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Vulnerability indicators for natural 
hazards: an innovative selection 
and weighting approach
Maria Papathoma-Köhle*, Matthias Schlögl & Sven Fuchs

To prepare for upcoming extreme events, decision makers, scientists and other stakeholders require a 
thorough understanding of the vulnerability of the built environment to natural hazards. A vulnerability 
index based on building characteristics (indicators) rather than empirical data may be an alternative 
approach to a comprehensive physical vulnerability assessment of the building stock. The present 
paper focuses on the making of such an index for dynamic flooding in mountain areas demonstrating 
the transferability of vulnerability assessment approaches between hazard types, reducing the amount 
of required data and offering a tool that can be used in areas were empirical data are not available. We 
use data from systematically documented torrential events in the European Alps to select and weight 
the important indicators using an all-relevant feature selection algorithm based on random forests. 
The permutation-based feature selection reduced the initial number of indicators from 22 to seven, 
decreasing in this way the amount of required data for assessing physical vulnerability and ensuring 
that only relevant indicators are considered. The new Physical Vulnerability Index (PVI) may be used 
in the mountain areas of Europe and beyond where only few empirical data are available supporting 
decision-making in reducing risk to dynamic flooding.

Mountain areas are sensitive to climate change, experience significant socio-economic dynamics, have insuf-
ficient space for settlement and often face challenges related to limited communication networks due to their 
remoteness. In these areas, where actually 12% of the world’s population live1, natural hazards, such as dynamic 
flooding, are capable of causing significant suffering and disruption to local communities. Dynamic flooding is 
characterized by high flow rate and high sediment concentration. It occurs in mountain rivers and torrents and 
includes processes such as fluvial sediment transport, debris flow and related phenomena that repeatedly cause 
damages to the built environment in mountain areas globally.

Understanding, analysing, quantifying and visualizing vulnerabilities enable authorities, decision makers and 
other stakeholders managing and reducing existing and emerging risks. Vulnerability is an essential component 
of risk analysis and, as such, it has to be deeply investigated. The most common approach of assessing physical 
vulnerability to dynamic flooding is the computation of vulnerability curves2,3. However, these curves are associ-
ated with a large number of uncertainties deriving from the fact that the constructive and design characteristics of 
buildings are often not considered and, instead, empirical relationships between hazard magnitude and observed 
loss heights are used2. An alternative approach could involve the development of a vulnerability index for each 
building based on a number of indicators (building characteristics and properties). Indicator-based methods are 
often used for the assessment of social (e.g. SoVI4) and eco-environmental vulnerability5–7. In limited cases and 
for hazards other than flooding, physical vulnerability of the built environment has already been successfully 
approached using indicators. Such an approach is the PTVA (Papathoma Tsunami Vulnerability Assessment), 
originally proposed for assessing the effects of tsunami hazards. The PTVA has been introduced in 20038 and has 
been further developed and improved since then9. In the present paper a modified version of this method will be 
used to prove its application for dynamic flooding in mountain areas.

Usually, adequate vulnerability approaches are developed for each hazard type. Methods suitable for one haz-
ard type are rarely modified and used for another one limiting possible synergies between research groups from 
different disciplines. Although the use of indicators is common for more hazard types there are significant differ-
ences concerning the selection and scoring of indicators, scale, unit of study (building, building block, admin-
istrative area) and weighting method. For this reason, the transfer of methods from one natural process to the 
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other is not common practice. Moreover, due to the different impact that processes have on the elements at risk 
a whole new set of indicators have to be collected for each hazard type even if the framework remains the same. 
Differences are evident also in the scale and unit of research used in different studies. For example, studies focus-
ing on environmental vulnerability (e.g.5–7) are often conducted in a regional scale and use as unit of research 
larger areas based on land-cover and land use types, whereas in the case of physical vulnerability to earthquakes 
(e.g.10) and floods (e.g.11) the unit may be the building, the building block or the administrative area depending 
on the aim of the study. In a cross-disciplinary study for flood and earthquake vulnerability approaches, Ruiter 
et al.12 suggest that differences between the two disciplines mainly focus on the scale, vulnerability dimension 
(social, physical etc.), individual focus (e.g. local economic sector vs. social factors) and existence of temporal 
components. We attempt herein the transfer of a method used for tsunami to dynamic flooding without making 
significant changes to it based on the similarities of the two processes.

