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ABSTRACT Due to the limiting coding capacity for members of the Picornaviridae
family of positive-strand RNA viruses, their successful replication cycles require com-
plex interactions with host cell functions. These interactions span from the down-
modulation of many aspects of cellular metabolism to the hijacking of specific host
functions used during viral translation, RNA replication, and other steps of infection
by picornaviruses, such as human rhinovirus, coxsackievirus, poliovirus, foot-and-
mouth disease virus, enterovirus D-68, and a wide range of other human and non-
human viruses. Although picornaviruses replicate exclusively in the cytoplasm of in-
fected cells, they have extensive interactions with host cell nuclei and the proteins
and RNAs that normally reside in this compartment of the cell. This review will high-
light some of the more recent studies that have revealed how picornavirus infec-
tions impact the RNA metabolism of the host cell posttranscriptionally and how they
usurp and modify host RNA binding proteins as well as microRNAs to potentiate vi-
ral replication.
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The production of cellular RNA, from transcription to decay, is complex and tightly
regulated. Proper execution of RNA processing is critical for cell homeostasis and,

when misregulated, is frequently implicated in disease states, such as tumorigenesis,
neurodegeneration, and musculoskeletal pathologies (1–4), to name a few. Therefore,
given the complexity of RNA metabolism, viruses are provided many opportunities to
exploit this process to their advantage. In this review, we will focus on recent advances
in our understanding of how members of the Picornaviridae family modify and usurp
different elements of host cell RNA metabolism at the posttranscriptional level.

RNA metabolism can be broadly defined by the following categories: synthesis/
transcription, folding, precursor messenger (pre-mRNA) processing, editing/nucleotide
modification, transport and nuclear export, and decay. Additionally, all cellular RNAs are
not created equal, and noncoding RNAs are being increasingly appreciated as having
important roles during picornavirus infection, most notably as having an impact on the
outcome of disease caused by these viruses (5, 6). Therefore, in addition to focusing
in-depth on the recent developments in picornavirus modification of RNA processing,
we will explore picornavirus interactions with noncoding RNA, specifically, microRNA
(miRNA).

ALTERATIONS OF mRNA EXPORT PATHWAYS
Viral modulation of cellular nuclear pore complexes. Picornaviruses, which

comprise 29 different genera, are nonenveloped, icosahedral viruses that contain a
small, positive-sense RNA genome of �7.5 kb. Although picornavirus genomic RNA
lacks a 5= 7-methylguanosine cap, the viral RNA can be immediately translated upon
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release into the cytoplasm of infected cells. Viral translation occurs using a cap-
independent mechanism via an internal ribosome entry site (IRES) located in the 5=
noncoding region (5= NCR) of viral RNA. The RNA also possesses a virally encoded
poly(A) tract and is translated into a single polyprotein, which is then proteolytically
processed into functional precursor molecules and mature viral proteins. Picornaviruses
complete their replication cycle entirely in the host cytoplasm; however, these viruses
have extensive interactions with the host cell nucleus and, in particular, induce the
shutoff of mRNA transcription, a subject that has been comprehensively reviewed
(7–12). Pertinent to the current microreview are the alterations that picornaviruses
make to host RNA nuclear export pathways. Specifically, the 2A proteinase (2Apro)
encoded by poliovirus (PV), the prototypical picornavirus, has been demonstrated to
cleave components of the nuclear pore complex (NPC), specifically, Nup98, Nup153,
and Nup62 (13–15), leading to a bidirectional increase in nuclear envelop permeability
(16). Notably, these cleavage events have an impact on aspects of RNA export (13).
Castello and colleagues (13) demonstrated that poliovirus 2Apro expression in HeLa
cells resulted in Nup cleavage, in addition to a dose-dependent retention of a subset
of cellular mRNAs in the nucleus, including those encoding Cox-1, Cox-2, interleukin 6
(IL-6), c-myc, and p53. This retention was also observed for 18S rRNA and U2 small
nuclear RNA (snRNA) but, interestingly, not for cellular tRNAs or the constitutively
expressed �-actin mRNA. The nuclear retention of this subset of RNAs was reversed by
pretreating cells with gamma interferon (IFN-�) prior to 2Apro expression; however, this
reversal was not dependent on IFN-� antagonism of 2Apro proteolytic activity, as the
proteinase remained active in the presence of the cytokine.

