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Denoising of Aligned Genomic Data
Irena Fischer-Hwang1*, Idoia Ochoa2, Tsachy Weissman1 & Mikel Hernaez3*

Noise in genomic sequencing data is known to have effects on various stages of genomic data analysis 
pipelines. Variant identification is an important step of many of these pipelines, and is increasingly 
being used in clinical settings to aid medical practices. We propose a denoising method, dubbed 
SAMDUDE, which operates on aligned genomic data in order to improve variant calling performance. 
Denoising human data with SAMDUDE resulted in improved variant identification in both individual 
chromosome as well as whole genome sequencing (WGS) data sets. In the WGS data set, denoising led 
to identification of almost 2,000 additional true variants, and elimination of over 1,500 erroneously 
identified variants. In contrast, we found that denoising with other state-of-the-art denoisers 
significantly worsens variant calling performance. SAMDUDE is written in Python and is freely available 
at https://github.com/ihwang/SAMDUDE.

The ability to sequence genetic material has expanded our understanding of genes and their roles in biologi-
cal processes, opened up new areas of biological inquiry, and are guiding the trajectory of modern biomedical 
research1. Raw sequencing data are typically stored in the FASTQ file format and converted to the SAM file format 
following alignment to a reference genome. Both file types comprise sequences of nucleotide bases called “reads,” 
which are accompanied by sequences of quality scores that indicate the sequencing machine’s confidence in the 
base calls making up the reads. However, the genomic sequencing process is imperfect and can result in reads 
containing various types of noise including base substitutions, insertions, and deletions (INDELs).

Although noise characteristics vary across sequencing technologies, they are well characterized for some 
sequencing platforms. For example, Illumina sequencing technologies produce “short” reads on the order of 
hundreds of bases, with an average substitution error rate of less than 1%, and INDEL rates orders of magni-
tude lower2. Furthermore, these errors were found to be correlated with position within the read, resulting in 
position-dependent noise characteristics. These errors can affect downstream applications, with an important 
application being variant calling, or the identification of genetic polymorphisms unique to individuals. Variant 
identification from WGS is increasingly being used for diagnosis and treatment design in the clinical setting, 
especially in the field of rare genetic disease research3. Thus, accuracy of variant identification is paramount. Note 
that there is a clear distinction between the natural variations of DNA sequences (i.e., genetic polymorphisms)—
which are the target of variant calling—and noise due to sequencing errors introduced by the sequencing plat-
form, which can be represented as base call mismatches (single base-substitutions) and INDELs.

Algorithms for removing noise, or denoisers, have been proposed for genomic sequencing data4, as well as 
for other biological methods relying on genomic sequencing, like ChiP-seq5. These denoisers attempt to rectify 
sequencing errors by only changing individual bases in reads, while retaining the original quality scores. They are 
typically tested on simulated and real data sets in FASTQ format, and have been shown to perform well on some 
of the early stages of genomic sequencing pipelines, such as correcting base calling errors in the simulated data 
sets, increasing both breadth and depth of reads coverage during alignment6, or improving de novo assembly of 
real data sets7. However, these analyses often do not extend to later steps in genomic sequence analysis pipelines, 
and those that do focus on non-human data sets8. To our knowledge, none of these works examines the effect that 
denoising might have on variant calling. Current variant calling procedures are complex and rely on alignment 
information, including quality scores which are a direct function of the analog signals used to determine the 
called base. In fact, a survey of lossy quality score compressors has already shown that changing quality scores 
alone can sometimes have a beneficial effect on variant calling9. This result demonstrates that in a sense, lossy 
quality score compression removes noise from, or denoises the genomic data, resulting in more accurate variant 
calling. Taken together, the existing body of work on denoising and variant calling suggests that reads denoising 
could be improved by incorporating alignment and quality score information during error correction.
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In this work, we propose a novel denoising method, SAMDUDE, which takes advantage of alignment infor-
mation contained in the SAM file in order to both denoise reads and update quality scores. We evaluate the effect 
of denoising on variant calling by comparing variants identified in files before and after denoising by SAMDUDE. 
We also evaluate files that have been denoised using other state-of-the-art denoisers that operate solely on reads 
in FASTQ files. This variant calling comparison methodology has already been used to analyze the effect of lossy 
compression on quality scores beyond the early steps in a genomic sequencing pipeline9. To our knowledge, this 
is the first application of such a comparison methodology on denoised genomic sequencing data, and provides a 
unique framework for directly evaluating the effect of denoising on sequencing data. To highlight the potential 
utility of simultaneous base denoising and quality score updating in a clinical setting, we perform denoising and 
variant calling comparisons on human data sets. We show that the simultaneous reads denoising and quality 
score updating procedure either maintains or improves variant calling with respect to the original SAM file, while 
denoising schemes that change only the reads result in degraded variant calling performance.