Occasionally natural processes share similar properties. For example, even if tsunami hazards and dynamic 
flooding have many differences, as far as the impact on buildings is concerned, they do share some common 
characteristics. Damage in both cases is related to hydrostatic and hydrodynamic forces as well as buoyancy and 
uplift forces, debris impact, debris damming, and additional gravity loads from retained water and material on 
floors above the ground level13. Nevertheless, there are also many differences including the type of debris (during 
the tsunami waterborne debris such as large boats or shipping containers may cause major damage or debris dam-
ming). Furthermore, tsunamis contain sediment that does not exceed 10% by volume13, whereas during dynamic 
flooding sediment concentration may exceed 50%14. Moreover, in the case of tsunamis additional damage may 
occur due to the “bore impact” (a broken wave that propagates over still water)15 which is not the case for dynamic 
flooding in mountain catchments. Finally, tsunamis affect large and flat coastal areas, whereas flooding in moun-
tain areas often impact small settlements located on steep slopes or within small catchments. For both types of 
hazards empirically-derived vulnerability curves have been used to show the relationship between magnitude 
and the observed degree of loss16,17. However, a comparison of these empirical curves is impossible due to the 
outlined differences in hazard characteristics. Therefore, we test transferability of methods for damage assessment 
by modifying the PTVA that used indicators to assess the vulnerability of buildings exposed to tsunami impact, 
and approach the issue of vulnerability for dynamic flooding in mountain catchments.

Birkmann18 and Fuchs et al.19 define indicators as variables that are “an operational representation of a char-
acteristic or quality of a system”. According to OECD20, the weighting and the aggregation of indicators to indices 
may have a large impact on the resulting rankings21 and, consequently, on decision making22. In the literature, there 
are many available methods both for weighting and aggregating indicators to indices. According to Gan et al.23  
and Fuchs et al.19 the choice of the weighting and aggregation method is related to the objective of the study and 
the spatial and temporal scales used. The use of indicators has many advantages compared to traditional empirical 
loss assessment, including the fact that complex issues are summarized supporting decision making and commu-
nication among stakeholders is facilitated24.

Indicator-based methods for physical vulnerability assessment are limited, however, the number of studies 
using this method is growing rapidly. As far as mountain hazards in torrential catchments are concerned, one of 
the first attempts in this direction was made by Papathoma-Köhle et al.25. An inventory of exposed buildings and 
their characteristics relevant to their susceptibility to landslides including debris flow was generated. The building 
characteristics (indicators) were weighted according to their contribution to the overall building vulnerability 
using expert judgement. An improved version of the method had been provided by Kappes et al.26 and applied in 
France in a multi-hazard environment. It has been recognized that the most significant drawback of the method 
is that process intensities were not considered in the index calculation. Silva and Pereira27 partly closed this gap 
by combining the resistance of the building with the magnitude of the process (in this case shallow landslides), 
an approach that was also chosen by Mazzorana et al.28 and Milanesi et al.29, including information such as the 
construction technique and material, the floor and roof structure, and the number of floors.

Thouret et al.30 as well as Ettinger et al.31 used indicators to assess the physical vulnerability of the built envi-
ronment to debris flow in the Andes. Based on the analysis of high-resolution satellite imagery, Thouret et al.30 
presented an index based on indicators such as building type, number of floors, percentage and quality of building 
openings and roof type for a large dataset. Using the same data together with ground truth observation, Ettinger 
et al.31 reported vulnerability indices based on indicators such as number of stories, building footprint, shape of 
city block and building density as well as distance from channel, distance from bridge and impermeability of the 
soil. Finally, Thennavan et al.32 based on the method of Papathoma-Köhle et al.25 presented physical vulnerability 
indices for buildings in India.

The construction of indices requires a number of steps such as indicators selection, weighting and aggregation. 
In general, indicators selection in the literature has been based until now on arbitrary expert judgement. As far 
as weighting is concerned, according to Beccari33, who reviewed 106 studies on index construction for natural 
hazard risk assessment, most of the studies were based on equal weighting (44 studies), which means that each 
individual indicator has the same impact on the final result, followed by weighting based on statistical methods 
(28 studies), weighting based on participatory methods (19 studies) and weighting based on different – and thus 
more subjective – approaches by the respective authors (13 studies).