A picornavirus in the Cardiovirus genus, Theiler’s murine encephalomyelitis virus
(TMEV), was also shown to block mRNA export but through a different mechanism. The
2A peptide of cardioviruses does not possess proteolytic activity. Instead, these viruses
express what is known as the L or leader protein, which causes alterations to the NPC
via hyperphosphorylation of several Nups (17, 18; for a review, see reference 7),
including Nup 98 (19). Using in situ hybridization with an oligo(dT) probe in BALB/3T3
cells expressing the L protein, it was demonstrated that TMEV L induced phosphory-
lation of Nup 98 and that this resulted in global retention of the main cellular pool of
polyadenylated RNA within the nucleus (19). Notably, infection of cells with TMEV
expressing the wild-type L protein also prevented the dimerization of interferon
regulatory factor 3 (IRF3), a precursor event to IRF3 translocation to the nucleus and
transactivation of IFN-�/� and interferon-stimulated gene expression.

Unlike with TMEV, global mRNA export does not appear to be affected during
poliovirus infection with a wild-type virus expressing active 2Apro, as demonstrated by
Park and colleagues (15) using an in situ hybridization, oligo(dT) experimental strategy.
This may suggest that the bulk of cellular RNAs may not be retained in the nucleus
during poliovirus infection, but as observed previously (13), the restriction during
infection may be limited to certain classes of RNA. Park et al. also showed that
degradation of Nup98 alone does not result in mRNA nuclear retention, consistent with
multiple Nups playing roles in the nuclear export of RNA (15). Future work in this area
will be required to clarify the impact of Nup cleavage during poliovirus infection on
cellular mRNA export. Moreover, the mechanism of how interferon antagonizes viral-
protein-induced RNA nuclear retention should be further investigated. Finally, it will be
important to determine if there are virus species- and/or genus-specific differences that
govern alterations to this critical step of RNA processing.

DISRUPTION OF PRE-mRNA SPLICING AND MOONLIGHTING OF HOST RNA
SPLICING FACTORS DURING PICORNAVIRUS INFECTION

An all-important element of host RNA metabolism is pre-mRNA splicing. Encom-
passed in this process is the alternative inclusion and exclusion of exons and the
removal of introns to generate multiple isoforms of a given mRNA. Alternative splicing
allows for the expansion and diversification of the eukaryotic proteome relative to the
number of genes in the DNA genome (20). Pre-mRNA splicing is carried out by an
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intricate ribonucleoprotein (RNP) complex termed the spliceosome, which is comprised
of 5 small nuclear RNPs (snRNPs) (U1, U2, U4/U6, and U5) and over �100 auxiliary
proteins (21). Furthermore, alternative splicing is governed by splicing regulators,
including the serine/arginine-rich (SR) proteins and heterogeneous nuclear RNPs
(hnRNPs) (22, 23). It is important to note that both classes of these proteins have diverse
functions, including roles in splicing, transcriptional regulation, mRNA stability, trans-
lation, telomere function, and mediation of DNA damage responses, among others
(23–26). Thus, given their pleiotropic nature, coupled with their ubiquitous and multiple
RNA binding domains, it follows that cellular splicing factors are also important
additions to the picornavirus arsenal of repurposed cellular proteins.

Functions of the host proteins PCBP1 and PCBP2 in picornavirus translation
and the switch to RNA synthesis. Several host cell hnRNPs have been shown to have

indispensable roles in translation and RNA replication for specific picornaviruses,
including poliovirus, human rhinoviruses (HRVs), and coxsackievirus. These viruses take
advantage of poly(rC) binding proteins 1 and 2 (PCBP1 and PCBP2, also known as
hnRNP E1 and hnRNP E2), proteins that function in RNA splicing and transcriptional
regulation, among other activities, in uninfected host cells (27). In particular, PCBP2 has
recently been shown to be a key regulator of erythropoiesis during embryonic devel-
opment by promoting the inclusion of exon 6 in the hematopoietic master regulator
Runx1 (28). For picornaviruses, it is well established that PCBP1 and PCBP2 act as IRES
trans-acting factors (ITAFs) to promote virus translation by forming an RNP complex
with a major stem-loop structure, called SL-IV, within the IRES (29, 30). PCBP1 and
PCBP2 also bind to C-rich sequences within the first �100 nucleotides of the 5= NCR to
promote viral RNA replication (31–34). However, there are differences in the affinities of
PCBP1 and -2 for poliovirus SL-IV, with PCBP2 having a 50-fold-higher binding affinity
than PCBP1 (35, 36). This differential affinity was shown to be mediated by the linker
region between the second and third K-homologous (KH) domains of PCBP2 (35).
Moreover, it has been demonstrated that only PCBP2, not PCBP1, can rescue in vitro
translation of poliovirus genomic RNA in PCBP-depleted HeLa S10 extracts (36). This
result, together with the observations (i) that several other picornavirus IRESs, including
those of enterovirus 71 (EV71) (37), coxsackievirus B3 (CVB3) (38), HRV (38), and
hepatitis A virus (39), require PCBP2 to drive translation and (ii) that the protein has
been shown to bind to the IRES, supports the conclusion that PCBP2 plays a critical role
in facilitating type I (and possibly type III) picornavirus IRES translation.

