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ABSTRACT HIV Vaccine Trials Network (HVTN) 505 was a phase 2b efficacy trial of a
DNA/recombinant adenovirus 5 (rAd5) HIV vaccine regimen. Although the trial was
stopped early for lack of overall efficacy, later correlates of risk and sieve analyses
generated the hypothesis that the DNA/rAd5 vaccine regimen protected some vac-
cinees from HIV infection yet enhanced HIV infection risk for others. Here, we as-
sessed whether and how host Fc gamma receptor (Fc�R) genetic variations influ-
enced the DNA/rAd5 vaccine regimen’s effect on HIV infection risk. We found that
vaccine receipt significantly increased HIV acquisition compared with placebo receipt
among participants carrying the FCGR2C-TATA haplotype (comprising minor alleles
of four FCGR2C single-nucleotide polymorphism [SNP] sites) (hazard ratio [HR] � 9.79,
P � 0.035) but not among participants without the haplotype (HR � 0.86, P � 0.67);
the interaction of vaccine and haplotype effect was significant (P � 0.034). Similarly,
vaccine receipt increased HIV acquisition compared with placebo receipt among par-
ticipants carrying the FCGR3B-AGA haplotype (comprising minor alleles of the 3
FCGR3B SNPs) (HR � 2.78, P � 0.058) but not among participants without the haplo-
type (HR � 0.73, P � 0.44); again, the interaction of vaccine and haplotype was sig-
nificant (P � 0.047). The FCGR3B-AGA haplotype also influenced whether a com-
bined Env-specific CD8� T-cell polyfunctionality score and IgG response correlated
significantly with HIV risk; an FCGR2A SNP and two FCGR2B SNPs influenced whether
anti-gp140 antibody-dependent cellular phagocytosis correlated significantly with
HIV risk. These results provide further evidence that Fc gamma receptor genetic
variations may modulate HIV vaccine effects and immune function after HIV vac-
cination.
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IMPORTANCE By analyzing data from the HVTN 505 efficacy trial of a DNA/recombi-
nant adenovirus 5 (rAd5) vaccine regimen, we found that host genetics, specifically
Fc gamma receptor genetic variations, influenced whether receiving the DNA/rAd5
regimen was beneficial, neutral, or detrimental to an individual with respect to HIV-1
acquisition risk. Moreover, Fc gamma receptor genetic variations influenced immune
responses to the DNA/rAd5 vaccine regimen. Thus, Fc gamma receptor genetic vari-
ations should be considered in the analysis of future HIV vaccine trials and the de-
velopment of HIV vaccines.

KEYWORDS Fc gamma receptor, HIV/AIDS vaccine trial, HVTN 505, genetic
polymorphisms

Fc gamma receptors (Fc�Rs) are expressed on the leukocyte surface and interact with
the Fc domain of immunoglobulin G (IgG) antibodies. Interaction of Fc�Rs with IgG

immune complexes initiates intracellular signaling pathways that lead to a variety of
downstream events, including cellular activation and cytokine/chemokine production
(1, 2). These events can have either immunostimulatory or immunosuppressive effects,
making Fc�Rs major players that modulate a range of processes, including antibody
production, antigen presentation, and activation of B cells and innate immune effector
cells (3). Interestingly, Fc�R genetic variation can have significant functional implica-
tions, such as modulating affinity of Fc�R binding to antibodies and affecting the level
of Fc�R expression and effector functions in specific types of immune cells (4–7).
Moreover, our sequencing and analysis of exons and the areas surrounding Fc�R genes
identified significant associations of single-nucleotide polymorphisms (SNPs) in FCGR2C
with vaccine efficacy (VE), defined as one minus the vaccine/placebo hazard ratio of
HIV-1 acquisition (HR), in the RV144 trial (8).

Considering that Fc�R genetic variations have broad functional implications (4–7, 9),
we hypothesized that Fc�R polymorphisms also influence HIV-1 acquisition risk in
vaccine recipients in other vaccine efficacy trials. The HIV Vaccine Trials Network (HVTN)
505 phase 2b trial evaluated the efficacy of a multiclade DNA prime, recombinant
adenovirus serotype 5 vector boost (DNA/rAd5) vaccine regimen in circumcised, Ad5-
seronegative men and transgender women who have sex with men in the United States
(10). While this trial was unblinded early due to lack of overall VE, recent studies
identified several correlates of HIV-1 acquisition risk in HVTN 505, including Env-specific
CD8� T-cell response magnitude and polyfunctionality score (PFS) (11), Env-specific
humoral IgG responses (12) and antibody Fc effector functions (antibody-dependent
cellular phagocytosis [ADCP] and Fc�RIIa binding) (76). Moreover, the vaccine/placebo
hazard ratio of HIV-1 acquisition significantly varied by the type of HIV-1 virus, defined
by amino acid sequence distance of the HIV-1 CD4 binding site to the vaccine insert
sequence, a “sieve effect” (13). Cumulatively, these findings suggest that the DNA/rAd5
vaccine regimen has had differential effects on HIV-1 acquisition depending on immu-
nologic and virologic markers.

Together with the evidence from two previous HIV-1 vaccine efficacy trials that an
rAd5 vaccine increased the risk of HIV-1 acquisition compared to placebo in a subset of
individuals (14), these results raise the possibility that the DNA/rAd5 vaccine regimen
has enhanced the risk of HIV-1 acquisition in some individuals while conferring a certain
degree of protection in others (i.e., individuals who generated relatively strong immune
responses upon vaccination and who were exposed to HIV-1 viruses sufficiently simi-
larly to the vaccine strains), averaging out to the observed null efficacy. Our hypothesis
is that genetic variations in Fc�Rs could explain, in part, potential variation in the
vaccine’s effect on HIV-1 acquisition.