In this paper, a new indicator-based approach based on the PTVA method34 is presented based only on rele-
vant data. The method is applied in the European Alps for buildings subject to dynamic flooding. The advantage 
of the method in comparison to already existing studies is the advanced selection and weighting of the indicators 
and their predictive power. Thus, the method can be used in regions that have never experienced the impact of 
dynamic flooding so far, and due to its easy applicability and flexibility, the method may also be used by a wide 
range of professionals such as practitioners, decision makers, or even by homeowners.

The innovative aspects of the presented approach are outlined as follows:
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	 1.	 An existing approach, PTVA, is adapted for a different hazard type (dynamic flooding) in mountain areas, 
giving deeper insights into the interaction between building envelope and hazard dynamics.

	 2.	 An all-relevant feature selection entails that only relevant indicators are considered in the construction of 
the new index, thereby significantly reducing the required amount of data.

	 3.	 The indicator weighting is based on indicator importance of real-world damage data from recent events.
	 4.	 Results of laboratory experiments are used to support the selection of and relevance between indicators.
	 5.	 Given enough data, the method is robust since it is based on an ensemble of tree-based models.
	 6.	 A Physical Vulnerability Index (PVI) for dynamic flooding is computed which can be used for a variety 

of processes without distinguishing between different torrential hazards (flash flood, hyper-concentrated 
flow, fluvial sediment transport, debris flow).

	 7.	 The method is easily transferable to other locations and highly flexible since it can be adapted to local 
conditions.

	 8.	 The PVI can be used in areas without historic record of events and in absence of empirical data to quantify 
the vulnerability of buildings.

	 9.	 The PVI can be used from different end-users including homeowners, local authorities, insurance compa-
nies and emergency services.

The aim of this paper is to describe the adaptation of a method that has originally been established for assess-
ing physical vulnerability for one hazard type to another hazard type occurring in a completely different environ-
ment. Specifically, the procedure and making of a new PVI for torrential hazards based on the PTVA method is 
described (Fig. 1). The paper focuses on the process of indicator selection and weighting based on the importance 
of building characteristics being tested using real-world damage data. The index constitutes a valuable tool for 
decision makers since they can have an overview of the vulnerability of buildings at local level. On this basis, 
they can make decisions regarding evacuation planning, local adaptation measures, larger structural protection 
measures and necessary reinforcement of buildings. Advantages and limitations of the method as well as possible 
future improvements are discussed.

The selection and weighting of the indicators index is based on data from four different case studies in the 
Austrian and the Italian Alps, respectively (Table 1). In most areas the torrential processes were described as 
fluvial sediment transport and only in a few areas the process was identified as a debris flow. The PVI was individ-
ually calculated for all four case studies.

Figure 1.  Methodological flow and aim of the study.

Location
Process 
type Velocity Runoff peak

Mobilized 
material

Catchment 
area (km2)

Average fan 
slope

Buildings 
damaged

Reported 
loss (€)

Schnannerbach 
(Pettneu 
am Arlberg, 
Austria)

Fluvial 
sediment 
transport

3 m/sec 20 m3/sec 35,000 m3 6.6 13% 16 (15 
used) 480,928

Stubenbach 
(Pfunds, 
Austria)

Fluvial 
sediment 
transport

Not available Not available Not available 29.5 10% 60 11,423,257

Fimberbach 
(Ischgl, Austria)

Fluvial 
sediment 
transport

3,2 m/sec 65 m3/sec 3.000 m3 66.3 3% 47 (37 
used) 11,360,010

Plimabach 
(Martell, Italy) Debris flow Not available Not available Not available Not available Not available 61 (51 

used) 8,500,000

Table 1.  Characteristics of the 2005 event in the Austrian case study areas42–45 and the 1987 event in the Italian 
case study46,47.
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Results
The making of the PVI.  A preliminary list of indicators (Table 2) was derived based on previous indices 
(PTVA), expert judgement, literature review and study of damage documentation of past events. Some of the 
indicators are similar to the ones used in PTVA, however, many additional indicators have been identified that 
have been considered relevant to the impact of torrential hazards to buildings. The relevance of some of the indi-
cators was additionally confirmed through laboratory experiments35,36:

In more detail, one of the case studies that are referred to herein (Schannerbach, Pettneu am Arlberg, Austria), 
was used as a case study. The catchment was replicated in the laboratory in a scale 1:30. Three of the buildings that 
were damaged during the 2005 event were equipped with sensors to record the impact pressure on each wall. The 
event of 2005 was simulated in the laboratory and was repeated under 4 scenarios: (i) with buildings surrounding 
the three buildings under investigation, (ii) without surrounding buildings, (iii) with openings (windows and 
doors) and (iv) without openings (plain walls). The results clearly showed that the distance from the torrent 
channel, the existence of surrounding buildings, the height of the debris and the existence of openings may affect 
the impact pressure on the walls in different ways35,36. The scoring of the indicators is described in detail in the 
method chapter below.

