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ABSTRACT Coxiella burnetii is an intracellular bacterium that causes query, or Q fe-
ver, a disease that typically manifests as a severe flu-like illness. The initial target of
C. burnetii is the alveolar macrophage. Here, it regulates vesicle trafficking pathways
and fusion events to establish a large replication vacuole called the Coxiella-
containing vacuole (CCV). Similar to a phagolysosome, the CCV has an acidic pH and
contains lysosomal hydrolases obtained via fusion with late endocytic vesicles. Lyso-
somal hydrolases break down various lipids, carbohydrates, and proteins; thus, it is
assumed C. burnetii derives nutrients for growth from these degradation products.
To investigate this possibility, we utilized a GNPTAB�/� HeLa cell line that lacks lyso-
somal hydrolases in endocytic compartments. Unexpectedly, examination of C. bur-
netii growth in GNPTAB�/� HeLa cells revealed replication and viability are not im-
paired, indicating C. burnetii does not require by-products of hydrolase degradation
to survive and grow in the CCV. However, although bacterial growth was normal,
CCVs were abnormal, appearing dark and condensed rather than clear and spacious.
Lack of degradation within CCVs allowed waste products to accumulate, including
intraluminal vesicles, autophagy protein LC3, and cholesterol. The build-up of waste
products coincided with an altered CCV membrane, where LAMP1 was decreased
and CD63 and LAMP1 redistributed from a punctate to uniform localization. This dis-
ruption of CCV membrane organization may account for the decreased CCV size due
to impaired fusion with late endocytic vesicles. Collectively, these results demon-
strate lysosomal hydrolases are not required for C. burnetii survival and growth but
are needed for normal CCV development. These data provide insight into mecha-
nisms of CCV biogenesis while raising the important question of how C. burnetii ob-
tains essential nutrients from its host.
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Coxiella burnetii is a bacterium that causes Q fever, a flu-like disease primarily
transmitted through inhalation of dust contaminated by infected cattle, sheep, and

goats. In rare cases, chronic illness develops, leading to severe complications, including
endocarditis and vascular disease (1, 2). C. burnetii is an intracellular bacterium that
replicates within a large vacuole termed the Coxiella-containing vacuole (CCV). The CCV
is similar to a phagolysosome, having an acidic pH and containing lysosomal hydrolases
acquired via prolific fusion with late endocytic vesicles (3–5).

The mechanisms by which intracellular pathogens that reside in a host-derived
vacuole obtain nutrients are poorly understood. Intravacuolar pathogens have the
advantage of evading host immune defenses, but this then poses the challenge of
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transporting nutrients through a vacuole membrane barrier. Legionella pneumophila is
phylogenetically related to C. burnetii and exploits the host’s neutral amino acid
transporter, solute carrier (SLC) 1A5, to obtain amino acids from the cytoplasm (6–8).
Unlike other vacuolar bacteria, C. burnetii resides within a harsh phagolysosome-like
compartment that is thought to be a rich source of nutrients delivered by fusion with
endocytic and autophagic vesicles (9, 10). Lysosomal hydrolases break down various
cellular macromolecules into their constituent parts, generating nutrients in the form of
amino acids and carbohydrates that are predicted to support C. burnetii growth (10–12).

More than sixty lysosomal hydrolases that break down proteins, lipids, nucleic acids,
and carbohydrates have been identified (11, 12). Hydrolases are synthesized in the
endoplasmic reticulum (ER) and trafficked through the Golgi network to late endo-
somes. The vast majority of soluble acid hydrolases are trafficked from the Golgi
network to endosomes via a mannose-6-phosphate receptor (M6PR)-mediated pathway
(13, 14). Few known hydrolases are transported solely by M6PR-independent means,
including being transported as integral membrane proteins (lysosomal acid phosphatase)
or via the receptors sortilin (cathepsin H) and LIMP2 (�-glucocerebrosidase) (15). In the
Golgi network, N-acetylglucosamine-1-phosphotransferase (GNPT) attaches phosphates
to mannose residues of newly synthesized hydrolases to generate mannose-6-phos-
phate (M6P) tags. M6P-tagged enzymes are bound by M6PRs and are packaged into
vesicles for delivery to late endosomes (13, 16). Upon fusion with late endosomes,
vesicle acidity causes the lysosomal hydrolases to dissociate from M6PRs. The ligand-
free M6PRs return to the trans-Golgi network via retrograde trafficking while hydrolases
deposited in the endosomal lumen undergo cleavage to generate active enzymes (17).