As noted above, PCBP2 (as well as PCBP1) also binds to sequences within the first
�100 nucleotides of the poliovirus 5= NCR that form a cloverleaf-like structure (also
called stem-loop I or SL-I) (32, 33). A viral proteinase-polymerase precursor protein
(3CD) binds to a distinct sequence element within SL-I to form a ternary complex with
PCBP1/2 and a shift in the occupancy of PCBP2 from SL-IV to SL-I, which reduces the
levels of virus translation and promotes negative-strand RNA synthesis (31, 36, 40–42).
This is important to note because a crucial challenge of any positive-stranded RNA
virus, including the picornaviruses, is to balance the use of the positive-strand RNA for
translation versus negative-strand RNA synthesis, as both processes cannot occur
simultaneously on the same RNA template (41, 43). One possible activity that resolves
this biological challenge is the cleavage of PCBP2 by the viral 3CD proteinase during
poliovirus infection, which has been proposed as a mechanism to mediate the switch
between virus translation and RNA replication in this family of viruses (44, 45). Specif-
ically, the protein is cleaved between the KH2 and KH3 domains, producing a truncated
form of PCBP2 lacking the KH3 domain. Cleaved PCBP2 does not bind to the viral IRES
but retains its ability to form the replication-competent, ternary complex with the 5=
cloverleaf RNA structure, suggesting that removal of this key RNA binding domain
facilitates the switch. In addition, the critical interactions that occur between PCBP1/2
at the 5= end and poly(A) binding protein (PABP) at the 3= end suggest a possible
mechanism in which circularization of the positive-strand RNA is required to facilitate
viral translation and, subsequently, negative-strand RNA synthesis (46, 47).
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hnRNP C. Circularization of viral RNA has also been proposed to function in the
priming of positive-strand RNA synthesis on the negative-strand template for picorna-
viruses, albeit via a different repertoire of host cell proteins than for negative-strand
RNA synthesis (48–50). A critical factor involved in this mechanism is hnRNP C (51). In
the uninfected cell, hnRNP C functions as a splicing regulator, most notably acting to
suppress the deleterious inclusion of Alu elements into mature gene transcripts (52).
For picornaviruses, hnRNP C has been shown to bind separately to both the 5=- and
3=-terminal sequences of the negative-strand RNA template, and binding may be
dependent on multimerization of the protein (48). Accordingly, replication of viral RNA
in vitro is enhanced by the addition of recombinant hnRNP C, and depletion of the
protein in HeLa cells results in a decrease in positive-strand RNA synthesis (48, 51).
Replication kinetics are also delayed for poliovirus in cells expressing levels of endog-
enous hnRNP C that are lower than those of other cells (53). Collectively, these studies
suggest a mechanism by which hnRNP C facilitates interactions between the 5= and 3=
termini of viral RNAs, which are critical for positive-strand RNA synthesis. While this is
a current model, an important caveat to note is that binding of hnRNP C to both termini
simultaneously has not yet been demonstrated. The difficulty in observing simultane-
ous binding of hnRNP C to the ends of viral RNA suggests that the interactions of
hnRNP C with the RNA may be transient, are needed only to facilitate the initiation of
RNA synthesis, and do not need to be sustained throughout the elongation process.
This would make the protein available to initiate the synthesis of multiple positive-
strand RNAs on a single negative-strand template, generating the well-characterized
picornavirus replicative intermediate. Further studies in this area are needed to char-
acterize the nature and composition of the hnRNP C-mediated protein complex.