To test this hypothesis, we genotyped HVTN 505 HIV-1-infected cases and unin-
fected controls (including both vaccine and placebo recipients) for Fc�R genes, as
previously described for RV144 cases and controls (8). We assessed whether and how
Fc�R SNPs were modified according to (i) the vaccine/placebo HR of HIV-1 acquisition
risk, (ii) the previously identified associations of immune response biomarkers or Fc
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effector functions with HIV-1 acquisition risk in vaccine recipients (11, 12), (iii) vaccine-
induced immune responses, including Fc effector functions in vaccine recipients, and
(iv) the previously identified Env-gp120 sieve effects (13). We also investigated the
potential functional mechanisms of the identified Fc�R SNPs by investigating their
associations with Fc�R expression in human B cells.

RESULTS
FCGR2C and FCGR3B genetic variants modified the effect of the DNA/rAD5

vaccine on HIV-1 acquisition risk. We genotyped HVTN 505 cases and controls for 162
loci over five Fc�R genes (FCGR2A, FCGR2B, FCGR2C, FCGR3A, and FCGR3B). Of these loci,
33 SNPs passed selection criteria and tests (details are in Materials and Methods) and
were included in further analysis. We began by assessing whether any of these 33 Fc�R
SNPs significantly modified the effect of the DNA/rAd5 vaccine regimen on HIV-1
acquisition risk. We found that 7 Fc�R SNPs significantly modified the vaccine/placebo
hazard ratio (HR) of HIV-1 acquisition after adjusting for the 33 statistical tests (P � 0.05
and false discovery rate [FDR]-adjusted q value of �0.2) (Fig. 1; see also Table S1 in the
supplemental material). These SNPs are located in two Fc�R genes: four in FCGR2C
(FCGR2C-exon06-441-C/T [rs138747765], FCGR2C_intron06_590-G/A, [rs78603008],
FCGR2C-intron15-403-C/T [rs373013207], and FCGR2C-intron15-433-G/A [rs201984478])
and three in FCGR3B (FCGR3B-5’utr222-G/A [rs34085961], FCGR3B-5’utr44-T/A [rs34322334],
and FCGR3B-5’utr99-C/G [rs61803026]). For each of these SNPs, the vaccine/placebo HR
was significantly greater than one (HR � 2.6 to 9.8) in participants carrying a minor
allele(s) in these FCGR2C and FCGR3B loci (Table 1), suggesting that the DNA/rAd5
vaccine have enhanced the risk of HIV-1 acquisition in these subgroups of individuals,
whereas HR was less than one (HR � 0.65 to 0.88) in participants not carrying a minor
allele.

In HVTN 505 participants, the four identified FCGR2C SNPs were in high linkage
disequilibrium (LD; D=� 0.91 to 1.0, r2 � 0.68 to 1.0), likely representing one signal, and
the three FCGR3B SNPs were also in high LD (D= � 1.0, r2 � 0.84 to 1.0), likely
representing a second signal. Further analysis showed that the four FCGR2C SNPs
formed one haplotype block, while the three FCGR3B SNPs formed another haplotype
block (Fig. 2). We found that the haplotypes FCGR2C-TATA (comprising all minor alleles
in the four FCGR2C SNPs with haplotype frequency of 20.7%; Fig. 2) and FCGR3B-AGA
(comprising all minor alleles of the 3 FCGR3B SNPs with haplotype frequency of 35%;
Fig. 2) also significantly modified the DNA/rAd5 vaccine effect on HIV-1 acquisition
(FCGR2C-TATA, HR � 9.79 and P � 0.035 for presence, HR � 0.86 and P � 0.67 for
absence, with interaction P � 0.034; FCGR3B-AGA, HR � 2.78 and P � 0.057 for pres-
ence and HR � 0.73 and P � 0.44 for absence, with interaction P � 0.047) (Table 1).
These results indicate that vaccine recipients carrying the FCGR2C-TATA haplotype or
the FCGR3B-AGA haplotype had an increased risk of HIV-1 acquisition compared with
that of placebo recipients carrying the same haplotype.

The FCGR3B-AGA haplotype modified the association of Env-specific IgG and
CD8� T-cell PFS with HIV-1 acquisition risk. To examine the potential functional
impact of these Fc�R SNPs, we assessed whether any of the 33 Fc�R SNPs modified the
immune correlates of the Env-specific CD8� T-cell PFS and Env-specific IgG with HIV-1
acquisition risk identified previously (11, 12). We found that none of the 33 SNPs
significantly modified the correlate of Env-specific CD8� T-cell PFS with HIV-1 acquisi-
tion risk (Table S2) or the correlate of Env-specific IgG with risk (Table S3) after adjusting
for the 33 statistical tests for each immune response variable. Fong et al. also found that
vaccine recipients with a high CD8� T-cell PFS generally had low risk of HIV acquisition,
whereas vaccine recipients with a low CD8� T-cell PFS and a low Env-specific IgG
response had the highest risk (12). Therefore, we assessed whether any of the 33 Fc�R
SNPs modified the correlate with HIV-1 risk of a combination Env-specific IgG and CD8�

T-cell PFS (low in both, denoted as 0, versus medium/high in at least one variable,
denoted as 1). We found that after adjusting for the 33 statistical tests, five FCGR3B SNPs
(FCGR3B-5’utr425-T/G [rs76732376], FCGR3B-5’utr473-G/A [rs74127076], and the three
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FCGR3B SNPs reported above) passed the significance threshold (P � 0.05 and q � 0.2)
(Table S4).

The minor alleles at these two newly identified FCGR3B SNPs were in linkage with
the FCGR3B-AGA haplotype. As shown in Table 2, the FCGR3B-AGA haplotype also
significantly modified the association of the combined Env-specific IgG and CD8� T-cell
PFS variable with HIV-1 risk (interaction P value of 0.044). Medium/high responders to
Env-specific IgG and/or CD8� T cells had a larger reduction in HIV-1 risk than nonre-
sponders or low-level responders to both: 98% (odds ratio [OR] of 0.02) in recipients
without the FCGR3B-AGA haplotype and 76% (OR of 0.24) in recipients with the
FCGR3B-AGA haplotype (Table 2). We observed similar trends for the FCGR2C-TTATA
haplotype, but the result for the test for effect modification was not statistically
significant (data not shown).