Survey of Denoisers for Genomic Data
Current state-of-the-art denoisers perform denoising based on a variety of techniques including k-mer counting 
and statistical error models, and target either substitution errors, insertion and deletion errors, or a combina-
tion of both4. We chose Musket10 and RACER11 to serve as benchmarks for SAMDUDE denoising performance, 
since both were touted for their ability to handle human WGS data sets6. In addition to Musket and RACER, 
BFCounter12 and Lighter13 are also preferred in the field for their memory efficiency and speed, respectively, and 
are thus the most likely to be used in practice. We omitted comparisons with BLESS 214, another denoising tool 
especially popular for its speed, due to installation difficulties. Here, we briefly describe the techniques underlying 
these four denoisers.

Musket10 uses a k-mer spectrum approach in which reads that are suspected to be erroneous are changed 
until their k-mers appear frequently in the entire data set. The k-mer spectrum is constructed using a paral-
lelized master-slave model, resulting in Musket’s highly competitive execution time and excellent parallel scal-
ability. Denoising is performed using a multistage workflow which begins with multiple iterations of two-sided 
conservative base correction. Two-sided conservative base correction is followed by multiple iterations of 
one-sided aggressive correction and voting-based refinement. Musket is able to denoise paired-end reads data 
sets simultaneously.

RACER11 uses a k-mer counting approach to denoise FASTA and FASTQ data. Its k-mer counting method 
retains k-mers with counts above a given threshold, while correcting all other ones. RACER utilizes a unique and 
efficient hash table-based data structure which makes it extremely space efficient. While RACER does not denoise 
both files in a paired-end reads data set at the same time, each of the FASTQ files can be denoised independently 
and recombined in subsequent analysis steps. RACER requires approximate genome size as a parameter.

BFCounter12 also uses a k-mer counting approach coupled with a Bloom filter in a two-pass denoising process. 
The use of a Bloom filter results in reduced memory requirements of nearly 50% memory savings, as compared 
to popular k-mer counting software. However, the two-pass implementation requires a significant amount of 
time for completing denoising, especially on human WGS data. Like RACER, BFCounter requires approximate 
genome size as a parameter.

Unlike the previously mentioned denoisers, Lighter13 avoids k-mer counting and instead relies entirely on 
Bloom filters to perform denoising. Compared with most denoising methods, Lighter is extremely fast and 
memory-efficient, but like RACER and BFCounter it also requires an estimate of genome size as a parameter.

Results
To formulate the proposed denoising method, we assume a setting in which a genetic sample undergoes 
high-throughput shotgun sequencing, producing a large number of short, overlapping reads of length on the 
order of hundreds of base pairs. The errors introduced during the sequencing process are assumed to be primarily 
substitution errors, while INDELs are assumed to be negligible. We also assume that a reference genome is avail-
able, and that the reads can be aligned to the reference.

Our proposed denoising method, SAMDUDE, is based on the Discrete Universal Denoiser (DUDE) algo-
rithm proposed in15. DUDE is a sliding-window discrete denoising scheme which is universally optimal in the 
limit of input sequence length when applied to an unknown source with finite alphabet size corrupted by a known 
discrete memoryless channel. The universal optimality of the DUDE guarantees that in the asymptotic limit of 
input sequence length it does as well as the best scheme of its type, regardless of the characteristics of the under-
lying noise-free sequence. In brief: DUDE uses a two-pass procedure to first infer statistics of the source sequence 
based on the noisy sequence, and then denoise the noisy sequence using the inferred statistics and noise channel 
characteristics. See Fig. 1 for a schematic of the SAMDUDE setting and algorithm.

In order to apply the DUDE-like denoising framework to the genomic sequencing setting, we make a number 
of algorithm design choices based on assumptions about the problem setting. While the universal denoising set-
ting assumes a single noise-free input sequence and a single noise-corrupted output sequence of equal length to 
the input sequence, in the high-throughput sequencing setting the channel input is a single, noise-free sequence 
and the output are numerous overlapping, short, noisy sequences. The reads may not necessarily all be of the 
same length, but are all assumed to be much shorter than the noise-free sequence length. Despite the difference 
between these settings, the sequencing reads can be thought of as samples of a single, noise-corrupted sequence 
that can be inferred from the reads using alignment information. Under this assumption, we aggregate infor-
mation from each read into statistics about the inferred noisy sequence. The universal denoising setting also 
assumes that the noise channel is memoryless and known, and corrupts sequences only with substitution errors. 
In the genomic sequencing setting, substitution errors are the primary form of noise in sequencing-by-synthesis 
methods, such as Illumina technologies. Today, sequencing-by-synthesis methods are among the most commonly 
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used in practice16. SAMDUDE is a natural fit for such methods, and thus we assume that errors introduced during 
the sequencing process are primarily substitution errors, while INDELS are assumed to be negligible2,17. We also 
assume that a reference genome is available, and that raw sequencing reads stored in the FASTQ file format can be 
aligned to the reference in order to produce a SAM file of aligned reads. We consider only the primary mapping 
of the aligned reads, and disregard any other mappings, i.e., if more than one alignment location is reported for 
a read, only the primary one is considered (all secondary alignments are omitted). While DUDE is designed to 
operate in the setting where the corrupting noise channel is known and memoryless, in the genomic sequenc-
ing setting it is often difficult to obtain precise information about a particular machine’s noise characteristics. 
As a result, we use alignment information in the SAM file to generate an estimate of the particular sequencer’s 
noise-injecting characteristics. Operationally, this strategy has the added benefit of accounting for individual var-
iations in performance from one sequencing machine to another. Finally, while paired-end reads are acceptable 
inputs to the denoiser, the pairing information is not used in the denoising process. The SAMDUDE denoising 
scheme is depicted in Fig. 1, and described in detail in the Methods section.