hnRNP A1. For viral ITAFs to bind the IRES and initiate translation, the RNA must
fold into the appropriate tertiary structure (54, 55). Recently, the structure of SL-2 in the
EV71 IRES was obtained using nuclear magnetic resonance (NMR)–small-angle X-ray
scattering techniques (56). It was revealed that a conserved 5=-AUAGC-3= bulge in SL-2
and the accompanying base-stacking interactions facilitate the binding of the estab-
lished EV71 ITAF, hnRNP A1 (57–59), providing critical molecular insights into the
function of this protein during viral translation. Normally, hnRNP A1 has functions in
uninfected mammalian cells that include RNA splicing and telomere maintenance,
among a host of others (60). Consistently with its use as a proviral ITAF, hnRNP A1 has
also been shown to relocalize from the nucleus to the cytoplasm during EV71 and
HRV16 infection (14, 61), and this is likely dependent on the Misshapen/nuclear shuttle
protein-interacting kinase (NIK)-related kinase/p38 mitogen-activated kinase phosphor-
ylation pathway (62). Given that hnRNP A1 has also been shown to bind to SL-2 of the
CVB16 IRES and that, importantly, binding of hnRNP A1 impacts CVB16 virulence (63),
it will be informative to determine if the protein acts as an ITAF for other picornaviruses
and to what degree (if any) its binding affects viral pathogenicity.

PTBP1 and PVS/1(RIPO). Polypyrimidine tract binding protein 1 (PTBP1, also known
as hnRNP1) is a nucleus-cytoplasm shuttling protein involved in a wide range of RNA
metabolism processes (64) that acts as an additional critical picornavirus ITAF (37,
65–72). It is also a key determinant of viral neurovirulence (73, 74) and neurotropism
(75). Particularly, overexpression of PTBP1 in SK-N-MC neuroblastoma cell lines has
been shown to enhance the replication of PV1(RIPO) (75). PV1(RIPO) is a chimeric virus
consisting of the poliovirus type 1 (Mahoney strain) coding region and the HRV2 IRES
that grows to high titers in grade IV malignant glioma-derived cell lines but is
attenuated in normal neuronal tissues (76, 77). When injected into mice bearing glioma
xenografts, PV1(RIPO) halted tumor progression or eliminated the tumor entirely (78).
A variant of this virus, PVS(RIPO), which utilizes the live, attenuated Sabin poliovirus
type 1 coding region, has recently demonstrated promise in phase I clinical trials for
treatment of patients with recurrent glioblastoma (79).

Despite its success as a treatment, the exact molecular mechanisms governing the
difference between the PVS/1(RIPO) growth phenotypes in normal versus malignant
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brain tissues have only recently begun to be elucidated. The growth-suppressive
element of PV1(RIPO) was mapped to SL-V/VI of the HRV2 IRES (77, 80). An RNA affinity
chromatography screen using SL-V/VI RNA identified a double-stranded RNA binding
protein, DRBP76, as a critical restrictive ITAF for PV1(RIPO) exclusively in nonmalignant
neuronal cells (80). Intriguingly, the protein is also present in glioma-derived cells,
although the subcellular distribution is distinct (80). These observations suggest that
cell type-specific differences control the availability and/or capability of DRBP76 to bind
to the HRV2 IRES (80). Since PTBP1 confers the ability of PV1(RIPO) to replicate in cells
of neuronal origin and other nonpermissive cell lines (i.e., mouse L20B cells) and is
upregulated in several cancers, including glioblastoma (81), it is tempting to speculate
that PTBP1 might compete with DRBP76 for binding to the 5= NCR of the HRV2 IRES.
Competitive binding between DRBP76 and PTBP1 may be a potential mechanism for
the growth-restricted phenotype observed for the PV1(RIPO) virus.

hnRNP M. In contrast to the hnRNPs mentioned above, not all hnRNPs have a direct

role in the molecular underpinnings of picornavirus replication, and their actions may
extend to other facets of infection. An example of this is the recent finding that hnRNP
M has a positive regulatory role during poliovirus and CVB3 infection (82). This protein
is normally involved in mRNA splicing in uninfected cells (83). Specifically, hnRNP M has
been shown to play a role in promoting the epithelial-mesenchymal transition during
breast cancer by regulating the production of a mesenchyme-specific CD44 splice
variant (84). The protein was subsequently identified as part of a large-scale screen to
uncover novel substrates of CVB3 proteinase 3C (82). It was shown that hnRNP M
relocalizes from the nucleus to the cytoplasm during infection and that knockdown of
the protein reduces both poliovirus and CVB3 virus yields, supporting the idea that it
facilitates virus infection. However, depletion of hnRNP M does not interfere with viral
IRES-mediated translation or affect RNA stability, and hnRNP M is not directly involved
in viral RNA synthesis (although it does partially colocalize with a viral replication
protein, 2C, in the cytoplasm of human-rhinovirus-infected cells [85]). This suggests that
the full-length protein and/or the cleavage products may act on other steps of virus
infection, such as modulating the host innate immune response. Additional studies will
be required to characterize the mechanism of action for hnRNP M during a picornavirus
infection. It will be of significant interest to determine if there are any conserved trends
throughout the virus family in terms of the types of binding interactions that proteo-
lytic cleavage fragments of hnRNP M have with other cellular proteins and/or the viral
RNA itself.