Inhibition of M6PR-mediated transport of lysosomal hydrolases results in production
of inclusions that are evident in micrographs as enlarged, dark endocytic vesicles
packed with cellular waste products. In humans, mutations in the GNPTAB gene disrupt
the � and � subunits of GNPT, resulting in the severe lysosomal storage disease
mucolipidosis type II (MLII), which is also called inclusion-cell (I-cell) disease. Mutant
GNPTAB genes direct the synthesis of GNPTs that fail to phosphorylate hydrolases,
thereby resulting in enzymes that are trafficked to the plasma membrane and exocy-
tosed (18). van Meel et al. (19) developed a GNPT � and � knockout (GNPTAB�/�) HeLa
cell line with defects similar to those of MLII patient fibroblasts, including enlarged late
endocytic vesicles and drastically reduced acid hydrolase activity.

It is unknown whether C. burnetii requires lysosomal hydrolases for nutrient acqui-
sition. Here, we investigated this possibility by analyzing infected GNPTAB�/� HeLa
cells. We report that defects in CCV formation occurred in HeLa cells lacking GNPT
activity but that C. burnetii replication and viability were normal. CCV accumulation of
intraluminal vesicles, autophagy protein LC3, and cholesterol in GNPTAB�/� cells
demonstrated a severe lack of hydrolase activity. These results demonstrate C. burnetii
survival and growth do not require host lysosomal hydrolases but normal CCV forma-
tion does.

RESULTS
CCVs in GNPTAB�/� HeLa cells lack hydrolase activity. A prevailing hypothesis

predicts that C. burnetii requires hydrolytic breakdown of host macromolecules by
lysosomal hydrolases to acquire essential nutrients. To investigate this prediction, we
used a GNPTAB�/� HeLa cell line that is deficient in active lysosomal hydrolases.
Previously, van Meel et al. (19) demonstrated GNPTAB�/� HeLa cells lack enzymatic
activity for a panel of known hydrolases. To confirm hydrolases remained inactive in
GNPTAB�/� cells infected with C. burnetii, we examined the hydrolytic activity of
cathepsin D and sulfatases. Cathepsin D activation requires proteolytic cleavage of
procathepsin D within the late endosome (20). Immunoblots of lysates from parental
and GNPTAB�/� cells 3 days postinfection (dpi) revealed an absence of mature cathep-
sin D in the knockout samples (Fig. 1A). Fluorescent BODIPY FL-conjugated pepstatin A
is an inhibitor that binds the active site of cathepsin D (21). CCVs of GNPTAB�/� cells
lacked BODIPY FL staining, indicating an absence of cathepsin D (Fig. 1B and C).
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Sulfatase activity within the CCV was examined using SulfGreen substrate, which
fluoresces when hydrolyzed. CCVs in GNPTAB�/� cells showed a severe defect in
sulfatase activity (Fig. 1D and E). Together, these results show CCVs of GNPTAB�/� HeLa
cells lack hydrolase activity.

GNPTAB�/� HeLa cells support C. burnetii growth, but CCVs are abnormal. To
determine whether C. burnetii requires lysosomal hydrolases for survival within a host
cell, bacterial replication and CCV formation were examined in GNPTAB�/� cells. Cells
were infected with an mCherry-expressing Nine Mile phase II strain (mCherry-NMII) of
C. burnetii for 3 days and examined using live microscopy. Phase contrast images
revealed infected GNPTAB�/� cells contain abnormal CCVs with reduced size and dark

FIG 1 Infected GNPTAB�/� HeLa cells lack active lysosomal hydrolases. (A) The active form of cathepsin D is absent from
infected GNPTAB�/� cells. Immunoblot of procathepsin and mature forms of cathepsin D in cells at 3 dpi. (B and C) CCVs
in GNPTAB�/� cells are deficient in cathepsin D. Cells were infected for 3 days with mCherry-NMII, fixed with PFA, and
fluorescently stained for cathepsin D using BODIPY FL pepstatin A and the CCV membrane using anti-LAMP1 antibody.
Images were analyzed for intensity of BODIPY FL pepstatin A per CCV. (D and E) CCVs in GNPTAB�/� cells lack sulfatase
activity. Cells were infected for 3 days with mCherry-NMII, incubated for 18 h with SulfGreen, and imaged live. Images were
analyzed for intensity of SulfGreen per CCV. Graphs represent the means � standard deviations (SD) of �150 cells from
3 independent experiments. Statistical significance was determined by Student’s t test (****, P � 0.0001). Nuclei were
stained with Hoechst stain. Scale bar, 10 �m.
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appearance (Fig. 2A and B). Decreased CCV area suggested reduced fusion with
endosomes (22, 23). To test this idea, HeLa cells were incubated with fluorescent
dextran for 18 h, and then fluorescence intensity of CCVs was measured (Fig. 2A and C).
CCVs in GNPTAB�/� cells had decreased dextran intensity compared to that of parental
cells. Although CCVs within GNPTAB�/� cells were irregular, analysis of fluorescence
intensity of mCherry-NMII per CCV was similar to that of parental cells (Fig. 2A and D),
suggesting comparable C. burnetii growth.