While all sequencing technologies inject all three types of errors, the noise channel model used in SAMDUDE 
is a particularly accurate reflection of Illumina sequencing technologies. Furthermore, due to the importance 

Figure 1.  Schematic of the SAMDUDE setting and algorithm. A genetic sample, xn (blue bar), is corrupted by a 
noise channel Π, producing noisy reads z(i) with errors (red lines). In the first pass of SAMDUDE, a sliding 
window (dashed rectangle) sequentially records the central symbol (green line) flanked by a context of length 
2k, l rk k for each location in each read. These central symbols and contexts are combined across all reads into a 
vector of counts l rm( , )k k . During the first pass, a sequence estimate x̂n and estimate of the noise channel Π̂ are 
also obtained. In the second pass, each read is again traversed sequentially for denoising. For each context in 
each read m, Π̂ and x̂n are all used to denoise the central symbol (yellow line) for each context in each read. The 
output of SAMDUDE is a collection of denoised reads.
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of variant identification in the clinical setting, we evaluated the effect of denoising on variant calling in human 
data sets. We tested SAMDUDE on three different paired-end WGS data sets of the H. Sapiens individual 
NA12878. The data sets are: ERR262997 corresponding to 30×-coverage, CEUTrio.HiSeq.WGS corresponding 
to 100×-coverage, and NA12878_V2.5_Robot_2 corresponding to 40×-coverage. For convenience, we refer to 
these data sets as 1, 2 and 3, respectively. Variant calls were compared against the version 37 gold standard call 
set for individual NA12878 released by the National Institute of Standards and Technology’s (NIST) Genome in 
a Bottle consortium (GIAB)18. While the GIAB gold standard call set is a fairly conservative estimate of the indi-
vidual NA12878 true variant call set, it is widely regarded by the field as the standard benchmark for evaluating 
sequence analysis algorithms. Furthermore, there exist “gold standard” (consensus of polymorphisms) variant 
call sets for certain human individuals, which can be used for an intuitive and direct method of assessing variant 
calling performance.

Denoising performance was evaluated with respect to variant calling of single nucleotide polymorphisms 
(SNPs). We first analyzed the effect of denoising on variant calling performance for individual human chromo-
somes using SAMDUDE and other state-of-the-art denoisers. We also compared the effect of denoising reads 
to the effect of lossy quality score compression. Lossy quality score compressors were developed to decrease the 
size of SAM files while still maintaining variant calling performance. Previous work showed that while quality 
score compressors effectively reduced SAM file size, they also sometimes had the unintended effect of improving 
variant calling performance9. For this reason, the lossy quality score compressors serve as a counterpoint to the 
SAMDUDE algorithm’s procedure of changing both reads and quality scores in tandem with the explicit goal of 
improving variant calling performance. Finally, we analyzed the effect of SAMDUDE denoising on human WGS 
data.

Human chromosome denoising with SAMDUDE.  For individual chromosome denoising experiments, 
we chose to use chromosomes 11 and 20. Chromosome 11 was chosen as representative of the median chro-
mosome length in the human genome, and chromosome 20 was chosen since it is frequently used in genomic 
data tool assessment as representative of a small human chromosome9. The leftmost column of Fig. 2 shows that 
SAMDUDE can have varied effects across different data sets. For data set 1, denoising with SAMDUDE resulted 
in an increase in T.P. variants called concomitant with a decrease in F.P. variants, resulting in a modest gain in 
F-score. Although denoising resulted in a slight decrease of T.P. variants called in data set 2 relative to the original 
file, it also resulted in a very large decrease in number of F.P. variants called, resulting in a large gain in F-score. In 
contrast, a handful of additional T.P. and F.P. variants were called in data set 3, resulting in no change in F-score. 
Despite variation in results across data sets, the effect of SAMDUDE denoising is consistent across chromosomes 
within a given data set.

Figure 2.  Denoising results for SAMDUDE (left column), Musket (second from left), RACER (center), 
BFCounter (second from right), and Lighter (right) for chromosomes 11 (blue) and 20 (orange). ΔT.P. indicates 
the change in True Positives, ΔF.P. indicates the change in False Positives, and ΔF indicates the change in 
F-score. In particular, positive ΔT.P. and ΔF indicate increases in true positive variants called and improvement 
of F-score, respectively. A negative ΔF.P. indicates that fewer variants were erroneously called, i.e., there were 
fewer false positives. Raw (dark colors) and filtered (light colors) variant call values are shown.
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While differences in performance across data sets seem to indicate inconsistency in the SAMDUDE denoising 
algorithm, these results make sense in the context of coverage and initial data quality, which are summarized in 
Fig. 3. The original performance metrics for data set 3 are by far the highest. In contrast, while data set 2 also has a 
high initial sensitivity, its relatively low precision leaves room for improvement in F-score. Data set 1 has the most 
room for improvement, with low initial sensitivity, precision and F-score.