To better understand how the FCGR3B-AGA haplotype modified the association of
the combined binary variable with HIV-1 acquisition risk, we examined the Env-specific

FIG 1 Assessment of whether and how each of the 33 Fc�R SNPs modified the hazard ratio (vaccine/placebo) of HIV acquisition in HVTN 505. (A) Volcano plot
of P value for the interaction between genotype and treatment arm (y axis, �log10 scale) versus difference in estimated log(HR) (vaccine/placebo) between
genotype groups (x axis). (B) Volcano plot of false discovery rate (FDR) (y axis, �log10 scale) versus difference in estimated log(HR) between genotype groups
(x axis). Red dots represent Fc�R SNPs that significantly modify the HR (vaccine/placebo). (C) Quantile-quantile plot of the observed and expected P values
(�log10 scale for both).
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IgG and CD8� T-cell PFS responses separately. Interestingly, the inverse correlation of
Env-specific IgG response with HIV-1 risk previously observed (12) was only observed in
vaccine recipients without the FCGR3B-AGA haplotype (OR of 0.38 and P value of 0.034
for recipients without and OR of 1.41 and P value of 0.50 for vaccine recipients with the
FCGR3B-AGA haplotype; interaction P value of 0.035) (Table 2). For vaccine recipients
without the FCGR3B-AGA haplotype, one standard deviation (SD) increase in Env-
specific IgG score was associated with an estimated 62% (OR of 0.38) decrease in the
risk of HIV-1 acquisition, which was larger than the estimated 40% (OR of 0.60) decrease
in the risk of HIV-1 acquisition when all vaccine recipients were considered together
(12). However, for vaccine recipients with the FCGR3B-AGA haplotype, there was an
estimated 1.41 times increase (albeit nonsignificant) in the risk of HIV-1 acquisition
(Table 2). The inverse association of Env-specific CD8� T-cell PFS with HIV-1 acquisition
risk shown in reference 11 was observed in both haplotype groups but with a stronger
correlate in the group without the FCGR3B-AGA haplotype (HR � 0.19, P � 0.005) than
in the group with the FCGR3B-AGA haplotype (HR � 0.36, P � 0.018), although the
difference was not significant.

To better understand these modification effects, we plotted the distributions of
these immune response biomarkers according to case/control status and FCGR3B-AGA
haplotype status (present or absent) (Fig. 3). In vaccine recipients without the FCGR3B-
AGA haplotype, the magnitude of the Env IgG response (Fig. 3A), the magnitude of the
CD8� T-cell PFS (Fig. 3B), and the percentage of Env IgG and/or CD8� T-cell PFS
medium/high-level responders (Fig. 3C) were all significantly lower in cases than controls.
Similarly, we observed lower responses in cases than in controls for CD8� T-cell PFS
magnitude (Fig. 3B) and the percentage of Env IgG and/or CD8� T-cell PFS responders (Fig.
3C) for vaccine recipients with the FCGR3B-AGA haplotype but not in the magnitude of the
Env IgG response (Fig. 3A). Further, among controls, CD8� T-cell PFS magnitude was lower
in vaccine recipients with the FCGR3B-AGA haplotype than in those without the FCGR3B-
AGA haplotype (P � 0.04) (Fig. 3B). These results suggest that DNA/rAd5 vaccination
induced differential Env-specific CD8� T-cell responses but not IgG responses between the

TABLE 1 Modification of the vaccine/placebo hazard ratio of HIV-1 acquisition by Fc�R SNPs and haplotypes in HVTN 505

Gene SNP
Genotype or
haplotype

No. of cases
(vaccine:placebo) HRa 95% CI P valueb

Interaction
P valuec

Interaction
q valuec

FCGR3B FCGR3B-5’utr44-T/A (rs34322334) TT 10:16 0.66 0.29, 1.5 0.317 0.033 0.178
TA/AAd 14:5 2.84 0.98, 8.18 0.054

FCGR3B-5’utr99-C/G (rs61803026) CC 9:14 0.68 0.29, 1.6 0.375 0.032 0.178
CG/GGd 18:7 2.6 1.06, 6.37 0.036

FCGR3B-5’utr222-G/A (rs34085961) GG 10:16 0.65 0.29, 1.49 0.308 0.023 0.178
GA/AAd 15:5 3.07 1.07, 8.75 0.036

FCGR2C FCGR2C-exon06-441-C/T (rs138747765) CC 17:20 0.86 0.44, 1.7 0.667 0.034 0.178
CT/TTd 9:1 9.79 1.17, 81.78 0.035

FCGR2C-intron06-590-G/A (rs78603008) GG 17:20 0.86 0.44, 1.7 0.667 0.034 0.182
GA/AAd 9:1 9.79 1.17, 81.78 0.035

FCGR2C-intron15-403-C/T (rs373013207) CC 15:18 0.88 0.43, 1.78 0.719 0.045 0.182
CT/TTd 12:3 3.92 1.08, 14.16 0.037

FCGR2C-intron15-433-G/A (rs201984478) GG 13:17 0.82 0.39, 1.73 0.601 0.042 0.182
GA/AAd 14:4 3.33 1.08, 10.29 0.036
CT/TTd 11:4 2.14 0.6, 7.55 0.239

FCGR3B FCGR3B-AGA
� 11:16 0.73 0.33, 1.62 0.439 0.047
� 14:5 2.78 0.97, 7.94 0.057

FCGR2C FCGR2C-TATA
� 17:20 0.86 0.44, 1.7 0.667 0.034
� 9:1 9.79 1.17, 81.78 0.035

aVaccine/placebo hazard ratio of HIV-1 acquisition in HVTN 505 for individuals with the given genotype at the given SNP.
bP value of testing for HR � 1 for individuals with the given genotype at the given SNP.
cInteraction P value of testing for a difference in HR between the two indicated genotype groups. Boldface indicates P � 0.05 and q � 0.2.
dThe genotypes containing at least one minor allele.
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two FCGR3B-AGA haplotype groups. Thus, for individuals with the FCGR3B-AGA haplotype
(and, to a lesser extent, the FCGR2C-TTATA haplotype), vaccination was less likely to induce
the potentially protective Env-specific IgG and/or CD8� T-cell responses than for individuals
without the FCGR3B-AGA haplotype.