C. burnetii replication and viability do not require lysosomal hydrolases. C.
burnetii growth was further assessed by measuring bacterial genome equivalents using
quantitative PCR (qPCR). Consistent with mCherry-NMII fluorescence results (Fig. 2A and
D), no defect in replication was detected in GNPTAB�/� cells relative to levels in the
parental cells (Fig. 3A). Furthermore, a fluorescent infectious focus-forming unit (FFU)
assay demonstrated bacterial viability was similar for C. burnetii grown in GNPTAB�/�

cells and parental cells (Fig. 3B). These data show lysosomal hydrolases are not required
for C. burnetii growth or viability.

CCVs in GNPTAB�/� HeLa cells accumulate material. CCV biogenesis occurs
primarily via prolific fusion with late endocytic vesicles. The abnormal nature of CCVs in
GNPTAB�/� cells was further investigated by transmission electron microscopy (TEM).
Uninfected GNPTAB�/� cells contained numerous electron-dense inclusions, similar to

FIG 2 GNPTAB�/� HeLa cells support C. burnetii growth, but CCVs are abnormal. (A to C) C. burnetii
growing in GNPTAB�/� cells generates dark, condensed CCVs with decreased dextran fluorescence. Cells
were infected with mCherry-NMII for 3 days, incubated for 18 h with Alexa Fluor 647 dextran, and imaged
live. Images were analyzed for CCV area and dextran fluorescence intensity. (D) The growth of C. burnetii
per vacuole is normal in GNPTAB�/� cells. Images from panel A were analyzed for mCherry-NMII
fluorescence intensity per CCV. Graphs represent the means � SD of �150 cells from 3 independent
experiments. Statistical significance was determined by Student’s t test (****, P � 0.0001). Scale bar,
10 �m.
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MLII fibroblasts (Fig. 4A). CCVs in GNPTAB�/� cells resembled gigantic inclusions, with
the majority of CCVs appearing dark and dense rather than clear and spacious (Fig. 4B
and C). Interestingly, vesicular structures, possibly intraluminal vesicles, were contained
within CCVs, suggesting deficiency in degradation of host waste products. Overall,
these results show that waste materials accumulate in CCVs lacking lysosomal hydro-
lases.

Lysosomal hydrolases eliminate intraluminal vesicles from inside the CCV. TEM
imaging revealed a buildup of vesicles within CCVs in GNPTAB�/� cells. To determine
if these were intraluminal vesicles, cells were stained for CD63, a transmembrane
protein localized on intraluminal vesicles and late endosomal membranes (24). Meth-
anol fixation followed by fluorescence staining of CD63 revealed that, unlike 3 dpi
parental cells that contained CD63 primarily on the CCV membrane, CCVs in
GNPTAB�/� cells accumulated CD63� vesicles within the vacuole lumen (Fig. 5A and B).
This indicated intraluminal vesicles are not being degraded by hydrolases or removed
by back-fusion, whereby intraluminal vesicles fuse with the limiting membrane of the
vacuole (25). These results demonstrate that lysosomal hydrolases are active in the CCV
and are required for elimination of CD63� intraluminal vesicles.

Absence of lysosomal hydrolases redistributes CCV membrane proteins. The
CCV membrane regulates fusion with vesicles, which is impaired in GNPTAB�/� cells. In
addition to CD63, the CCV membrane contains the lysosomal membrane protein
LAMP1 (3, 26). Fluorescence imaging was used to examine infected GNPTAB�/� cells to
determine whether the lack of hydrolases disrupts the organization of LAMP1 and CD63
domains on the CCV membrane. For fluorescence staining, cells were fixed with
paraformaldehyde instead of methanol to better preserve the natural state of mem-
brane structures. In both parental and knockout cells, CCVs at 3 dpi labeled with LAMP1
and CD63, but the distribution of the proteins on the limiting membrane differed (Fig.
5C). CCVs in parental cells exhibited punctate localization of LAMP1 and CD63, but the
knockout cells exhibited uniform localization. Aberrant distribution of LAMP1 of CCVs
in GNPTAB�/� cells correlated with reduced protein levels (Fig. 5C and D). Moreover,
colocalization between CD63 and LAMP1 on CCVs in GNPTAB�/� cells was reduced,
with the majority of CD63 localized to the lumen of the CCV (Fig. 5C and E). These
results show lysosomal hydrolase activity is needed for normal CCV membrane orga-
nization.