Because of SAMDUDE’s conservative behavior, it might be suspected that the gains from updating qual-
ity scores are small compared to the effect of denoising bases in the reads. To test this hypothesis, we created 
partially-denoised SAM files where the reads were those obtained from SAMDUDE denoising, but were paired 
with the original quality score strings. These partially-denoised files were then analyzed using the same variant 
calling pipeline, and the results of this experiment are summarized in Supplementary Table 1 (labeled Partial 
Denoising). For all data sets, partial denoising resulted in either no change or an increase in F-score, even after 
GATK filtering. However, for data sets 1 and 2 the gains were not as large as those attained using SAMDUDE after 
GATK filtering of variant calls.

It might also be suspected that the same amount of random base changes would additionally result in improve-
ments in variant calling. To check this hypothesis, we ran the variant calling pipeline on the SAM files for chro-
mosome 20 with bases changed at random based on a uniform distribution over the possible nucleotide bases 
(see Supplementary Table 2). The results of this experiment are summarized in Supplementary Table 1 (labeled 
Random noise). For all data sets, addition of random noise resulted in either no change or a decrease in sensitiv-
ity, concurrent with a uniform increase in precision. Overall, the effect of random noise is an increase in F-score 
for all raw variant calls, but a decrease in F-score for GATK-filtered variant calls in data sets 1 and 2.

Together, these results support our claim that SAMDUDE is a conservative denoising method which will 
not adversely affect data sets that do not need denoising, while improving those that can benefit from denoising. 
Furthermore, SAMDUDE’s performance is robust and consistent for both raw and filtered variant calls, unlike 
that of partial denoising and random noise addition.

Comparison of SAMDUDE denoising with state-of-the-art genomic denoisers and quality score compressors.  The 
effects of denoising by the state-of-the-art genomic denoisers Musket, RACER, BFCounter and Lighter are shown 
in the center and right columns of Fig. 2. In most cases, the denoisers resulted in significant decreases in the 
number of T.P. variants called, with significant increases in the number of F.P. variants called, leading overall to 
significant decreases in F-score for both the raw and GATK-filtered variants. The only exception is the denoising 
of data set 2 using BFCounter, which resulted in a slight increase in T.P. variants called, slight decrease in F.P. 
variant called, and a corresponding slight increase in F-score. However, this improvement in variant calling is not 
consistent, as denoising data sets 1 and 3 using BFCounter resulted in worse F-scores. These changes demonstrate 
that although current state-of-the-art denoisers have been shown to improve early steps of the genome analysis 
pipeline, their denoising choices tend to have adverse effects on variant calling.

The trends are consistent even when we consider different variant call filtering levels. Supplementary 
Figures 1–6 show the variant calling precision as a function of sensitivity for different filtering criteria. We focus 
on the variant call filtering results for data set 2 (Supplementary Figs. 3 and 4) since for this data set SAMDUDE 
denoising resulted in the largest number of total changes to the variant call set, and also in the largest change in 
F-score. We also focus on comparing sensitivity filtering for the results of Musket and RACER due to their con-
sistent denoising trends. To construct these curves, we set percentile thresholds starting at the 10th and ending at 
the 90th percentile at increments of 10% for quality of depth (QD) of the raw variant calls. All variants with QD 
below the threshold were filtered out, and the remaining variant calls were evaluated against the gold standard call 
set. The top row of Supplementary Fig. 4 shows that even under these filtering criteria, the curves corresponding 
to the variant call sets of Musket- and RACER-denoised SAM files lie far below the others. In other words, for a 
given sensitivity level, the variants called under Musket- and RACER-denoised SAM files have significantly worse 
precision than SAMDUDE.

In addition to variant call filtering results for call sets from SAMDUDE, Musket-, and RACER-denoised SAM 
files, the bottom rows of Supplementary Figs 1–6 also show the filtered variant call set curves for the original call 
set, the call set resulting from the addition of random noise to the reads, and two call sets resulting from lossy 
compression of the original file using P-Block and R-Block with compression parameters 3 and 40, respectively. 
P-Block and R-Block are two state-of-the-art lossy quality score compressors19 which have also been shown to 
improve variant calling performance. Another state-of-the-art lossy compressor, QVZ20, has been omitted from 

Figure 3.  Statistics for variant call sets generated from the original data sets (blue, chromosome 11 and orange, 
chromosome 20). The statistics are: sensitivity (circles), precision (squares) and F-score (triangles). Statistics are 
grouped by variant call type: raw (dark colors) and filtered (light colors).
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the analysis since it is unable to compress SAM files with variable length reads. Again we focus our discussion on 
data set 2 and observe that in Supplementary Figs. 3 and 4 the effect of lossy compression on the variant call set is 
almost indistinguishable from that of SAMDUDE. However, the rightmost points in each of the filtered variant 
call set curves show that SAMDUDE outperforms all other schemes when sensitivity and precision are both high. 
SAMDUDE’s dominance, especially at high sensitivity levels for chromosome 11, makes sense since SAMDUDE’s 
denoising performance improves as read coverage increases.