FIG 2 SNP composition of the two haplotype blocks observed in HVTN 505 participants. One of the haplotype blocks was comprised
of five FCGR2C SNPs, and the other haplotype block was comprised of three FCGR3B SNPs. (A) Linkage disequilibrium measurements
(D=) between the 8 SNP genotypes. (B) Correlation (r2) between the 8 SNP genotypes. (C) Haplotypes and frequencies within FCGR2C
and FCGR3B haplotype blocks. Shown in each haplotype block are the haplotypes with a frequency of �1%. The haplotype
designated with an asterisk in each haplotype block contains all minor alleles from the composite Fc�R SNPs. Lines connecting
haplotypes across haplotype blocks indicate the frequency of haplotype linkage, where line width represents frequency magnitude
(thin lines for a frequency of �1% and thick lines for a frequency of �10%). Plots were generated using Haploview.

TABLE 2 Modification of identified immune correlates of risk in HVTN 505 by the FCGR3B-AGA haplotype

Immune variable FCGR3B-AGA haplotype Unit ORa 95% CI P value Interaction P valuee

Env-specific CD8� T-cell PFSb � Per 1-SD 0.19 0.06, 0.6 0.005 0.377
� Per 1-SD 0.36 0.15, 0.84 0.018

Env-specific IgG responsec � Per 1-SD 0.38 0.16, 0.93 0.034 0.035
� Per 1-SD 1.41 0.62, 3.17 0.412

Env-specific IgG and/or CD8� T-cell PFSc,d � 1 vs 0b 0.02 0, 0.15 0.0002 0.044
� 1 vs 0b 0.24 0.06, 0.99 0.049

aOdds ratio of HIV-1 infection for the given immune response and genotype group in the vaccine recipients.
bFrom Janes et al. (11).
cFrom Fong et al. (12).
dPFS is a binary variable: 0, low on both Env-specific IgG (in 1st tertile) and Env-specific CD8 PFS (in 1st tertile); 1, all others.
eBoldface indicates a P value of �0.05.

Li et al. Journal of Virology

November 2019 Volume 93 Issue 21 e02041-18 jvi.asm.org 6

https://jvi.asm.org


FCGR2A and FCGR2B SNPs modified the association of gp140-specific antibody-
dependent cellular phagocytosis (ADCP) activity with HIV-1 acquisition risk. We
recently found that gp140-specific antibody-dependent cellular phagocytosis (ADCP)
activity and Fc�RIIa binding were each inversely correlated with HIV-1 acquisition risk
in HVTN 505, and that an FCGR2A SNP (FCGR2A-intron13-645-G/A [rs2165088]) signif-
icantly modified the association of ADCP with HIV-1 acquisition risk (Neidich et al.,
submitted). Here, we broadened the analysis of the seven FCGR2A SNPs examined
in Neidich et al. (submitted) to evaluate whether any of the 33 Fc�R SNPs signifi-
cantly modified the associations of these two antibody Fc effector functions with
HIV-1 acquisition risk. The modification of FCGR2A SNP (FCGR2A-intron13-645-G/A
[rs2165088]) on the association of ADCP with HIV-1 acquisition risk remained significant
after adjusting for 33*2 (33 SNPs versus 2 Fc effector functions) statistical tests (inter-
action P value of 0.003, interaction q value of 0.04) (Fig. 4A). In addition, two FCGR2B
SNPs (FCGR2B-exon5-523-G/A [rs6665610] and FCGR2B-intron14-352-T/G [rs6666965])
significantly modified the correlation of ADCP activity with HIV-1 acquisition risk
(interaction P values of 0.015 and 0.011 and interaction q values of 0.017 and 0.017) (Fig.
4A). The inverse correlation of ADCP with HIV-1 acquisition risk reported by Neidich
et al. (submitted) was observed only in vaccine recipients with minor alleles at these
SNP loci (OR of 0.16, 0.14, and 0.22 per one standard deviation [per 1-SD] increase in
ADCP score in GA/AA of FCGR2A-intron13-645-G/A, GA/AA of FCGR2B-exon5-523-G/A,
and TG/GG of FCGR2B-intron14-352-T/G, respectively) (Fig. 4A). Similarly, the inverse
correlation of Fc�RIIa binding with HIV-1 risk identified by Neidich et al. (submitted) was
also observed only in vaccine recipients with minor alleles at the same SNP loci (OR of
0.30, 0.27, and 0.33 per 1-SD increase in Fc�RIIa binding, respectively), but the inter-
action testing for the lack of SNP effect modification of the correlation was not

FIG 3 FCGR3B-AGA haplotype modified immune correlates of risk in HVTN 505. (A) Distributions of Env-specific IgG
responses, as assessed by binding antibody multiplex assay, plotted according to case/control HIV infection
outcome status and FCGR3B-AGA haplotype status. (B) Distributions of Env-specific CD8 polyfunctionality scores
(PFS), plotted according to case/control status and FCGR3B-AGA haplotype status. (C) Percentages of HVTN 505
vaccine recipients having medium or high responses for either Env IgG or CD8 PFS in HVTN 505 cases and controls,
plotted according to case/control status and FCGR3B-AGA haplotype status.
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significant (all P values were slightly greater than 0.05) (Fig. 4B). These results suggest
that for individuals carrying the minor alleles at these identified FCGR2A and FCGR2B
SNP loci, the vaccine-induced antibodies in individuals who later became HIV-1 infected
were less capable of engaging effector immune cells, potentially involving less efficient
antibody Fc binding for Fc�Rs like Fc�RIIa.

Similar analysis for the additional immune response variables studied in reference 12
showed that none of the 33 Fc�R SNPs passed the significance threshold after multi-
plicity corrections (interaction q values of �0.2). Also, these 33 Fc�R SNPs did not
significantly modify the reported Env-gp120 sieve effects in HVTN 505 (13) after
multiplicity correction (interaction q values of �0.2) or vaccine-induced immune re-
sponses or antibody Fc effector functions (q values of �0.2).