SRp20 and TIA1. SRp20 (also known as SRSF3) is an RNA binding protein that

shuttles between the nucleus and the cytoplasm and is involved in cellular mRNA
splicing (86). SRp20 has been shown to interact with host protein PCBP2 and may act
synergistically to drive poliovirus translation (87). Several follow-up studies revealed
that SRp20 is relocalized from the nucleus to the cytoplasm during poliovirus infection
and that this relocalization is dependent on the activity of viral 2Apro (88, 89). Inter-
estingly, SRp20 was also demonstrated to interact with the stress granule protein and
splicing regulator TIA1 in the cytoplasm of poliovirus-infected cells, although exoge-
nous expression of a wild-type or dominant negative form of TIA1 had no significant
effect on virus infection (90).

In a subsequent publication, a putative role for TIA1 during poliovirus infection that
involves alternative splicing was suggested (91). Viral 2Apro induces a selective disrup-
tion of nucleocytoplasmic trafficking in which several splicing regulators, including
TIA1, and essential splicing factors, U2AF35 and U2AF65, are relocalized to the cyto-
plasm, while human antigen R (HuR) is retained in the nucleus. HuR and TIA1 were
demonstrated to have opposing effects on the inclusion of exon 6 in the mRNA
encoding the receptor for Fas (a key mediator of apoptosis) in 2Apro-expressing cells.
The authors speculated that selective relocalization of splicing regulators during infec-
tion might be a previously unrecognized strategy deployed by picornaviruses to
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regulate alternative splicing and, in turn, cellular gene expression to their advantage
(91).

Disruption of pre-mRNA slicing via Prp8. By modulating key regulators of splicing,
picornaviruses may exert global control over this aspect of RNA metabolism and
modulate large classes of genes, as opposed to regulating the splicing of only certain
mRNAs encoding specific proteins. Another mechanism by which picornaviruses might
achieve this level of control is by altering core components of the spliceosome itself,
which was observed following EV71 infection. Specifically, Liu and coworkers (92)
followed up on the finding that several picornavirus proteins enter the host cell
nucleus, including nonstructural protein 3CD and the capsid protein VP1 (93–96), a
puzzling observation given that these viruses replicate exclusively in the cytoplasm.
They found that the RNA-dependent RNA polymerase (RdRp) of EV71, 3Dpol, translo-
cates to the nucleus during viral infection and interacts with human pre-mRNA splicing
factor 8 (Prp8), a central component within the catalytic core of the spliceosome. EV71
3Dpol was shown to interfere with the splicing of a radiolabeled pre-mRNA substrate
using in vitro splicing assays. The addition of 3Dpol induced an accumulation of the
lariat intermediate form of the pre-mRNA, indicating that the polymerase inhibits the
second step of the splicing pathway. Interestingly, this result was also observed for
poliovirus 3Dpol but not for RdRps of the closely related picornaviruses CVB3 and HRV.
Importantly, EV71 3Dpol-mediated disruption of pre-mRNA splicing was concluded to
occur via its interaction with Prp8. Finally, the global nature of this mechanism of
splicing control was demonstrated using RNA immunoprecipitation followed by high-
throughput sequencing. Over 2,000 Prp8-associated mRNA transcripts were found to
be differentially expressed in infected cells compared to in mock-infected controls.
These mRNAs were related to cell growth, proliferation, and differentiation. Given that
all three of these pathways are involved in picornavirus infections (97–101), additional
studies will be required to characterize the precise molecular and cellular changes that
result from large-scale, Prp8-mediated disruption of alternative pre-mRNA splicing.