Code Data Type Source
Uncertainty (low/
medium/high)

General information

A Area Numeric GIS buildings shapefile Low

H Height Numeric Field survey Low

I Intensity (Height of water 
and debris) Numeric Assessed from damage 

photos High

D Damage (€) Numeric Authorities/municipality Low

Vulnerability Indicators

WV
Water Vulnerability (No of 
inundated stories/no of total 
stories)

Numeric Calculation from intensity 
and number of floors Medium

MAT Material Categorical Field survey Low

FLO Number of floors Numeric Field survey Low

RAI Raised 1st floor Binary Field survey Low

MAI Maintenance status Categorical Field survey High

WALL Wall thickness Numeric Field survey Medium

ORI Orientation Categorical Assessed from orthophoto Low

GEOM Geometry Categorical Assessed from orthophoto Low

PROP Protruding parts Binary Field survey Low

AUX Auxiliary buildings Binary Field survey Low

LOC_OP Location of openings Categorical Field survey Low

H_OP Height of openings Numeric Field survey Low

Q_OP Quality of openings Categorical Field survey High (expert 
judgment)

BAS Existence of basement Binary Field survey

Medium (sometimes 
the surveyor has to 
assume that there 
is or there is no 
basement)

BAS_OP Basement openings Binary Field survey Low

DIS Distance between buildings Categorical Field survey
Medium (it depends 
on the judgement of 
the surveyor)

GR Steepness of the ground Categorical Field survey
Medium (it depends 
on the judgement of 
the surveyor)

SUR_Wh
Height of surrounding wall 
in relation to the expected 
debris/water height

Categorical Field survey High

SUR_Wm Material of surrounding wall Categorical Field survey

Medium (different 
types of walls and 
combination of 
materials uncertainty 
related to how they 
react to the impact)

SUR_B Natural or artificial 
embankment/protection Binary Field survey Low

SUR_V Surrounding vegetation Categorical Field survey/Orthophoto Low

ROW Row of buildings towards 
the flow Numeric Assessed from orthophoto Low

Ex Exposure Numeric Calculated from intensity High

Table 2.  Summary table of raw data characteristics.
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Selection and weighting of vulnerability indicators.  For each case study indicators were collected 
for the buildings that experienced damage during the considered events. Some of the indicators were collected 
during field work, some others were available from the authorities and some were interpreted from photographs.

In more detail, indicators were collected for a total of 163 buildings. Details are provided in Table 2. For 
each of these buildings the degree of loss (the ratio between the reconstruction value of the building and the 
monetary loss) following specific events was known. Each building was assigned with a score for each indicator 
as described in detail in the method section. The feature importance of each indicator on the degree of loss for 
each building was obtained using the random-forest based all-relevant feature selection algorithm Boruta37. The 
Boruta selection revealed two important pieces of information: (a) the relevant indicators that may be used in the 
making of the PVI and (b) the relative importance of these indicators in the physical vulnerability of the buildings 
(Fig. 2). According to the Boruta feature selection, a large number (15) of the indicators were rejected whereas 
only seven indicators perform better than their shuffled duplicates (shadow features) in explaining the degree of 
loss (Table 3). Consequently, the 15 rejected indicators cannot be used for the calculation of the PVI.

Weights were subsequently calculated for the selected indicators as the relative contribution of each relevant 
feature to the total importance of all relevant features by dividing the respective features’ median importance by 
the sum of median importances for all relevant features, resulting in the weightings shown in Table 3.

Based on these results, the PVI equation has been finalized and is provided in the methods chapter (Eq. 5). 
Based on this equation, the PVI for each building was calculated in the four case study areas and the spatial pat-
tern of physical vulnerability is shown in Figs 3, 4, 5 and 6. ArcGIS 10.2 and QGIS 3.8 were used for the creation 
of the maps.