LC3 accumulates in CCVs without lysosomal hydrolases. The CCV fuses not only
with late endocytic vesicles but also with autophagosomes (22, 27); thus, we speculated
that GNPTAB�/� cells would accumulate autophagic components. To examine this
possibility, cells at 3 dpi were methanol fixed and stained for LC3, an autophagy protein

FIG 3 C. burnetii replication and viability are normal in GNPTAB�/� HeLa cells. (A) The growth of C.
burnetii in GNPTAB�/� cells is similar to that in parental cells. Genome equivalents were determined
using qPCR of dotA. (B) The viability of C. burnetii grown in GNPTAB�/� cells is normal. C. burnetii from
HeLa cells at 3 dpi was used to infect monolayers of Vero cells, and CCVs were enumerated 5 dpi by a
fluorescent infectious focus-forming unit (FFU) assay. Graphs represent the means � SD from 3
independent experiments.
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that labels autophagic vesicles and is degraded upon fusion with late endosomes and
lysosomes (28, 29). In parental cells, LC3 localized to the CCV membrane. Conversely, in
GNPTAB�/� cells, large amounts of LC3 accumulated within the lumen of the CCV (Fig.
6A and B). To rule out the possibility that LC3 accumulation resulted from increased
autophagic flux, LC3 was examined when autophagy was induced by amino acid
starvation. Induction of autophagy for 4 h did not increase LC3 within CCVs of parental
cells. However, a 4-h treatment with bafilomycin A1, an inhibitor of vacuolar (H�)-
ATPase that blocks vacuole acidification and hydrolase activity (30), caused LC3 and
CD63 accumulation (Fig. 6C to E). Thus, active hydrolases efficiently degrade CCV LC3
even when autophagic flux is increased, but lack of hydrolase activity results in
accumulation of LC3.

CCVs in GNPTAB�/� cells accumulate cholesterol. Neimann-Pick C2 (NPC2) is an
M6PR pathway-dependent lysosomal protein that transports cholesterol out of endo-

FIG 4 CCVs in GNPTAB�/� HeLa cells accumulate electron-dense material. (A) By TEM, uninfected
GNPTAB�/� cells contain abundant inclusions, observed as enlarged, dark endocytic vesicles. Arrows
point to representative late endocytic vesicles. (B and C) CCVs in parental cells are clear and spacious,
whereas the majority of CCVs in GNPTAB�/� cells are dense and filled with material. TEM images are of
cells at 3 dpi. Images were analyzed for percentage of clear versus dark vacuoles. Magnification of TEM
images was at 11,000�. Graphs represent the means � SD of �60 cells from 2 independent experiments.
Statistical significance determined by Student’s t test (****, P � 0.0001). Scale bar, 1 �m.
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somes. GNPTAB�/� cells lack NPC2 in endosomes, resulting in accumulation of cho-
lesterol within late endocytic compartments (31). Cells were stained with filipin to
investigate whether cholesterol levels are elevated in CCVs of GNPTAB�/� cells. Cho-
lesterol primarily localized to the CCV membrane of infected parental cells, which was
in contrast to localization in the CCV lumen of GNPTAB�/� cells (Fig. 7A and B). These
results demonstrate that without M6PR pathway-dependent lysosomal proteins, cho-
lesterol accumulates within the CCV.

The pH of CCVs in GNPTAB�/� and parental cells is similar. Mulye et al. (32)
demonstrated that elevation of CCV cholesterol by pharmacological treatment results
in C. burnetii lysis. CCV accumulation of cholesterol is associated with decreased CCV pH
relative to that of untreated cells, a factor proposed to increase hydrolase activity and