The identified Fc�R SNPs could regulate Fc�R gene expression. Similar to what
we found in reference 15, the identified FCGR3B variants were positively correlated with
FCGR2A/C expression but negatively correlated with FCRLA expression (Fig. S1 and
Table S5). However, for the three SNPs that modified the correlation of ADCP activity
with the HR of HIV-1 acquisition, only one in FCGR2B (FCGR2B-exon5-523-G/A
[rs6665610]) had a significant expression quantitative trait locus (eQTL), for which the

FIG 4 Fc�R SNPs (FCGR2A-intron13-645-G/A [rs2165088], FCGR2B-exon5-523-G/A [rs6665610], and FCGR2B-intron14-352-T/G [rs6666965]) modified the
association of Fc effector functions (ConS gp140 ADCP score and Fc�RIIa binding) with HIV-1 acquisition risk. (A and B) ConS gp140 ADCP score (A) and ConS
gp140 Fc�RIIa binding (B). On each panel, distributions of Fc effector functions were plotted according to case/control HIV infection outcome status and
genotype groups.
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minor alleles were associated with decreased expression of FCGR2A as measured by
transcriptome deep sequencing (RNA-seq) analysis (Table S5). These results indicate
that both sets of identified Fc�R SNPs could regulate Fc�R gene expression, but their
collective effect is unclear.

Since we did not genotype all genetic variants in the Fc�R region, we searched in
the Fc�R region for other SNPs that were not genotyped in this study but were in high
LD (r2 � 0.8) with each of the identified Fc�R SNPs using genotyping data publicly
available from the 1000 Genomes Project (16). Interestingly, for all SNPs identified in
this study that modify the HR of HIV-1 acquisition and/or the association of vaccine-
induced immune responses or antibody Fc effector functions with HIV-1 acquisition
risk, their linked SNPs were predicted to have Fc�R gene regulatory potential (e.g.,
5_prime_UTR_variant, upstream_gene_variant, and downstream_gene_variant) but
were not predicted to alter Fc�R protein sequences (Tables S6 and S7). Again, together
these results imply that the identified Fc�R SNPs and haplotypes have modulated the
selective expression of Fc�Rs on immune cells.

DISCUSSION

Our previous finding that FCGR2C polymorphisms were associated with VE in RV144
raised the question of whether Fc�R genetic variations are functionally relevant only for
the RV144 vaccine regimen or more broadly in HIV-1 vaccine development. As reported
in this study, several Fc�R SNPs significantly modified the HR of HIV-1 acquisition in
HVTN 505, an efficacy trial that differed from RV144 in a number of respects (canarypox
prime/protein boost and general low-risk Thai population in RV144 versus DNA prime/rAd5
boost and high-risk U.S. population of men who have sex with men [MSM] in HVTN 505).
Moreover, three of the FCGR2C SNPs (FCGR2C-exon06-441-C/T [rs138747765], FCGR2C-
intron06-590-G/A [rs78603008], and FCGR2C-intron15-403-C/T [rs373013207]) significantly
modified the vaccine’s effect on HIV-1 acquisition in both RV144 and HVTN 505. This
indicates that Fc�R genetic variations have broad impact, given the major differences in the
vaccine regimens and populations.

This study also suggests that the functional impact of a given Fc�R polymorphism
on the risk of HIV-1 acquisition is context specific, dependent on the specific vaccine
regimen and possibly other factors, such as demographics, virus quasispecies, and
genetic background. Compared to the previous RV144 study, the effect modification of
the tag FCGR2C SNP (FCGR2C-intron06-126-C/T [rs114945036]) identified in RV144 on
the HR in HVTN 505 did not pass the significance threshold, even though it had a trend
similar to that of the other FCGR2C SNPs (see Table S1 in the supplemental material).
This result was expected, since this tag SNP was on intron 6 and in high LD with the
other two FCGR2C SNPs on intron 6 described above but with reduced correlation (D=�

1 and r2 � 0.6) in HVTN 505 compared to the correlation in RV144. Furthermore, we
identified additional Fc�R SNPs in HVTN 505. FCGR3B SNPs significantly modified the
vaccine effect on HIV-1 acquisition risk in HVTN 505 but not in RV144. These FCGR3B
SNPs also modified the association of Env-specific IgG and CD8� T-cell PFS with HIV-1
acquisition risk in HVTN 505. In addition, FCGR2A/2B SNPs significantly modified the
immune correlate of ADCP with HIV-1 acquisition risk in HVTN 505. These findings
indicate that multiple Fc�Rs influence the vaccine’s effect on HIV-1 acquisition in
HVTN 505.

It is intriguing that in HVTN 505 HIV-1 acquisition, risk was increased in vaccine
recipients who carried certain FCGR2C minor alleles compared with their placebo
counterparts. Similarly, in the earlier Vax004 trial, Fc�R genetic polymorphisms were
associated with HIV risk (17). In that study, conducted in North America among MSM,
vaccination with a bivalent recombinant gp120 was associated with a 3.5-fold increased
risk in HIV acquisition among low-risk participants homologous for valine (V) at amino
acid position 158 of Fc�RIIIa, an isoform with greater affinity for monomeric IgG1 and
IgG3 and certain IgG isotype immune complexes (4), compared to that of individuals
homozygous for phenylalanine (F) or the VF isoform (17). In that report, Fc�RIIa
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genotypes did not influence HIV risk among vaccine recipients, and Fc�RIIa or Fc�RIIIa
genotypes did not influence HIV risk among placebo recipients.