The results of the physical vulnerability assessment can be cartographically displayed by using GIS. A database 
including all the relevant indicators may have multiple uses and allows regular updating. By visualizing vulner-
ability assessment results, a question that arises is related to the classification method used. The classification 
method used in Figs 3–6 for map generation was based on equal intervals, meaning that the difference between 
the high and the low values of each class is the same. The spatial pattern of the PVI shows that the buildings with 
very high PVI are located very close to the hazard source, however, buildings with medium or low PVI do not 
have a specific pattern. A discussion about the available classification methods and an interpretation of the results, 
as well as an interpretation of the maps and their potential application follows in the discussion chapter.

Figure 2.  Attribute importance of confirmed and rejected indicators based on Boruta feature selection.

Indicators Code Weight

Exposure Ex 0.28

Vulnerability to water intrusion WV 0.23

Height of openings H_OP 0.20

Height of surrounding wall SUR_Wh 0.12

Material of surrounding wall SUR_Wm 0.07

Building row towards the torrent ROW 0.06

Orientation ORI 0.04

Table 3.  Indicators to be considered in the index and their weights.
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Figure 3.  PVI for Schannerbach (municipality of Pettneu am Arlberg, Austria). Source background 
map: Geodata Web Services [https://gis.tirol.gv.at/arcgis/services/Service_Public/orthofoto/MapServer/
WMSServer?request=GetCapabilities&service=WMS], Land Tirol 2019, last access: 04.09.2019, license CC-BY 
4.0.

Figure 4.  PVI for Stubenbach (municipality of Pfunds, Austria). Source background map: 
Geodata Web Services [https://gis.tirol.gv.at/arcgis/services/Service_Public/orthofoto/MapServer/
WMSServer?request=GetCapabilities&service=WMS], Land Tirol 2019, last access: 04.09.2019, license CC-BY 
4.0.
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Discussion and Conclusions
This paper describes the making of a new Physical Vulnerability Index (PVI) for buildings exposed to dynamic 
flooding in mountain areas and its application in four case studies in the European Alps. The making of the index 
required the statistical analysis of the correlation between different building characteristics (vulnerability indica-
tors) and the degree of loss following past disastrous events. As far as the reliability of the index is concerned, in 
Fig. 7 it is shown that for the four case studies the PVI is in accordance with the real degree of loss. In detail, the 
PVI is higher for buildings that experienced a high degree of loss and lower for buildings that faced milder losses.

The Boruta feature selection showed which indicators are relevant and should therefore be included in the 
PVI. Even if some indicators have often been reported as relevant in the literature, they were not able to explain 
the degree of loss in the specific dataset. Therefore, with a different data set based on buildings that show a higher 
variation in some characteristics the results would probably be different. For this reason, it is recommended that 
the non-relevant indicators should be collected in more case study areas and used in the future to validate the 
present results. It is possible that with a larger dataset the results of the Boruta selection are different and more 
indicators may be considered relevant.

The variation of the different indicators for the present dataset is shown in Fig. 8. It can be concluded that 
indicators such as the number of floors, the existence of a natural surrounding barrier, and the existence of a base-
ment may have been excluded because in the specific case study most of the buildings had the same scoring for 
these indicators. Consequently, these indicators do not contain enough discriminatory information. On the other 
hand, indicators such as the level of the maintenance, the existence of basement openings and the wall thickness 
were unable to explain the degree of loss although their scoring varies considerably within the dataset. This leads 
to the conclusion that although the use of indices is seemingly not dependent on empirical data, empirical data 
are necessary for the weighting of indicators in the first place. Thus, the resulting equation for the calculation of 
the relative vulnerability index at the moment is still case study specific. However, by including more data from 
different locations, the weighting will change and a universal, robust index may be developed that can be used 
in any area where no event record is available. At the local level, however, the index can still show the relative 
vulnerability of buildings even if indicators such as the existence of basement are not included in the calculation.

The spatial pattern of the new PVI in Figs 3–6 shows the buildings with the highest PVI in red colour. Based 
on this map building owners can consider the adoption of local adaptation measures such as sealing of basement 
windows, building of surrounding wall which will change the scoring of the indicators and reduce the vulnerabil-
ity index. Local adaptation measures are low-cost and efficient measures that can keep water and material outside 
of the building reducing in this way structural damage, damage of the content and threat to life. It is obvious from 
the maps that the PVI depends on many factors other than the location of the building. The distribution of PVI 
is not related only to the distance between the building and the torrent. It is noteworthy that the vast majority of 