FIG 5 CCVs in GNPTAB�/� HeLa cells accumulate intraluminal vesicles and have redistributed CCV
membrane proteins. (A and B) CCVs in GNPTAB�/� cells have increased amounts of intraluminal CD63�

vesicles. Cells at 3 dpi were fixed with methanol and fluorescently stained for CD63. Images were
analyzed for CD63 intensity per CCV. (C to E) LAMP1 on CCV membranes of GNPTAB�/� cells is
redistributed, with decreased levels and colocalization with CD63 relative to those of parental cells. Cells
at 3 dpi were fixed with 4% PFA and fluorescently stained for CD63 and LAMP1. Images were analyzed
for LAMP1 intensity per CCV and colocalization of CD63 with LAMP1. Graphs represent the means � SD
of �150 cells from 3 independent experiments. Colocalization analysis of CCVs was determined using
Pearson’s correlation coefficient. Statistical significance was determined by Student’s t test (****, P �
0.0001). Nuclei were stained with Hoechst stain and C. burnetii with NMII-specific antibody. Scale bar,
10 �m.
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consequently bacterial death. We observed no significant difference in the pH of CCVs
in GNPTAB�/� (pH 4.67) and parental (pH 4.53) cells (Fig. 8), despite accumulation of
cholesterol by knockout cells.

DISCUSSION

In this study, we show lysosomal hydrolases are required for normal CCV develop-
ment but not for C. burnetii survival and growth. C. burnetii replication and viability are
normal in hydrolase-deficient GNPTAB�/� HeLa cells, but CCVs are smaller and densely
packed with material, resembling electron-dense inclusions of cells from MLII patients.
This phenotype results from failed degradation of cellular waste products. Similarly, we
show CCVs accumulate intraluminal vesicles, autophagy protein LC3, and cholesterol.
Additionally, the CCV membrane is altered, with a decrease in LAMP1 levels and a

FIG 6 Autophagy protein LC3 accumulates within CCVs in GNPTAB�/� HeLa cells. (A and B) LC3 levels are elevated within
CCVs in GNPTAB�/� cells. Cells at 3 dpi were fixed with methanol and fluorescently stained for LC3 and CD63. Images were
analyzed for LC3 intensity per CCV. (C to E) Bafilomycin treatment, but not induction of autophagy, accumulates LC3 and
CD63 within CCVs of parental cells. Parental cells at 3 dpi were amino acid starved (�aa) or treated with bafilomycin A1
(BafA) for 4 h and then fixed with methanol and stained for LC3 and CD63. Images were analyzed for CD63 and LC3
intensity per CCV. Graphs represent the means � SD of �150 cells from 3 independent experiments. Statistical significance
was determined by Student’s t test (****, P � 0.0001). Nuclei were stained with Hoechst and C. burnetii with NMII-specific
antibody. Scale bar, 10 �m.
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redistribution of CD63 and LAMP1. These results suggest lysosomal hydrolases have a
functional role in CCV biogenesis.

The reduced size of CCVs in GNPTAB�/� cells correlates with decreased sequestra-
tion of dextran, a fluid phase marker. This behavior likely reflects defects in fusion
between the CCV and endocytic vesicles that manifest due to changes on the CCV
membrane that are induced by accumulated waste products. CD63 and LAMP1 are
uniformly distributed on CCVs in GNPTAB�/� cells as opposed to a typical punctate
localization (33). The uniform distribution of CCV membrane molecules could result
from deficient lipid raft formation. Lipid rafts are membrane microdomains of lipids and
proteins that are important in fusion events (34). Furthermore, fusion may also be
affected by decreased LAMP1 in CCV membranes of GNPTAB�/� cells. LAMP1 promotes
fusion of lysosomes with phagosomes (35). Indeed, Schulze-Luehrmann et al. (36)
showed decreased CCV size in LAMP1/LAMP2 double knockout cells, indicating a role
for LAMPs in CCV expansion.

The expansive growth of the CCV is supported by enhanced fusion with late
endosomes, lysosomes, and autophagosomes, all of which provide membrane for the
CCV but also deliver waste products. In the absence of degradative lysosomal hydro-
lases, waste products, including cholesterol, build up in the CCV. This material does not
adversely affect growth or viability of C. burnetii. Interestingly, a previous report showed
that the CCV becomes more acidic, and consequently bactericidal, when cholesterol
accumulates (32). Increased hydrolase activity is one mechanism proposed for C.
burnetii killing. We demonstrate that CCVs of both GNPTAB�/� and parental cells have
a typical lysosomal pH. It should be noted that because CCVs in GNPTAB�/� cells lack
hydrolases, conditions that may potentiate hydrolase activity are irrelevant with respect
to C. burnetii viability.

