,
accurate numerical calculations, and the analytic prediction are in
excellent agreement.

We used Eq. (6) to invert the mean committor ϕ(q) and
extracted a free energy profile GCI(q), both from the accurate numer-
ical solution and the one estimated from simulated trajectories.
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Figure 3(c) reports the results for the 20TS06/T4 DNA hairpin
parameters and shows a good agreement between the two indepen-
dent ways for extracting GCI(q). We compared these results to the
potential obtained from Boltzmann inversion G(q) without decon-
volution (orange solid line). As reported in Ref. 5, the Boltzmann
profile has a much lower barrier and the two profiles differ sig-
nificantly. This difference indicates that the dynamics along the
observed extension q cannot be described as one-dimensional dif-
fusion on G(q).4,8 Interestingly, GCI(q) is very similar to the hidden
molecular profile Go (gray solid line) and the values of their bar-
riers differ only by approximately 10%, consistent with the results
found in Ref. 5. However, Fig. 3(c) also shows that GCI(q) is in
good agreement with the analytic approximation from Eq. (11) (red
dashed line). As shown in Eq. (11), the analytic expression does not
explicitly depend on Go(x) but only on G(q) and the stiffnesses of the
molecule and linker. This raises the possibility that the agreement is
fortuitous, which motivated us to further assess the validity of the
committor inversion to extract the hidden molecular profile for a
large number of scenarios.

We investigated how well the free energy profile obtained by
inversion of the observed committor, GCI(q), reproduces the hid-
den molecular profile, Go, for a number of cases of practical interest.
Having shown that the observed committor is accurately repro-
duced by numerical solutions of Onsager’s equation, we used the
latter to systematically investigate the influence of parameters of
our model. In Fig. 4, we report the dependence of the exact GCI(q)
on the linker stiffness (solid lines) and on the height of the hid-
den molecular barrier. The results show that the accuracy of pre-
dicting G0 depends on all the examined parameters. For instance,
using the linker stiffness κl = 1.5 kBT/[q]2, where [x] = [q] indi-
cates the units of extension, guarantees acceptable results for ΔG‡

0 =
3 kBT but works rather poorly for larger barriers, as can be seen for
ΔG‡

0 = 8.1 kBT. For ΔG‡
0 = 16 kBT, only a very stiff linker gives an

acceptable reconstruction.
We tested the validity of the analytic approximation [Eq. (11)]

(dashed lines in Fig. 4). We found that Eq. (11) reproduces accu-
rately the exact solutions for sufficiently large molecular barriers (≥5
kBT) and for soft linkers. The lowest barrier considered, 3 kBT, is
outside the range where the analytic approximation can be applied
with confidence. Since the analytic formula does not contain explicit
information about the hidden molecular profile (only information
about the potential wells), whenever this approximation accurately
reproduces GCI(q) the reconstruction of Go by committor inversion
is likely to be invalid. Notably, in these cases, the barrier height
obtained by committor inversion is systematically lower than the
molecular barrier.

We then investigated the cases in which the analytic approxi-
mation does not correctly reproduce the free energy profile obtained
by the exact numerical solution of the committor inversion, even
when the barrier seems sufficiently high. This can be seen, for
instance, in Fig. 4 for ΔG‡

o = 8.1 kBT and κl = 5 kBT/[q]2. We com-
pared the exact ϕ(q) to the analytic prediction from Eq. (9) (Fig. 5).
These two quantities are in striking agreement over most of the
reaction coordinate range and deviate only close to the minima by
exponentially small amounts, which causes the slopes, ϕ′(q), of the
two curves to be different [Fig. 5(a), inset]. These differences in ϕ′(q)
are amplified by the logarithm in Eq. (6), causing large errors in

FIG. 4. Free energy barrier extracted by committor inversion, GCI(q), using the
observed committor (solid lines) and the analytic approximation of Eq. (11) (dashed
lines and darker shade of color). We varied the height of the hidden molecular
barrier (ΔG‡

o = 3, 8.1, and 16 kBT, from top to bottom) and the linker stiffness
(κl = 1.5, 2.5, and 5 kBT /[q]2, green, red, and blue lines, respectively). We used
the matched-harmonic free energy function from Eq. (12) with Δx‡ = 1.5 [x]. For
reference, each panel shows the respective hidden molecular profile Go (gray solid
line).