Human whole-genome denoising with SAMDUDE.  Next, we evaluated the effect of denoising on var-
iant calling for an entire WGS human data set. For this experiment, we used all reads of data set 1, and the results 
are summarized in Table 1. After SAMDUDE denoising the raw variant call set included in total 1,954 additional 
true positive variants. Furthermore, 1,509 false positive variants were eliminated relative to the original set of var-
iant calls. After the GATK pipeline, 1,642 of the additional true positive variants were validated, and the number 
of additional false positive variant calls eliminated increased to 1,923. In contrast, raw variant calls based on the 
Musket-denoised file resulted in 208,144 fewer true positive calls and 324,957 additional false positive calls rela-
tive to the original set of variant calls. After the GATK pipeline, the number of true positive variant calls missed 
increased by 215,524 while the number of false positive variant calls increased by 305,362. Variant calls from the 
RACER-denoised data set were unable to be validated against the gold standard call set due to pipeline errors.

Discussion
We have presented SAMDUDE, a denoising method that uses alignment information in SAM files and a sta-
tistical model of the genomic data in order to improve variant calling. Because of the assumptions used by the 
denoising model, SAMDUDE’s intended use is for improving the quality of short sequencing reads obtained from 
healthy tissue. The potential problem of applying SAMDUDE to samples from unhealthy, e.g. cancerous, tissues 
is that SAMDUDE may incorporate k-mers from the unhealthy tissue into analysis, and incorrectly denoise bases 
that were indeed correct. This could happen when the variant allele frequency (VAF) of a given somatic mutation 
is below or similar to the substitution error rate from the sequencing technology being used21. In such cases, dif-
ferentiating between genomic sequencing errors and somatic mutation in unhealthy tissue is more challenging.

Taken together with the initial data quality statistics in Fig. 3, the range of improvements observed in Fig. 2 
imply that SAMDUDE is a “conservative” denoising algorithm that makes few or no changes to the reads and 
quality scores when the original data set is already of very high quality, but makes sound denoising choices 
resulting in variant calling improvements when the original data set is of lesser quality. The quality of denoising 
performance also correlates with data coverage: data set 2 has the highest coverage and SAMDUDE denoising 
performance is the best on this set. Since SAMDUDE relies on empirical estimates of k–mer distributions and 
the noise channel, the higher the coverage and the more accurate the empirical estimates, the better the denoising 
performance. It is also notable that the trends in performance hold for both raw variant and filtered variant calls, 
adding to our confidence in SAMDUDE as a conservative denoiser that integrates well with existing recom-
mended genomic data analysis pipelines.

The results of denoising aligned whole genome data are consistent with those observed for individual chromo-
somes. While the relative number of true positive variants identified might seem relatively small, the extra infor-
mation provided by each extra variant could be invaluable. Single point mutations are responsible for numerous 
human diseases, and other diseases once assumed to be caused by a single variant with large effect are now being 
understood to be the result of multiple monogenic mutations, or of collections of rare variants in previously 
identified genes22–24. Perhaps more importantly, the elimination of false positive variants is crucial to accurate 
diagnosis and appropriate treatment design25–27. Thus, in the clinical context the implications of every additional 
true positive variant identified and each false positive variant eliminated are far larger than the objective tally.

Our results emphasize that the quality score updating step of SAMDUDE is crucial to improving variant call-
ing outcome, and that denoising reads alone is insufficient for higher quality of variant calls. SAMDUDE was able 
to both identify thousands of additional variants and eliminate a similar number of false positive variants from a 
single human whole-genome data set. In contrast, state-of-the-art denoisers, which were designed to improve ear-
lier steps in the sequencing pipeline and are limited to changing information only in the reads and not the qual-
ity scores, led to degraded variant calling performance. Our results also highlight the importance of evaluating 
denoisers on the variant calling step of the genomic sequencing pipeline using real data sets with gold standards.

As a proof-of-concept denoiser, SAMDUDE shows great promise in improving the accuracy of variant call-
ing based on individual sequencing data sets. Furthermore, these encouraging results motivate further experi-
mentation of the parameters and elements of the denoising procedure, including context length k, majority and 
confidence thresholds, quality score updating rule, and additional refinement of the implementation in order to 
reduce computational memory and time requirements. We anticipate that the SAMDUDE denoising method will 
inspire an efficient and powerful denoising software that will be a valuable tool for researchers and clinicians alike.