Given the degradative, phagolysosome-like character of the CCV, it was presumed
that C. burnetii scavenges nutrients generated by hydrolytic breakdown of host waste
material. Because C. burnetii survival and replication do not require lysosomal hydro-
lases, the question remains of how C. burnetii obtains nutrients from the host. One
possibility is that C. burnetii breaks down host macromolecules using its own secreted
enzymes. This scenario is unlikely, since CCVs in GNPTAB�/� cells accumulate material,
suggesting enzymes are not degrading host waste products. An emerging concept in
bacterial pathogenesis is nutritional virulence, whereby intracellular bacteria are spe-
cifically adapted to obtain essential nutrients by exploiting host metabolic processes
(37). Several bacteria, including Anaplasma phagocytophilum and Francisella tularensis,
utilize host autophagy for nutrient acquisition (6). Investigators have speculated that C.
burnetii can also obtain nutrients from the host via CCV fusion with autophagosomes

FIG 7 CCVs in GNPTAB�/� HeLa cells accumulate cholesterol. (A and B) Cholesterol builds up inside CCVs in GNPTAB�/� cells. At 3 dpi
with mCherry-NMII, cells were fixed with 4% PFA and stained for cholesterol using filipin and the CCV membrane using anti-LAMP1
antibody. Images were analyzed for filipin intensity per CCV. Graphs represent the means � SD of �150 cells from 2 independent
experiments. Statistical significance was determined by Student’s t test (****, P � 0.0001). Scale bar, 10 �m.
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(6, 9). However, induction of autophagy by amino acid starvation or Torin-1 treatment
does not benefit C. burnetii growth (38). Furthermore, C. burnetii infection does not
increase autophagic flux. C. burnetii and L. pneumophila both use amino acids as main
carbon and energy sources. They share auxotrophies for several amino acids, which
consequently must be obtained from the host (6, 39, 40). Like L. pneumophila, intra-
vacuolar Chlamydia trachomatis and Salmonella enterica use SLC transporters to derive
critical nutrients, including glucose (SLC35D2) and arginine (SLC7A1), respectively (6–8).
Lysosomes contain several SLC transporters, including those that pump amino acids
(SLC7A14 and SLC36A1) and glucose (SLC2A8) into the vesicle lumen (41). Given the
lysosomal character of the CCV, the vacuole likely contains these and other transport
systems that provide C. burnetii with basic nutrients. Indeed, studies show that both
cytosolic and lysosomal concentrations of essential amino acids largely exceed levels
needed to support robust growth of C. burnetii in a defined medium (42–44). C. burnetii
grows to tremendous numbers in host cells without obvious negative impact on cell

FIG 8 pH of CCVs in parental and GNPTAB�/� HeLa cells is similar. (A and B) The standard curves for CCVs
of parental and knockout cells were generated by graphing fluorescent intensity ratios of Oregon Green
488/Alexa Fluor 647 with pH. Cells at 3 dpi with mCherry-NMII were incubated for 18 h with Oregon
Green 488-dextran and Alexa Fluor 647-dextran. Standard curve samples were made by incubating cells
with buffers of different pHs containing nigericin and monensin. (C) CCVs in GNPTAB�/� and parental
cells have a similar pH. The pH of CCVs was determined using the standard curves. CCVs in GNPTAB�/�

and parental cells have a pH of 4.67 and 4.53, respectively. Graphs represent the means � SD of �150
cells from 2 independent experiments.
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physiology and division (45). The precise mechanisms by which host cell amino acid
homeostasis is maintained to support such a parasitic burden is an intriguing area of
future investigation.

MATERIALS AND METHODS
Cell culture and infection. Parental (wild-type) and GNPTAB�/� HeLa cells were kindly provided by

Stuart Kornfeld of the Washington University School of Medicine, St. Louis, Missouri. Generation of the
knockout cell line by CRISPR/Cas9 genome editing is described in van Meel et al. (19). HeLa cell lines were
cultured in Dulbecco’s modified Eagle medium (DMEM) (Life Technologies) supplemented with 10% fetal
bovine serum (FBS) and 1 mM sodium pyruvate (Life Technologies) and incubated at 37°C with 5% CO2.
Vero (ATCC CCL-81; African green monkey epithelial) cells were cultured in RPMI 1640 medium (Life
Technologies) supplemented with 10% FBS and incubated at 37°C with 5% CO2.

Coxiella burnetii Nine Mile RSA439, phase II, clone 4 (NMII) was grown in Vero cells and purified as
previously described (46). NMII expressing mCherry (mCherry-NMII) was propagated in second-
generation acidified citrate cysteine medium (ACCM-2) at 37°C with 5% CO2 and 2.5% O2 (47). For
infections, HeLa cells were seeded in 24-well plates at 6 � 104 cells per well and infected at a multiplicity
of infection (MOI) of 10 by centrifuging bacteria onto monolayers at 500 � g for 30 min at room
temperature.