the inverted free energy barrier GCI(q) at the well bottom [Fig. 5(b)]
that lead to systematic underestimation of the barrier height. In fact,
Eq. (9) accurately reproduces the exact GCI(q) around the top of
the barrier but poorly describes how GCI(q) approaches its minima.
Figure 5 indicates that the mean committor close to the stable states
encodes crucial information about the height of the extracted barrier
and must be estimated with very high precision. This requirement
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FIG. 5. (a) Observed committor ϕ(q) and (b) barrier GCI(q) obtained by committor
inversion for the exact numerical solution (solid line) and the analytic approxima-
tion of Eq. (11) (empty circles—to highlight agreement with exact solution). We
used parameters ΔG‡

o = 8.1 kBT and κl = 5 kBT /[q]2. The inset is the zoomed-in
view of ϕ(q) in the range highlighted by the red square box. For reference, Go is
shown in Fig. 5(b) as a gray solid line. All curves in Fig. 5(b) are aligned on the bar-
rier top. A seemingly insignificant difference in the committors shown in Fig. 5(a)
leads to an overestimation of the barrier height by a factor of 2.

poses a major challenge for practical attempts to reconstruct barriers
by committor inversion.

We also investigated how well committor inversion allows one
to estimate the shape of the hidden molecular barrier for asym-
metric molecular energy profiles. In Fig. 6(a), we show the two-
dimensional free energy surface G(q, x) and two-dimensional com-
mittor for small (left) and large (right) asymmetric barriers. On both
free energy surfaces, the well to the left of the barrier is narrower
and deeper than that to the right of the barrier. The asymmetry
of the barrier is reflected in the full two-dimensional committor.
In fact, the committor isoline of 0.5 is not located at the barrier-
top but displaced toward the shallower state, whereas points on the
top of the barrier are actually highly committed. ϕ(q) obtained by
solving Onsager’s equation and the profiles extracted by committor
inversion are shown in Figs. 6(b) and 6(c), respectively, for differ-
ent linker stiffnesses. The comparison to the hidden molecular free
energy (gray line) shows that the asymmetry of the molecular free
energy can be captured only qualitatively under the conditions used
here. Indeed, the accuracy in determining both the location of the
barrier top and the relative stability of the two states depends on
the stiffness of the linker and improves with increasingly stiffer link-
ers. For low linker stiffness, the barrier from committor inversion is
systematically lower and closer to q = 0 than in Gasym

o .
Finally, we studied the effects of diffusion anisotropy on

ϕ(q, x), ϕ(q), and GCI(q) by numerically obtaining the solutions of

FIG. 6. Asymmetric molecular barriers and free energy profiles extracted by com-
mittor inversion. (a) Full two-dimensional committor ϕ(q, x) for the free energy
surfaces G(q, x) with an asymmetric molecular free energy Gasym

o [Eq. (13)],
κl = 2.5 kBT /[q]2, and Dq/Dx = 1. Isolines of the free energy surfaces are shown as
black solid lines separated by 1 kBT. Isolines of the committor are shown as red
solid lines. We considered free energy surfaces with a small and a large barrier, left
and right, respectively. (b) The observed committor ϕ(q) is obtained by numerically
solving Onsager’s equation. ϕ(q) is shown for different linker stiffnesses (1.5, 2.5,
and 5.0 kBT /[q]2). (c) Free energy profiles GCI(q) extracted by committor inversion.
The respective hidden molecular profiles Gasym

o are shown as gray solid lines.