ΔT.P. raw ΔT.P. filtered ΔF.P. raw ΔF.P. filtered

SAMDUDE 1,954 1,642 −1,509 −1,923

Musket −208,144 −215,524 324,957 305,362

Table 1.  Results for raw and filtered variant calling on denoised data set 1 using SAMDUDE and Musket.
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Methods
Problem setting.  We have the following problem setting: xn is the true genomic sequence of length n, and 
the sequencing procedure involves a noise channel, Π̂, which generates a set of m noisy reads …z z z{ , , , }m(1) (2) ( )  
with components taking values in the set of all possible nucleotide bases, alphabet  = {A, C, G, T}. The reads 
set is accompanied by a set of quality score strings …q q q{ , , , }m(1) (2) ( )  with components taking values in the set of 
ASCII characters quantifying basecalling quality on a quality score scale. Our goal is to both denoise the bases in 
the reads and to update the corresponding quality scores in order to improve the accuracy of variant identifica-
tion, while still preserving polymorphisms that are unique to the individual. The denoiser has access to the reads 
and the quality score strings, as well as to the alignment information of each of the reads to the reference sequence. 
Note that in this setting, the true genome sequence xn is unknown.

We assume that for a particular location i in the reference genome, the majority of reads covering that position 
will have base calls that agree, and that the minority of base calls which do not match with the majority are likely 
to be errors. Under this assumption, the sequence estimate is obtained by recording the majority base, for some 
majority threshold, for all reference genome positions covered by the reads. For noise channel estimation, creat-
ing vectors of counts and denoising, we couple base calls and quality scores by combining bases with their corre-
sponding quality scores. In other words, we assume that the input to the channel is a noise-free sequence taking 
values in alphabet , while the channel output is a tuple of the called based and the quality score associated with 
that base. Hence the output alphabet is given by B A Q= × , where  denotes the alphabet of the quality scores. 
The typical size of  is 42, which carries a significant computational burden due to the resulting size of A Q× . 
To avoid this burden, we adopt the quality score binning method recommended by Illumina for reducing quality 
score resolution28. This method reduces the original alphabet of quality scores from 42 to only 8 bins; hence, 

∈ …{bin , bin , , bin }1 2 8 , with bin limits corresponding to those recommended by Illumina (see Supplementary 
Table 3). This set of output tuples also incorporates the fact that certain sequencing technologies, like Illumina 
technologies, are known to produce reads with position-varying noise characteristics. Typically, different noise 
characteristics would be characterized by different noise channels—in the position-varying case, up to one chan-
nel per position. However, by combining each nucleotide base with its quality score, we can broadly account for 
various possible position-dependent trends in noise without setting hard boundaries and limiting ourselves to 
particular assumptions about the noise characteristics.

With this formalization of the problem setting, the noise channel estimate Π̂ is of size | | × | |A B , reflecting the 
assumption that the noise channel corrupts a sequence composed of symbols belonging to input alphabet , and 
produces noisy sequences composed of symbols belonging to output alphabet . The vector of counts l rm( , )k k , 
of size | |, records the number of times the subsequence l brk k, comprising left and right contexts lk and rk, is 
observed in the collection of reads, with ∈l r,k k k , and central tuple ∈b . We limit the alphabet of the context 
to  to ensure that each possible context is observed a significant number of times.

Once the noise channel estimate Π̂ and vectors of counts m are acquired, the SAMDUDE algorithm proceeds 
follows. For ease of exposition and with some abuse of notation, we denote an arbitrary read as z with ith compo-
nent zi accompanied by quality score qi. Subsequences of z are denoted as = …z z z( , , )a

b
a b .

	 1.	 For each base zi and its associated quality score qi in read z, identify the length 2k context string −
−

+
+z zi k

i
i
i k1

1  
surrounding position i, and bin bini to which qi belongs.

	 2.	 Calculate the estimated probability of observing the left and right contexts −
−zi k

i 1 and +
+zi

i k
1  in xn with 

different central symbols belonging in . The probability is distributed over all symbols in  and given by

π ΠΠ Π=−
−

+
+ −

−
−

+
+

ˆ ˆ ˆ ˆz z z z zq m( , ( , bin )), ) [( ) ( , )], (1)i k
i

i i i
i k

z
T

i k
i

i
i k1

1 ( ,bin )
1 1

1i i

where Π̂ is the channel estimate matrix comprising column vectors π π π… | |{ , , , }1 2  , and  represents 
element-wise multiplication for vectors (see15, Eq. (25)).

	 3.	 Replace zi with the base corresponding to the argument of the maximum of the distribution estimate, and 
update qi using the maximum of the distribution estimate (see subsec. Quality score updating for details).

We devote the following subsections to detailed descriptions of the components of SAMDUDE: estimates of 
the channel and true sequence, noise statistics, and vectors of counts. We also describe the quality score updat-
ing procedure, specify implementation details in terms of reads padding and describe the overall evaluation 
workflow.