CCV fusion assay. HeLa cells seeded on glass-bottom 24-well SensoPlates (662892; Greiner Bio-One)
were infected with mCherry-NMII. At 2 dpi, Alexa Fluor 647-dextran of 10,000 molecular weight (D22914;
ThermoFisher) was added to the cells at 1 mg/ml in complete DMEM, and cells were incubated for 18 h.
Cells were then washed with fresh medium and imaged using a Nikon eclipse Ti2 epifluorescence
microscope. Analysis was performed using Fiji (Image J) (NIH), whereby mCherry-positive CCVs were
selected for measurements of area and fluorescence intensities of dextran and mCherry-NMII.

C. burnetii growth in HeLa cells. Following infection, HeLa cells were washed to remove free
bacteria. Samples were collected by trypsinization of cells at day 0 (immediately after infection) and days
3 and 5. To release bacterial DNA from cells, samples were bead beaten with 0.1-mm zirconia/silica beads
(BioSpec) in a homogenizer (FastPrep FP120; ThermoElectron), followed by 10 min of boiling. To
determine genome equivalents (GE), TaqMan qPCR using a StepOnePlus real-time PCR system (Applied
Biosystems) was performed with primers specific for dotA (48).

C. burnetii viability assay. At 3 dpi, HeLa cells were lysed with 250 �l of water and lysates were
diluted 1:5 with RPMI containing 2% FBS. Confluent monolayers of Vero cells in 24-well plates were
infected with serial dilutions of samples for 4 h and then washed to remove free bacteria. At 5 dpi, cells
were fixed with methanol for 30 min and stained using anti-NMII rabbit antibody followed by Alexa Fluor
488-goat anti-rabbit antibody (Life Technologies). To enumerate CCVs, a fluorescent infectious focus-
forming unit (FFU) assay was conducted, with 10 fields of view per well counted on a Zeiss Axiovert 25
fluorescence microscope at �32 magnification.

Western blot for procathepsin and mature cathepsin D. Cell lysates of infected HeLa cells were
run on an SDS-PAGE gel and transferred onto nitrocellulose membrane. After blocking with 5% skim milk,
the membrane was probed with anti-cathepsin D monoclonal rabbit antibody (clone EPR3057Y; ab75852;
Abcam), followed by horseradish peroxidase-goat anti-rabbit IgG antibody (A16104; ThermoFisher).
Immunodetection of cathepsin D was performed using enhanced chemiluminescence substrate (Ther-
moFisher) and the blot imaged with an Azure C600 imager (Azure Biosystems).

Cathepsin D staining. At 3 dpi with mCherry-NMII, HeLa cells were fixed with 4% paraformaldehyde
(PFA). Cells were blocked and permeabilized with 0.05% saponin in phosphate-buffered saline (PBS)
containing 1% bovine serum albumin (BSA). To stain for cathepsin D, cells were incubated for 1 h with
2 �g/ml of BODIPY FL pepstatin A (P12271; ThermoFisher). For staining the CCV membrane, cells were
incubated for 1 h with anti-LAMP1 antibody (ab24170; Abcam), followed by Alexa Fluor 488 goat
anti-rabbit antibody for 30 min. All antibody incubations were in saponin permeabilization/blocking
buffer. Nuclei were stained with Hoechst 33342 (ThermoFisher) in PBS. Coverslips were mounted using
Prolong Gold antifade mountant (ThermoFisher). Cells were imaged using a Zeiss LSM-710 confocal
fluorescence microscope. Fluorescence intensities of BODIPY FL pepstatin A in CCVs were measured
using Fiji.

Sulfatase activity assay. HeLa cells seeded on glass-bottom 24-well SensoPlates were infected with
mCherry-NMII. A MarkerGene LysoLive lysosomal sulfatase assay kit was used to determine sulfatase
activity by fluorescence imaging. At 2 dpi, cells were incubated for 18 h with 200 �M SulfGreen and
1 mg/ml of Alexa Fluor 647-dextran of 10,000 MW. Cells were washed with fresh medium and imaged
using a Nikon eclipse Ti2 epifluorescence microscope. Analysis was performed using Fiji, whereby
mCherry-positive CCVs, marked by dextran, were selected for analysis of fluorescence intensities of
SulfGreen.