Eq. (15) as a function of the ratio Dq/Dx over four orders of mag-
nitude using different molecular barrier heights ΔG‡

0 (Fig. 7). For
small molecular barriers, reducing Dq (corresponding to slower dif-
fusion of the force probe attached to the molecule) induces a “rota-
tion” of the full committor ϕ(q, x) around the barrier [Fig. 7(a)].
For Dq/Dx = 10, the isolines of the committor are almost paral-
lel to the q-axis, indicating transitions that are dominated by the
dynamics along x [Fig. 7(a), orange lines]. As Dq decreases, the iso-
lines rotate, until they are perpendicular to the q-axis for very small
Dq, indicating that transitions are dominated by the much slower
dynamics along q (blue lines). This phenomenon is most clearly
observed for ΔG‡

0 = 3 kBT. For ΔG‡
0 = 8.1 kBT, larger values of dif-

fusion anisotropy are required to induce rotations of the isolines of
the full committor, which are mostly suppressed on the barrier. For
the largest barrier, ΔG‡

0 = 16 kBT, diffusion anisotropy has no sizable
effect on the committor, which is completely determined by the free
energy surface.
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FIG. 7. Effect of diffusion anisotropy on committors and free energy barriers extracted by committor inversion. (a) Free energy surfaces and corresponding full committor
ϕ(q, x) calculated for different diffusion anisotropies Dq/Dx and increasing values of the molecular barrier height (ΔG‡

o = 3, 8.1, and 16 kBT, from left to right) with κl = 2.6
kBT /[q]2 in each case. Isolines of the free energy surfaces are shown as black solid lines separated by 1 kBT. Isolines of the committor corresponding to 0.2, 0.5, and 0.8 (from
top-right to bottom-left) are shown as colored solid lines. (b) Corresponding observed committor ϕ(q) as a function of diffusion anisotropy Dq/Dx . (c) Barrier GCI(q) obtained
by inversion of the observed committors shown in (b). The hidden molecular barrier G0 is reported as a gray solid line. In each panel of (c), free energies are measured in
units of the corresponding value of ΔG‡

0 . Color code for diffusion anisotropy Dq/Dx : 10 orange, 1 red, 0.1 purple, and 0.01 blue. In the rightmost panel, the curves for GCI(q)
are superimposed.

Consequently, diffusion anisotropy has a significant impact on
ϕ(q) andGCI(q) for low and medium barrier heights, but no effect for
very large ones. For such high barriers, the 2-dimensional commit-
tor function depends only weakly on diffusion anisotropy because
crossing the barrier effectively commits trajectories. For decreasing
values of Dq/Dx, the barrier reconstructed by committor inversion
tends to increasingly underestimate the hidden molecular barrier
ΔG‡

0 . We note, however, that the relevant parameters are constrained
by the molecular system and the experimental apparatus. This rep-
resents a further challenge for practical applications of the com-
mittor inversion method to experiments, since the probe diffusion
may well be much slower than the molecular diffusion (depending

on the molecule being studied and the design of the probe). As
shown already in Fig. 5, small variations in the observed commit-
tor arising from diffusion anisotropy can have dramatic effects on
the barrier height estimated by inversion [Figs. 7(b) and 7(c), middle
panel].

V. CONCLUDING REMARKS
We have assessed the validity of committor inversion to extract

molecular free energy profiles from single-molecule force spec-
troscopy experiments. Within the framework of a two-dimensional
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model for the coupled dynamics of the molecular and measured
extensions, we obtained approximate analytic expressions for the
measured committor and the extracted free energy profile from its
inversion. We compared these analytic results with those obtained
from Brownian dynamics simulations and accurate numerical solu-
tions of the Onsager equation for various linker stiffness values and
molecular barrier heights. We found that for isotropic diffusion, the
committor inversion gives reasonable results for small and medium-
high barriers and that the accuracy depends on the stiffness of the
linker. When the apparatus diffuses much more slowly than the
molecule, or when the barrier is high, the reconstruction is far less
accurate. We have also shown that due to the logarithms in the inver-
sion formula, even exponentially small inaccuracies in the observed
committor lead to large errors in the barrier height of the recon-
structed molecular free energy profile. This may represent a seri-
ous challenge for practical applications of the committor inversion
approach. Although in some situations molecular free energy pro-
files estimated by committor inversion from single-molecule exper-
iments can be informative, systematically ascertaining their validity
is challenging and they should, in general, be regarded with caution.