Channel and sequence estimation.  To compute the channel estimate Π̂, we use alignment information 
from the SAM file to perform a sequence pileup at every reference genome position by cataloging all reads at that 
position. At each position we assume that the majority base, for some majority threshold ≥ .t 0 5m , is the true 
base. That is, the base in the pileup with normalized counts greater than or equal to tm is declared to be the major-
ity base. If there is no clear majority base, then we do not use information from that position for channel estima-
tion. This rule allows us to use the overwhelming majority of genomic positions in order to estimate the channel 
characteristics. Additionally, the threshold ensures that information is not used from positions in the genome that 
display heterozygosity, e.g., due to polyploidy of the organism being sequenced. This, in turn, prevents the confla-
tion of differences in reads overlapping heterozygous positions with noise, and precludes erroneous denoising of 
reads at those positions. For each base in  we record the number of bases in an 4 × 32 conditional counts matrix
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where |n i i j( , )1 2
 is the number of positions in all reads for which the read contains base i1 with accompanying qual-

ity score in bin i2 at a position whose majority base is j. N is row-normalized to obtain Π̂
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The majority bases are recorded as the sequence estimate.

Counts vector acquisition.  The vectors of counts l rm( , )k k  record all appearances of context l rk k surround-
ing a central symbol b, with ∈l r,k k k  and ∈b . There are up to | | k2  possible vectors m for each possible 
context l r( )k k , and each m is of length ||. For each b appearing between the left and right context components lk 
and rk, respectively, we record the number of times the sequence l brk k appears in the collection of reads as the bth 
component of l rm( , )k k :

= | + ≤ ≤ −

∀ = ∈ … |.−
+

l r b z i k i z k

z l br z z z z

m( , )[ ] { , : 1 length( )

, { , , , } (3)

k k

i k
i k k k

m(1) (2) ( )

For positions < +i k 1 or > −i z klength( ) , we employ information from the sequence estimate to acquire 
context counts. This process is detailed in subsec. Reads padding.

Position-based denoising rules.  Denoising is performed at read positions where zi as well as the sur-
rounding context string contain only bases in , excluding symbols indicating ambiguity. We use this simple 
genomic alphabet in order to avoid basing denoising decisions on non-uniquely identifiable context strings. For 
efficiency, we set a quality score threshold above which denoising is not attempted, tp. At read positions with 
quality scores corresponding to a probability above tp, SAMDUDE does not attempt denoising for expediency.

Quality score updating.  The maximum of the conditional distribution estimate q̂ is used to update the 
quality score accompanying the denoised base. The updating procedure depends on whether the base the denoi-
ser selected matches the original base zi. If the maximum of q̂ corresponds to the same base as the original one, 
the quality score is adjusted as follows: convert the original quality score qi into a confidence probability

= − −p 1 10 , (4)i
q /10i

take the arithmetic mean of pi and the maximum of the estimated conditional probability q̂, denoted by pmax, and 
back-convert the averaged probability into the updated quality score. In other words, the updated quality score is

~ = −




−
+ 


q

p p
10 log 1

2
,i max

when the denoiser does not recommend a different base. The updated quality score is re-inserted into the quality 
score string after conversion to an ASCII character as per the sequencing machine’s quality score encoding 
method. For example, if the sequencing machine encodes on a Phred + 33 scale, the quality score string’s ith com-
ponent is replaced with the ASCII character for +q 33. On the other hand, if the denoiser recommends a base 
change, qi is simply replaced with = − −q p10log(1 )max . Again, the quality score string’s ith component is 
replaced with the appropriately encoded q.

This procedure was chosen in order to balance the denoiser’s conditional probability estimates with the orig-
inal quality scores, which reflect the sequencing machine’s confidence in the base calls. Since the original quality 
score is a function of the original base call, if the denoiser agrees with the base call, the denoiser’s probability esti-
mate should be combined with the sequencer’s quality score. However, if the denoiser decides on a different base, 
then the original quality score is unrelated to the denoiser’s chosen base and we can disregard the original quality 
score in favor of the quality score converted from the denoiser’s probability estimate.

Reads padding.  The reads reported from a sequencing machine cannot always be mapped directly to the ref-
erence genome in their entirety, since they may contain bases that are insertions relative to the reference genome, 
lack bases that correspond to deletions from the reference genome, or contain stretches of bases at the beginning 
and end of the read that simply do not match the reference genome. These inconsistencies relative to the reference 
genome are summarized by the sequence aligner in a CIGAR string accompanying the read (https://samtools.
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github.io/hts-specs/SAMv1.eps). Additionally, large portions of the read may be assigned very low quality scores, 
indicating entire regions of the read for which the sequencer has low confidence. One strategy for dealing with 
these inconsistencies is to simply eliminate non-matching or low-quality bases, but this can lead to loss of poten-
tially valuable information. Instead, we retain this information and tailor our use of it to process the reads during 
channel estimation, counts vector acquisition, and denoising.

The channel estimation procedure relies on the creation of pileups at reference genome positions. As a result, 
this step considers only bases that are mapped to the reference genome and relies on the CIGAR string infor-
mation to accurately map bases to reference genome positions. Bases that are designated in the CIGAR string as 
low-confidence and non-matching (i.e., “soft-clipped”, or simply “clipped”) or inserted relative to the reference 
genome are not considered during channel estimation. When deletions are indicated in the CIGAR string, refer-
ence mapping positions are adjusted accordingly.