One mechanism that could explain the increased risk for infection in these
two vaccine studies is that HIV vaccination potentially induces nonneutralizing or
poorly neutralizing antibodies. Such antibodies could theoretically mediate antibody-
dependent enhancement (ADE), a phenomenon where antibodies bind a virion but fail
to neutralize it and then the resultant antibody-virus complexes attach to Fc receptor-
bearing target cells (e.g., monocytes and macrophages), thereby increasing infection of
such cells. Such a phenomenon has been observed in vitro for many viruses, perhaps
most notably dengue virus (18, 19) and also Zika virus (20, 21), coronavirus (22), Ebola
virus (23), and coxsackievirus B (24). In the case of dengue virus, an FcgRIIa polymor-
phism was shown to be significantly associated with dengue disease (versus subclinical
infection); moreover, compelling evidence was recently published to support that ADE
enhances disease severity in humans (25). Importantly, ADE has also been described for
HIV in vitro (26, 27). Although it remains unknown whether ADE could increase HIV
infection risk in humans (28), it has been found that patients with HIV who have
antibodies capable of ADE have more rapid disease progression (29). For ADE to
mediate enhanced infection risk after HIV vaccination, the vaccine regimen would need
to induce nonneutralizing or poorly neutralizing antibodies; it has been shown that the
HVTN 505 regimen did induce such antibodies (namely, gp41 reactive and nonneutral-
izing) (30). Further work would need to be done to test the hypothesis that an effect
of Fc�R polymorphisms of ADE of HIV infection could explain the results presented
here.

Another potential mechanism is that Fc�R polymorphisms may increase risk of HIV
infection through modulation of innate immunity. HIV founder viruses are intrinsically
resistant to type I interferons (31, 32). Plasmacytoid dendritic cells (pDC) produce high
levels of interferon following HIV infection, which can restrict virus replication (33, 34).
Although expression of Fc�Rs on pDC is low (35), opsonized viral particles can suppress
type I and III interferon production by pDC, as well as other myeloid cells, through
Fc�R-mediated signaling (36). A decrease in the level of interferon production in pDC
or other myeloid cells following signaling through Fc�R engagement could lower the
threshold of interferon resistance required of founder viruses to establish infection.

These hypothesized mechanisms for the increased risk of HIV infection in HVTN 505
among participants with selected Fc�RIIc alleles fail to explain the protective effect
observed in RV144 vaccine recipients carrying the same minor alleles. It is unclear if
these same variants functioned differently in each trial or were linked to other factors
that influenced risk. Various factors, such as the diversity and complexity of expression
of Fc�Rs on immune effector cells, the consequences of their binding influenced by IgG
isotypes in vaccine recipients, and antibody levels and their binding characteristics, will
change during the course of vaccination. Therefore, the balance between risk and
protection is not likely to be static over time. The role of Fc�Rs in modulating natural
or vaccine-induced immunity has been evaluated in very few models of viral infections
and for even fewer infections in humans. These findings, together with other published
studies (17, 37, 38), strongly support the idea that host genetics should be considered
in the analysis of future HIV vaccine trials to address these questions.

Another potential contributor to host genetics in this regard is the variability of the
immunoglobulin constant heavy G chain (IGHG) sequences (39). While it is recognized
that Fc�R variation can affect binding affinity to the Fc region of IgG with functional
consequence (4, 6), the level of variation in the constant regions of the individual IgG
genes (IGHG3, IGHG1, IGHG2, and IGHA2, comprising the IGH locus on chromosome 14)
suggests IGHG variability also affects Fc�R binding (4, 40). The population-specific IGHG
variation that has been observed (39) in turn is suggestive that IGHG variation in
conjunction with Fc�R variation plays a role in vaccine efficacy or disease susceptibility
that itself is population specific. Thus, while Fc�R variation may be common between
populations, IGHG variation may differ and, consequently, yield distinct functional
outcomes.
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Because none of the Fc�R SNPs that we found to modify the HR of HIV-1 acquisition
or correlates of HIV-1 acquisition in HVTN 505 introduced any changes in the corre-
sponding Fc�R protein sequence, the observed effects of the Fc�R polymorphisms are
likely related to modulation of Fc�R expression levels, perhaps through transcriptional
regulation, as suggested by the associations of the FCGR3B SNPs and increased
FCGR2A/C expression. However, since we did not identify any SNP associated with differ-
ential expression of its corresponding Fc�R gene, it is also plausible that these SNPs are
linked to some unknown functional polymorphisms in the Fc�R region. Interestingly, a
nonexpressed allelic form of FCGR2C (FCGR2C.nc-ORF) was previously shown to be associ-
ated with a decreased risk of alloimmunization in patients with sickle cell disease, perhaps
related to lower expression of Fc�RIIc on B cells in individuals with FCGR2C.nc-ORF (41).
Analyses such as cell type-specific Fc�R expression on autologous immune cells will be
needed to facilitate the identification of causal Fc�R variants (i.e., variants that impact HIV-1
acquisition risk) and their functional mechanisms after HIV-1 vaccination.

The genomic and functional complexity of the FcyRs present a major challenge for
uncovering the underlying mechanisms for the effects of the Fc�R variants described.
While different Fc�Rs have distinct functions and mechanisms of regulation, they share
highly similar sequences. Variations are present in both Fc�R sequences and copy
numbers (42, 43). While Fc�R genetic variations are clearly linked to host defense
against infectious diseases and other important immune functions (7, 44, 45), current
approaches measure only a small portion of the existing Fc�R variations. This study and
our previous RV144 study (8) were by far the most comprehensive in this regard,
measuring �10 kb of the region, including functional exons and flanking sequences
from the five Fc�R genes. However, the complete Fc�R region extends over 200 kb,
leaving considerable room for analysis of additional variations, including those that are
bona fide causal variations. While there are currently over 20,000 SNPs documented in
the Fc�R region (Ensembl Variation database, https://www.ensembl.org/info/genome/
variation/index.html; accessed 20 September 2017), the lack of phasing of these data
subverts their direct utility for causal variant identification. To fully define the extent of
human Fc�R genetic variation, it is necessary to obtain complete haplotype-resolved
Fc�R genomic sequences across vaccine trials using approaches such as those outlined
in references 46 and 47. Even with the complete Fc�R genomic sequences, significant
effort is still needed to locate causal variants of a particular phenotype, such as control
of Fc�R expression levels. A potential solution is to use parallel transcriptome analysis
to systematically identify variants affecting Fc�R gene expression, as illustrated in
references 15 and 48, and to assess the collective effects of multiple Fc�R variants
across individual immune cell types.