ACKNOWLEDGMENTS
R.C., G.H., and P.C. acknowledge the support of the Max

Planck Society. P.C. was also supported by Colciencias, University of
Antioquia, and Ruta N, Colombia. A.S. was supported by the Intra-
mural Research Program of the National Institute of Diabetes and
Digestive and Kidney Diseases of the National Institutes of Health.
M.T.W. acknowledges support from the John Simon Guggenheim
Foundation. The authors acknowledge Dr. John Chodera for useful
discussion.

REFERENCES
1W. J. Greenleaf, M. T. Woodside, and S. M. Block, Annu. Rev. Biophys. Biomol.
Struct. 36, 171 (2007).
2K. C. Neuman and A. Nagy, Nat. Methods 5, 491 (2008).
3L. Onsager, Phys. Rev. 54, 554 (1938).
4J. D. Chodera and V. S. Pande, Phys. Rev. Lett. 107, 098102 (2011).
5A. P. Manuel, J. Lambert, and M. T. Woodside, Proc. Natl. Acad. Sci. U. S. A.
112, 7183 (2015).
6M. T. Woodside, P. C. Anthony, W. M. Behnke-Parks, K. Larizadeh, D.
Herschlag, and S. M. Block, Science 314, 1001 (2006).
7M. Hinczewski, Y. von Hansen, and R. R. Netz, Proc. Natl. Acad. Sci. U. S. A.
107, 21493 (2010).
8G. Hummer and A. Szabo, Proc. Natl. Acad. Sci. U. S. A. 107, 21441
(2010).
9H. Yu, M. G. W. Siewny, D. T. Edwards, A. W. Sanders, and T. T. Perkins, Science
355, 945 (2017).
10D. E. Makarov, J. Chem. Phys. 141, 241103 (2014).
11C. Hyeon, G. Morrison, and D. Thirumalai, Proc. Natl. Acad. Sci. U. S. A. 105,
9604 (2008).
12P. Cossio, G. Hummer, and A. Szabo, Proc. Natl. Acad. Sci. U. S. A. 112, 14248
(2015).
13P. Cossio, G. Hummer, and A. Szabo, J. Chem. Phys. 148, 123309
(2018).
14T. E. Oliphant, Guide to NumPy, 2nd ed. (Create Space Independent Publishing
Platform, USA, 2015), ISBN: 151730007X; 9781517300074.
15E. Jones, T. Oliphant, P. Peterson et al., SciPy: Open source scientific tools for
Python, URL: http://www.scipy.org/.
16F. Perez and B. E. Granger, Comput. Sci. Eng. 9, 21 (2007).
17S. K. Lam, A. Pitrou, and S. Seibert, in Proceedings of Second Workshop on
the LLVM Compiler Infrastructure HPC–LLVM’15 (ACM Press, New York, New
York, USA, 2015), pp. 1–6, ISBN: 9781450340052.
18J. D. Hunter, Comput. Sci. Eng. 9, 90 (2007).
19K. Neupane and M. T. Woodside, Biophys. J. 111, 283 (2016).

J. Chem. Phys. 151, 154115 (2019); doi: 10.1063/1.5118362 151, 154115-9

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1146/annurev.biophys.36.101106.101451
https://doi.org/10.1146/annurev.biophys.36.101106.101451
https://doi.org/10.1038/nmeth.1218
https://doi.org/10.1103/PhysRev.54.554
https://doi.org/10.1103/PhysRevLett.107.098102
https://doi.org/10.1073/pnas.1419490112
https://doi.org/10.1126/science.1133601
https://doi.org/10.1073/pnas.1010476107
https://doi.org/10.1073/pnas.1015661107
https://doi.org/10.1126/science.aah7124
https://doi.org/10.1063/1.4904895
https://doi.org/10.1073/pnas.0802484105
https://doi.org/10.1073/pnas.1519633112
https://doi.org/10.1063/1.5004767
http://www.scipy.org/
https://doi.org/10.1109/mcse.2007.53
https://doi.org/10.1109/mcse.2007.55
https://doi.org/10.1016/j.bpj.2016.06.011