SFPQ, a novel proviral factor. The localization of 3CD to the nuclei of picornavirus-
infected cells was also observed in a recent study aimed at elucidating proteome-wide
alterations to nucleocytoplasmic trafficking during human rhinovirus type 16 (HRV16)
infection (85). Using quantitative mass spectrometry, a number of candidate nuclear
proteins which were relocalized to the cytoplasm during infection, including splicing
factor proline and glutamine rich (SFPQ), were identified. SFPQ was shown to be
necessary for efficient HRV16 replication in HeLa cells, as small interfering RNA (siRNA)-
mediated knockdown of the protein resulted in decreased viral titers, virus translation,
and RNA synthesis (85). The protein was also demonstrated to be cleaved by 3CD, and
the cleavage fragment had the ability to bind to HRV16 genomic RNA sequences.
Notably, SFPQ relocalization of the cleavage product occurred concomitantly with the
increase in viral RNA synthesis and after the peak of virus translation. These observa-
tions suggest that SFPQ likely plays a role in HRV16 RNA synthesis or virion assembly
(85). Furthermore, given that a significant majority of the proteins identified in the
screen are involved in RNA splicing, this observation further supports the idea that
picornaviruses may use the selective disruption of nucleocytoplasmic trafficking as a
mechanism to exert global control over multiple RNA metabolism processes, including
RNA splicing.

BRIEF UPDATE OF PICORNAVIRUS INTERACTIONS WITH THE mRNA DECAY
MACHINERY

The cellular factors that have been discussed thus far have mostly proviral roles
during picornavirus infection. However, there have been several mRNA decay factors
described to have antiviral properties. For a recent comprehensive review of this topic,
see reference 102. This section will briefly highlight two examples that have emerged
since the publication of this review.

XRN1 and the interplay between autophagy and mRNA decay during picorna-
virus infections. Within the last decade, there has been a paradigm shift with respect
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to the notion that picornaviruses are exclusively lytic upon egress from the host cell, a
logical extension of their status as nonenveloped viruses. There is a growing body of
evidence to suggest that picornaviruses also engage in an alternate host cell exit
strategy termed autophagosome-mediated exit without lysis (AWOL) (103–110). During
AWOL, the virus is proposed to be secreted from the cell as cargo inside double-
membrane, autophagosome-derived vesicles (111). Consistently with the AWOL hy-
pothesis, it was recently demonstrated that a protein associated with mRNA decay and
processing bodies, XRN1, functions as a negative regulator of autophagy (112). Impor-
tantly, depletion of XRN1 in either poliovirus or CVB3-infected HeLa or human brain
microvascular endothelial cells results in a significant increase in titer for both viruses,
compared to those of controls (112). These data further implicate the autophagy
pathway in picornavirus egress and demonstrate a novel intersection between au-
tophagy and mRNA decay for picornaviruses.

KHSRP. The mRNA decay protein KH-type splicing-regulatory protein (KHSRP) is also
a negative regulator of picornavirus replication, albeit one that acts more directly than
the above example. KHSRP had previously been demonstrated to be a negative ITAF for
EV71 translation (113), and further insight into the mechanism of its negative regulatory
role was recently gained (114). Using isobaric tags for relative and absolute quantitation
(iTRAQ) mass spectrometry, Kelch-like protein 12 (KLHL12) was identified as a binding
partner of KHSRP in EV71-infected human muscle rhabdomyosarcoma cells. KLHL12
was shown to promote CUL3-mediated ubiquitination of KHSRP, a modification re-
quired for the activity of KHSRP to downregulate EV71 translation. Moreover, variants
of KHSRP with mutated ubiquitination domains were demonstrated to compete less
efficiently with FUBP1 (a positive regulator of EV71 translation) than wild-type KHSRP
for binding to the EV71 IRES, suggesting that ubiquitination status affects the ability of
KHSRP to negatively regulate EV71 translation through competition with positive ITAFs.

PICORNAVIRUS INTERACTIONS WITH HOST miRNAs
miRNAs and picornavirus pathogenesis. The role of miRNAs in controlling gene