Also, the identified Fc�R polymorphisms might have influenced the development of
HIV-1-specific IgG antibodies after vaccination. For example, the difference in Env-
specific IgG responses between cases and controls in vaccine recipients without the
FCGR3B-AGA haplotype did not exist in vaccine recipients with the FCGR3B-AGA
haplotype. This finding suggests that Fc�R polymorphisms influence the development
of the binding antibody response that was associated with decreased risk of infection.
Also, the differences in gp140-specific ADCP activity and Fc�RIIa binding between cases
and controls were only present in one genotype group of each of the identified FCGR2A
and FCGR2B SNPs. This indicates that Fc�R polymorphisms also contribute to the
variability of the Fc domain in vaccine-induced IgG antibodies. For example, Fc glyco-
sylation modulates the interaction between antibody and Fc�R. Fc glycosylation of
HIV-specific antibodies has been shown to vary naturally in HIV-1-infected individuals
(49, 50) and can be regulated by HIV-1 vaccination (51). Further, the FcyR SNPs
identified here were associated with changes in gene expression levels of FCGR2A/C
and FCRLA in B cells. While the function of FCGR2A/C is relatively well studied, very little
is known about FCRLA (52). FCRLA is located in the same region of chromosome 1 as
other Fc�Rs but does not have a transmembrane region. Instead, FCRLA resides in the
endoplasmic reticulum and can associate with multiple Ig isotypes, including IgM, IgG,
and IgA (53). Considering the abundant expression of FCRLA in human germinal center
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B cells, FCRLA is likely involved in B cell and antibody development (52). Therefore,
modulation of FCRLA expression could also be a mechanism by which Fc�R genetic
variation influences the development of HIV-1-specific antibodies during vaccination.

The activities of Fc�Rs can regulate B cell selection and IgG affinity maturation, such
as the demonstrated effects of Fc�RIIb expression on B cell signaling (1). Moreover,
susceptibility to autoimmune diseases, such as systemic lupus erythematosus, has been
linked to differential expression of functional Fc�RIIb, driven by genetic variations in the
FCGR2B promoters (54, 55), Fc�R copy number variation (56), or amino acid changes in
Fc�RIIb (57). A recent study of IgG antibodies elicited by administration of the trivalent
influenza virus vaccine in healthy subjects showed that the abundance of sialylated Fc
glycans (sFc) predicted the quality of vaccine response (58). Further, sFc within immune
complexes has been shown to trigger the upregulation of Fc�RIIb on B cells (58).
Increased levels of Fc�RIIb on B cells can elevate the threshold for B-cell antigen
receptor affinity, which is required for B cell survival and production of higher-affinity
protective IgG antibodies (58). In addition, one recent study analyzed the temporal
changes in Fc effector functionality of HIV-specific IgG antibodies in HIV-1-infected
individuals (59). As early as 6 months postinfection, individuals who later developed
broadly neutralizing antibodies (bnAbs) already had significantly higher levels of
antibody-dependent complement deposition (ADCD) and cellular trogocytosis (ADCT),
which correlated with antibody binding to C1q and Fc�RIIa, respectively (59). Antibod-
ies from these bnAb-developing individuals also showed more IgG subclass diversity,
which was correlated with Fc polyfunctionality (59). Interestingly, germinal center
activity as represented by CXCL13 levels and expression of activation-induced cytidine
deaminase has been found to be associated with neutralization breadth, Fc polyfunc-
tionality, and IgG subclass diversity (59). Together, these findings suggest that it would
be informative to investigate how Fc�Rs are involved in regulating germinal center
activities that link IgG Fab and Fc domains and to evaluate if this regulation could be
exploited to aid HIV-1 vaccine development.

Our statistical analysis included a large number of hypothesis tests and was not
prespecified in the HVTN 505 protocol or statistical analysis plan (SAP). Although a
sequel analysis plan was specified prior to data analysis and methods of multiple
testing adjustment were employed, it cannot be ruled out that some significant results
are false positives. Therefore, this study should be viewed as hypothesis-generating and
exploratory, providing guidance for future studies in which these hypotheses are tested
and can advance knowledge of the influence of Fc�R genetics on vaccine effects.
Another utility of this work is the preparation of laboratory and statistical methodology
for application to the ongoing HIV-1 vaccine efficacy trials. For instance, it will be
particularly relevant to consider Fc�R genetics when assessing correlates of vaccine
efficacy in the HVTN 702 trial, which is evaluating a pox-protein vaccine regimen similar
to that tested in RV144, and in the HVTN 705/VAC89220HPX2008 trial of an Ad26/gp140
mosaic vaccine regimen. Each of these regimens has been shown to induce T-cell and
nonneutralizing antibody responses.

As discussed in references 9, 60, and 61 and elsewhere, the role of antibody and Fc
receptor interactions in HIV prevention and therapy is becoming better appreciated.
Our results further demonstrate that detailed analyses of Fc�R genetics and the impact
of Fc�R genetic variation on HIV-1 acquisition risk and/or vaccine efficacy against HIV-1
acquisition will be important for understanding correlates of protection in ongoing and
future phase 2b/3 trials of preventative HIV-1 vaccines.

MATERIALS AND METHODS
Fc�R SNP genotyping. A total of 193 peripheral blood mononuclear cell (PBMC) samples (from 145

controls [defined as HIV negative at month 24] and 48 cases (defined as diagnosis of HIV-1 infection
sometime between week 28 and month 24) in HVTN 505 were genotyped for five Fc�R genes (FCGR2A,
FCGR2B, FCGR2C, FCGR3A, and FCGR3B) using the same platform as that used in reference 8. Of the 145
control samples, 20 were from placebo recipients and 125 were from vaccine recipients. Among the 48
case samples, 21 were from placebo recipients and 27 were from vaccine recipients. A total of 162 loci
across the 5 Fc�Rs were sequenced. After excluding indels, double mutations, and SNPs that failed to
pass the minor allele frequency (MAF) threshold (�5%) and the Hardy-Weinberg equilibrium (HWE) test
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(P � 0.00001) based on the control samples, 33 SNPs remained in the analyses. Haploview (62) was used
to generate Fc�R haplotypes and linkage disequilibrium (LD) plots.