The counts vectors are simply histograms of the central base appearing with context strings of length 2k. These 
context strings are unique to the individual and should include bases that are inconsistent relative to the reference 
genome, since those bases may be true polymorphisms. Thus, during counts vector acquisition the reads retain bases 
that are marked by the aligner as insertions since those insertions may be inherent to the true sequence. However, as 
in the channel estimation process, bases that are designated in the CIGAR string as clipped are omitted to avoid large 
sections of low-confidence base calls. In order to maximize the number of context strings obtained from a processed 
read, we additionally pad the read with a header and footer of length up to k if the read begins or ends, respectively, 
with bases that are mapped to the reference genome, i.e., not insertions. The padding process, illustrated in Fig. 4, 
allows the denoiser to obtain context information from up to 2k additional locations in each read.

Evaluation.  Evaluation procedures and metrics.  Denoising performance was evaluated with respect to vari-
ant calling of single nucleotide polymorphisms (SNPs). To quantify denoiser performance, we used the common 
performance metrics of true positives (T.P.), false positives (F.P.), and false negatives (F.N.). T.P. variants are the 
calls present in the gold standard call set, F.P. variants are the calls not present in the gold standard call set, and 
F.N. variants are those present in the gold standard set but not called. To summarize the changes in T.P., F.P. and 
F.N. variants identified, we used the following performance metrics: sensitivity (S), which measures the propor-
tion of all the variants that are correctly called ( . . . . + . .T P /(T P F N )), precision (P), which measures the propor-
tion of called variants that are true ( . . . . + . .T P /(T P F P )), and F-score (F), which is the harmonic mean of the 
sensitivity and precision ( × +S P S P2( )/( )).

SAMDUDE parameters.  For all denoising experiments, we used a single-sided context length of =k 7 (14 bases 
total in the double-sided context). This context length was chosen for computational feasibility, but also maxi-
mizes the number of counts in each context histogram without skewing the histograms towards a uniform distri-
bution, which occurs when k is either too small or too large (see Supplementary Tables 4–6). For sequence and 
channel estimation we used a majority threshold of = .t 0 9m  for high confidence in our estimate of the “true” 
genomic sequence, and also to definitively eliminate potentially confounding effects at heterozygous genomic 
positions which might not have a clear majority base. Finally, based on experiments with different quality value 
thresholds (see Supplementary Tables 5 and 6), we attempted denoising only at bases for which the sequencer’s 
confidence probability p, Eq. (4)) is less than a chosen confidence threshold = .t 0 9p .

Denoising and variant calling pipeline.  Individual chromosomes were extracted in binary SAM (BAM) file for-
mat from the aligned data sets and sorted using the SAMtools utility29. For denoising using Musket, RACER, 
BFCounter and Lighter, copies of the sorted BAM file were converted from the BAM to FASTQ format via the 
biobambam2 BAM file processing toolkit30. BAM files for each chromosome were also converted to the SAM 
format. The extracted SAM files were denoised using SAMDUDE.

The denoised FASTQ files were then aligned to a reference file using BWA-mem31, generating denoised SAM 
files. All denoised SAM files then underwent SNP calling using the SNP calling pipeline recommended by the Broad 
Institute32–34, and compared to the gold standard call set. We report results for both raw variants and variants filtered 
under the GATK Best Practices-recommended variant filtering process. For more details regarding the variant calling, 
filtering and evaluation pipelines, we refer the reader to the Variant calling pipeline section in the Supplementary data.

Figure 4.  During context acquisition and denoising processes, reads are padded with bases from the sequence 
estimate. At left: position i in the read corresponds to position j in the sequence estimate, and ≤ ≤i k1 . The left 
half of the context for that base is padded with sequence estimate bases from positions −j k up to − +j i 1, 
where k is half of the context length. At right: here, position i′ in the read corresponds to position j′ in the 
sequence estimate. ′ ≥ − +i l k 1, where l is the length of the processed read. The base at position i′ can now 
use positions ′ − + ′ +j l i 1 up to ′ +j k of the sequence estimate as a right-hand context.
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Computational requirements and machine specifications.  We ran most experiments on a workstation computer 
with 12 Intel Xeon cores at 3.4 GHz and 32 GB of RAM, running Linux Ubuntu 14.04.4. SAMDUDE denoising for 
the chromosome 11 file of data set 3 was run on a different workstation with 80 Intel Deon cores at 2.2 GHz and 
504 GB RAM, running CentOS 7.4.1708. Time and peak computational memory requirements for denoising data 
sets 1, 2 and 3 using SAMDUDE, Musket, RACER, BFCounter and Lighter are summarized in the Supplementary 
Table 7. In its current manifestation, SAMDUDE generally uses about an order of magnitude more memory than 
Musket and RACER. This is due to the large number of context histogram vectors that SAMDUDE acquires. 
SAMDUDE also generally requires about an order of magnitude more runtime than Musket and RACER. This 
result is not surprising, given that SAMDUDE is currently implemented in Python with no parallelization.
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