Transmission electron microscopy. For TEM, HeLa cells were seeded on Thermanox plastic cover-
slips (Ted Pella, Inc.) in 24-well plates and infected with C. burnetii. Cells at 3 dpi were fixed overnight at
4°C in 2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer. After 3 washes with 0.1 M sodium
cacodylate buffer, the cells were postfixed for 1 h with 0.5% osmium tetroxide and 0.8% potassium
ferricyanide in 0.1 M sodium cacodylate buffer. Following 3 washes with 0.1 M sodium cacodylate buffer,
the cells were stained for 1 h with 1% tannic acid in distilled water (dH2O), rinsed 3 times with dH2O, and
stained for 1 h at 4°C with 2% samarium acetate in dH2O. The cells were dehydrated in a graded ethanol
series, followed by three exchanges in 100% ethanol. The cells were infiltrated and embedded with
Spurr’s resin and cured overnight at 68°C. The samples were sectioned at 80 nm using a UC6 ultrami-
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crotome (Leica Microsystems) and viewed on a Tecnai BioTwin Spirit (Thermo Fisher Scientific) at 120 kV.
Images were acquired with a Hamamatsu ORCA-HR digital camera system (Advanced Microscopy
Techniques).

Immunofluorescence staining of intraluminal vesicles, LC3, and the CCV membrane. For stain-
ing intraluminal vesicles and LC3, cells at 3 dpi were fixed with cold methanol for 30 min. Cells were
blocked using 0.1% Triton X-100 in PBS containing 1% BSA and then stained with anti-CD63 monoclonal
mouse antibody (clone H5C6; 556019; BD Pharmingen) or anti-LC3B monoclonal rabbit antibody (clone
D11; 3868S; Cell Signaling Technology). Antibody incubations were for 30 to 60 min in 0.1% Triton X-100
in PBS containing 1% BSA.

For CCV membrane staining, cells at 3 dpi were fixed with 4% paraformaldehyde in PBS. Cells were
permeabilized and blocked for 30 min with 0.05% saponin in PBS containing 1% BSA and then stained
with anti-CD63 monoclonal mouse antibody or anti-LAMP1 rabbit antibody. Antibody incubations were
in saponin permeabilization/blocking buffer for 30 to 60 min.

NMII was stained with anti-C. burnetii guinea pig antibody and nuclei with Hoechst 33342 (Thermo-
Fisher). Alexa Fluor 647-, 568-, and 488-conjugated secondary antibodies were from Life Technologies.
Coverslips were mounted using Prolong Gold antifade mountant. A Zeiss LSM-710 confocal fluorescence
microscope was used for imaging. Fiji was used for analysis, where fluorescence intensities of CD63, LC3,
and LAMP1 were determined for CCVs. Correlation coefficients (Pearson’s correlation coefficient) were
determined using Coloc 2.

Bafilomycin A1 treatment and amino acid starvation. HeLa cells were treated with bafilomycin A1
(B-1183; A.G. Scientific, Inc.) at 400 nM in culture medium for 4 h at 37°C with 5% CO2. For amino acid
starvation, cells were incubated for 4 h at 37°C with 5% CO2 in RPMI 1640 medium modified without
amino acids, plus glucose (MyBioSource).

Cholesterol staining. At 3 dpi with mCherry-NMII, HeLa cells were fixed with 4% PFA for 30 min. Cells
were stained for cholesterol by incubating for 1 h with 100 �g/ml of filipin (70440; Cayman Chemical) in
PBS. The CCV membrane was stained by incubating cells for 30 min with anti-LAMP1 antibody in PBS
followed by incubation with Alexa Fluor 488 goat anti-rabbit antibody in PBS for 30 min. Coverslips were
then mounted using Prolong Gold antifade mountant. Cells were imaged using a Zeiss LSM-710 confocal
fluorescence microscope (Carl Zeiss). Fluorescence intensity of filipin per CCV was measured using Fiji.

CCV pH determination. The pH of CCVs was determined as previously described (49). Briefly, HeLa
cells seeded on glass-bottom 24-well SensoPlates were infected with mCherry-NMII for 3 days. The cells
were incubated for 18 h with 1 mg/ml of both Oregon Green 488-dextran and Alexa Fluor 647-dextran
of 10,000 MW (ThermoFisher). Standard samples were made by incubating cells with buffers of different
pHs containing 10 �M both nigericin and monensin (Sigma). Cells were imaged at room temperature
using a Nikon eclipse Ti2 epifluorescence microscope. Fluorescence intensity analysis of dextrans was
performed using Fiji. A standard curve was generated for CCVs of parental and knockout cells by
graphing fluorescent intensity ratios of Oregon Green 488/Alexa Fluor 647 with pH. The pHs of the
experimental CCVs were then determined using the standard curve.

Graphing and statistics. GraphPad Prism (GraphPad Software) was used for all graphing and
statistics. Unpaired Student’s t test was used to determine statistical significance.
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