Immune response correlates of risk in HVTN 505. In the primary T-cell correlates analysis, Janes
et al. measured HIV-specific CD4� and CD8� T-cell responses by intracellular cytokine staining of PBMCs
isolated from vaccine recipients at 2 weeks after the last vaccination (month 6.5) from the case-control
cohort, comprised of 25 primary endpoint vaccine cases and 125 randomly sampled frequency-matched
vaccine controls (HIV-negative at month 24), where controls were frequency matched to cases with
respect to treatment group, body mass index, and race/ethnicity (11). Janes et al. also determined the
COMPASS Env-specific CD4� and CD8� T-cell PFS using the method described in reference 63.

In the primary humoral correlates analysis, Fong et al. measured IgG and IgA binding antibody
multiplex assay (BAMA) responses (64) to HIV-1 envelope antigens using serum samples collected 1
month after the last vaccination (month 7) from the same case-control cohort (12). Low-, medium-, and
high-immune-response tertiles were defined in reference 12. Fong et al. also derived and analyzed the
primary tier variables (12).

In the primary Fc effector function analysis, Neidich and colleagues (submitted) measured antibody-
mediated Fc�RIIa tetramer binding and gp140-specific ADCP activity and found that ADCP by monocytes
and Env IgG binding to Fc�RIIa significantly correlated with decreased HIV-1 risk (OR of 0.47 and
P � 0.001 as well as OR of 0.48 and P � 0.001, respectively).

Statistical association analysis. The case-only method (65) was employed to assess whether and
how each Fc�R SNP modified the vaccine/placebo hazard ratio of HIV-1 acquisition risk (HR) between
week 28 and month 24. The case-only method was also used to assess whether and how each Fc�R SNP
modified the hazard ratio of Env sequence-specific HIV-1 acquisition risk studied in the sieve analysis (13).

To evaluate whether and how each Fc�R SNP modified the previously identified associations of CD8�

T-cell PFS, IgG, and two Fc effector functions (ConS gp140 ADCP and Fc�R2a binding) with HIV-1
acquisition risk in vaccine recipients (11, 12), we applied the same model and covariate adjustment as
that used in the primary humoral immune correlates of risk analysis (12). As described in reference 12,
this model used logistic regression methods (66) that accounted for the case-control biomarker sampling
design (implemented in the R package osDesign, available at the Comprehensive Archive R Network).
Pseudo-likelihood-based inference methods were chosen and sandwich variance estimates were used to
estimate confidence intervals (CI) and evaluate statistical significance. Prior to regression analysis, all
immune response variables were means centered and standard deviations scaled (based on distributions
among vaccine recipients), such that a unit change in the variable represents a change of one standard
deviation. All regression models included the following baseline covariates to adjust for potential
confounding: participant age, race (white versus black versus Hispanic/other), body mass index, and the
behavioral risk score defined and applied in the primary publication of HVTN 505 (10). For the primary
tier humoral correlate analysis, the CD4� and CD8� T-cell PFS were adjusted in the models in addition
to the baseline covariates.

Given the small sample size of the study, for each SNP, participants were divided into two genotype
groups: homozygous genotype of the major allele and the two genotypes containing at least one minor
allele (e.g., for FCGR2C-intron6-126-C/T, the two genotype groups were CC and CT/TT).

Bar charts and boxplots were generated to display the distributions of the immune response rates and
magnitudes by case/control status and by genotype group. Response rates for controls were estimated with
inverse probability weighting to account for the case-control cohort sampling. Logistic regression and the
Wilcoxon rank-sum test with inverse probability weighting (67) were used to compare the immune response
rates and magnitudes between genotype groups among control vaccine recipients. For immune response
variables (e.g., IgA) with some positive responses but many negative responses (response rate of �20%), the
choplump test (68) was used instead of the Wilcoxon rank-sum test.

For each of the four types of null hypotheses, false discovery rates (q values) were calculated to adjust
for the number of statistical tests performed (69), which are detailed in Results. False discovery rates (q
values) were calculated using a resampling method that retains the correlations between the SNPs and
immune response variables (70, 71). Any P value less than 0.05 with a q value less than 0.2 was considered
to be significant and hypothesis generating.

Association of Fc�R polymorphisms with Fc�R gene expression in human B cells. To examine
the associations between Fc�R SNPs and Fc�R gene expression in human B cells, we queried a large-scale
B-cell RNA sequencing database of 462 samples from individuals curated by the 1000 Genomes Project
(48), as done in reference 15. RNA-seq read mapping, genotypes, expression quantification, and expres-
sion quantitative trait locus (eQTL) mapping results reported in reference 48 were downloaded from EBI
ArrayExpress (accession number E-GEUV-1). As detailed in reference 48, mRNA expression was quantified
at different levels. For exon quantification, overlapping exons of a gene were first merged into
meta-exons. Transcripts and splice junctions were quantified by the Flux Capacitor approach (72). Gene
expression was quantified as the sum of all transcript reads per kilobase per million (RPKMs) for each
gene. Before eQTL analysis, expression quantifications were normalized by PEER correction (73) and
transformed into standard normal distributions. eQTLs were mapped using a linear model in Matrix eQTL
(74), and permutations were used for FDR estimation.

Other SNPs in LD with the identified Fc�R SNPs. To investigate the potential functions of identified
Fc�R SNPs, we also searched for other SNPs in the Fc�R region that were not genotyped in this study but
were in LD with the Fc�R SNPs found to modify the HR of HIV-1 acquisition and/or the association of
vaccine-induced immune responses or antibody Fc effector functions with HIV-1 acquisition risk. To
match the B-cell RNA-seq data used in the eQTL analysis (48), we used the genotyping data for the same
373 individuals of the European population from the 1000 Genomes project (16). We calculated the
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pairwise LD between SNPs in the Fc�R region using PLINK 1.9 (75). For each of the Fc�R SNPs identified
above, we defined their linked SNPs as the SNPs that were in high LD (r2 � 0.8) with them. The predicted
consequences of all linked SNPs were obtained from the Ensembl Variation database (https://www
.ensembl.org/info/genome/variation/index.html; accessed 21 June 2018).
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