expression is critical. Additionally, it is well appreciated that miRNAs possess tissue
specificity and that the same miRNA may have different or even opposing effects based
on the cellular context (115, 116). Because of this, several transcriptomic analyses have
been carried out to characterize the miRNA expression profile changes that occur
during picornavirus infection (5, 117–122) and, critically, how these changes might
impact viral pathogenesis. For example, it was recently demonstrated that the miRNA
miR-1303 is likely involved in regulating blood-brain barrier permeability during CVA16
infection (120), an important finding given the severe neurological complications
caused by the virus. Specifically, these studies demonstrate that miR-1303 is down-
regulated during either CVA16 or EV71 infection—also a causative agent of central
nervous system (CNS) infections— compared to levels in mock-infected controls and
that matrix metalloprotease 9 (MMP9) is a target of miR-1303 (120). On the basis of
these findings, using in vivo experiments with rhesus monkeys as well as in vitro
experiments, Song and coworkers showed that CVA16 upregulates MMP9 during
infection, which leads to the decreased expression of cell junction proteins, including
claudin5, VE-cadherin, and ZO-1, thereby increasing the permeability of the blood-brain
barrier. This result was reversed in vitro by overexpressing miR-1303 (120). Histological
analysis also revealed damage to the thalami of infected monkeys compared to those
of mock-infected controls. Together, these results suggest that miR-1303 and MMP9
form a regulatory network that CVA16 (and perhaps EV71) exploits to invade the CNS.
Other investigators have shown that several other miRNAs, including miR-3473a (123)
and miR-206 (124), may also be involved in modulating CNS injury during EV71
infection via control of focal adhesion assembly and leukocyte migration (miR-3473a)
and upregulation of the chemokine CCL2, which promotes inflammation of the CNS
(miR-206).

The role of miRNAs in picornavirus pathogenesis is not limited to neurological
disease. For example, coxsackieviruses have also been implicated in the development
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of type I diabetes (125). There are many prevailing hypotheses about the pathogenic
mechanisms of the virus in this disease, and viral interactions with miRNAs have been
identified as having potential roles. Engelmann and colleagues showed that persistent
CVB4 infection in human pancreatic cells results in the dysregulation of a panel of 81
miRNAs (126). Moreover, using miRNA target prediction software, these researchers
identified 49 known type I diabetes risk genes as potential targets of one or more of the
dysregulated miRNAs, suggesting a link between miRNA expression profile changes
elicited by persistent CVB4 and the risk for developing type I diabetes. In support of this
proposed link, Kim et al. reported that acute CVB5 infection results in the dysregulation
of 33 miRNAs in infected human pancreatic � islet cells and that 57 putative type I
diabetes risk genes were predicted targets for the identified miRNAs (127). Determining
the key gene expression changes that are sustained after coxsackievirus infection
and/or maintained during persistent infection will be critical for elucidating the mech-
anisms by which these viruses might contribute to the development of type I diabetes.

Persistent coxsackievirus infections are also a significant cause of viral myocarditis,
and miRNA profiling has been carried out in this disease context as well to uncover how
the virus damages the heart during infection. Several recent studies have identified
miRNAs that are associated with the outcome of virus-induced cardiac injury and
involve both the innate and adaptive immune responses. miR-214 was shown to be
upregulated in tissues from the hearts of patients with CVB3-induced myocarditis. This
miRNA represses the expression of the itchy E3 ubiquitin ligase (ITCH), a repressor of
NF-�B (128). miR-214 repression of ITCH was shown to cause the upregulation of
several cytokines activated by the NF-�B pathway, including tumor necrosis factor
alpha (TNF-�) and IL-6, suggesting that viral modulation of miR-214 might contribute
to the inflammatory tissue microenvironment of acute myocarditis. In contrast, Bao and
Lin found that miR-155, which is also upregulated in patients with myocarditis caused
by CVB3, acts as a negative regulator of the NF-�B pathway through the targeting of
RelA, a subunit of NF-�B (129). Interestingly, miR-155 was also shown to have proin-
flammatory effects during CVB3 myocarditis in mice, resulting in the infiltration of
macrophages and T lymphocytes to the infection site (130). Concordantly, knockdown
of miR-155 improved the survival and cardiac function of infected mice (130). Moreover,
Liu et al. reported that TH-17 cells contribute to the pathology of viral myocarditis in
mice and that inhibiting both miR-21 and miR-146b reduces the production of TH-17-
associated markers, such as IL-17, IL-6, transforming growth factor � (TGF-�), and
retinoic acid receptor-related orphan receptor gamma t (ROR�t) (131). Downregulating
these two miRNAs reduced cardiac injury and resulted in a decrease in the proportion
of TH-17 cells harvested from the spleens of CVB3-infected, miRNA inhibitor-treated
mice.

As a key mediator of both innate and adaptive immunity, type I interferon has been
shown to have interactions with miRNAs that have significant consequences for the
outcomes of picornavirus infections. Ho and colleagues showed that EV71 upregulates
miR-146a through the activity of activating protein-1 (AP-1), a dimeric transcription
factor consisting of Jun, Fos, or other factors (132), and that this upregulation reduces
the expression of the Toll-like receptor signaling molecules IRAK1 and TRAF6 (133).
Moreover, Ho et al. demonstrated that treating both EV71-infected mouse embryonic
fibroblast cell lines and live mice with a long noncoding RNA (lnc-RNA)-based miR-146a
inhibitor (i.e., an antagomir) restored IRAK1 and TRAF6 expression, improved mouse
survival, and, importantly, restored IFN-� production. These data suggest a novel
mechanism by which miR-146a expression is achieved by EV71 activation of the c-Jun
kinase pathway, which consequently downregulates and weakens immune responses
to viral infection, allowing for viral innate immune escape. Finally, EV71 has also been
demonstrated to induce the expression of miR-141 during infection, which facilitates
the shutoff of host translation via targeting of the eukaryotic translation initiation factor
eIF4E. Downregulation of eIF4E was shown to contribute to the switch between
translation and RNA synthesis during virus infection. Consequently, this influenced the
efficiency of virus production and the extent of the cytopathic effect induced by the
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infection in cultured cells (134), an observation which, if expanded to an in vivo context,
may have implications for pathogenesis as well.

Together, the above-described findings underscore the importance of elucidating
the myriad gene expression targets of miRNAs and understanding their functions in
picornavirus pathogenesis, likely illuminating key intersections between miRNA regu-
lation and the immune system. Critically, the data also highlight the possibility of
miRNA and/or antagomir-based antivirals to treat picornavirus infections.

CONCLUDING REMARKS

As summarized in Fig. 1, picornavirus alterations to RNA metabolic pathways
represent a master class in viral host cell manipulation. The preceding is only a small
vignette of the numerous (and clever) ways that picornaviruses usurp RNA processing
machinery. Several critical questions remain, including the following.

1. What are the specific gene expression changes that occur as a result of picor-
navirus alterations to pre-mRNA splicing and nuclear-cytoplasmic relocalization
of splicing factors? How do these changes contribute to overall remodeling of
the host cell during infection? It is clear that picornaviruses utilize hnRNPs and SR
proteins for the mechanics of their replication cycles, but what are the global
consequences of siphoning these proteins away from their normal cell functions?

2. What are the fundamental intersections between mRNA decay and autophagy as
it relates to picornavirus replication? Can these provide further molecular in-
sights into the use of AWOL as an alternate picornavirus egress strategy?

3. How are gene expression changes sustained after clearance of acute picornavirus
infection or maintained throughout persistent virus infection to cause disease?
How does the reconfiguration of the miRNA expression profile contribute to
these gene expression changes? What role does the immune system play in this
process?

Disruption of 
pre-mRNA splicing 

(Prp8)

Alterations to host 
nuclear export pathways

(Nup98, Nup153, Nup62) (N 98 N 153 N 62)(Nup98, Nup153, Nup62)
Repurposing of splicing 

factors for virus replication
(PCBP1/2, hnRNP C, hnRNP1, hnRNP A1, 

hnRNP M, SRp20, TIA1, SFPQ) 

5’

3’

Hijacking of mRNA decay 
proteins 

(Xrn1, KHSRP)

Virus-mediated miRNA/mRNA 
interactions

5’

3’

(Xrn1, KHSRP)( , )

5’

3’

5’
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FIG 1 Picornaviruses alter host RNA metabolism at multiple steps. The viral-RNA-dependent RNA polymerase 3Dpol of the picornavirus EV71 disrupts host cell
pre-mRNA splicing via its interaction with the core splicing machinery protein Prp8. Nuclear cytoplasmic trafficking is also dysregulated during picornavirus
infection via either the cleavage of nuclear pore complexes (NPCs) by the enteroviral proteinase 2Apro or hyperphosphorylation of the NPC by cardiovirus L
protein. These alterations result in the nuclear retention of certain classes of cellular RNAs, in addition to the cytoplasmic relocalization of a suite of splicing
factors required for picornavirus replication. Several picornaviruses hijack mRNA decay proteins, most notably the processing body protein Xrn1, to facilitate
their replication cycle as well as an interaction that positively regulates autophagy during picornavirus infection and provides further evidence for the AWOL
hypothesis for picornavirus egress. Finally, picornaviruses have been shown to mediate several novel cellular mRNA-miRNA interactions, which have
implications for viral pathogenesis.
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By examining these questions in greater detail, we can deepen our understanding
of picornavirus biology in tandem with RNA metabolism and, in turn, develop targeted
antivirals for these viruses and retool them to our advantage as oncolytic therapeutics,
drug delivery systems, and more.
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