Figure 5.  PVI for Fimberbach (municipality of Ischgl, Austria). Source background map: 
Geodata Web Services [https://gis.tirol.gv.at/arcgis/services/Service_Public/orthofoto/MapServer/
WMSServer?request=GetCapabilities&service=WMS], Land Tirol 2019, last access: 04.09.2019, license CC-BY 
4.0.
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the buildings in the municipalities of Pettneu am Arlberg, Pfunds and Martell are residential (Figs 3, 4 and 6). On 
the contrary, the vast majority of the buildings in Ischgl (Fig. 5) are hotels with a very high density of population 
mainly in winter but also in summer months. The overlay of the vulnerability map with information regarding 
the density of the population or the location of vulnerable groups (children, elderly) could be used by emergency 
services as a basis for planning their response to a crisis. The vulnerability maps may be used by local emergency 
services by locating vulnerable groups living in buildings with high PVI without delay following the event. In case 
of clusters of buildings with high PVI (which is not the case in our maps), local authorities could consider the 
construction of structural measures to protect this cluster of buildings.

The resulting vulnerability maps and the corresponding decisions for disaster management are very much 
dependent on the classification method of the vulnerability categories38. In Figs 3–6 the “equal interval” classifica-
tion scheme is used. The “equal interval” method is based on the principle that every class has the same difference 

Figure 6.  PVI for Plimabach (municipality of Martell, Italy). Source background map: Geodata Web Services 
[http://geoservices.buergernetz.bz.it/geoserver/ows?service=wms&version=1.3.0&request=GetCapabilities], 
Autonomous Province Bolzano-South Tyrol 2019, last access: 04.09.2019, license CC-BY 4.0.
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between the lower and the higher value. In this way, the presented information is easy to interpret and to be com-
prehended by a non-technical audience. A different classification scheme, however, such as the “quantile” mode 
(each class contains an equal number of features) is better for setting priorities, e.g. the top 10% of vulnerable 
buildings will be retrofitted. The “standard deviation” scheme (classes based on how much a feature’s attribute 
varies from the mean), on the other hand, may be used in case PVI values over a certain level may be considered 
unacceptable by the authorities. However, by using the “standard deviation scheme” one must consider that the 
PVI is an abstract relative value and the average value will be skewed by the very low vulnerability values.

The present paper demonstrated the stepwise development of an index to assess the physical vulnerability of 
buildings to dynamic flooding (including hyper-concentrated flow, debris flow, etc.). However, it is important to 
stress that the presented research and results were subject to a number of assumptions and limitations: (a) the data 
were collected mainly in the field. Limited visibility due to vegetation or difficulty to assign buildings in a specific 
category is one of the main sources of uncertainty; (b) the degree of loss is the ratio between the monetary damage 
and the reconstruction value of the building. The degree of loss may seem low if the building for any reason (e.g. 

Figure 7.  The PVI for each building and the resulting degree of loss in the four case studies from the European 
Alps.
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many floors) has a very high reconstruction value; (c) the intensity of the process has been often identified from 
photos that were not always of an excellent quality.

Finally, the main outcomes of the study may be outlined as follows:

•	 It is possible to transfer methods for vulnerability assessment from one hazard type to another.
•	 The relevant features (indicators) required for such an assessment are less than it has been initially suggested.
•	 Indicator-based methods are simple methods that may support decision-making regarding disaster risk 

reduction in anticipation of change.
•	 An element at risk database containing indicators regarding the physical vulnerability of buildings to multiple 

hazards may be a valuable tool in the hands of local authorities, emergency planners, engineers, scientists and 
insurance companies.

•	 The method can be transferred to areas with similar architecture without newly adapting the weights even if 
no record of respective dynamic flooding is available. In the future, using additional data from case studies 
with different building types and architecture the PVI can become generic and be used anywhere in the world.
The present paper opens the way for future research including the following:

•	 The method can be used in order to assess the BBB (Build Back Better) of settlements affected by natural 
hazards. The PVI index can be assigned to each building using data before and after the event provided that 
the data are available.

•	 More research has to be done to enable access to more and better quality data. Innovative methods for data 
collection as well as post-event documentation are required.

•	 Data from future events have to be collected continuously to improve the statistical analysis of the indicators 
and eventually the weighting. Additional data may show that more indicators are relevant and have to be used 
for the calculation of the PVI. For this reason, it is recommended that detailed sets of indicators including 
relevant and non-relevant indicators are collected.

•	 The use of additional resilience indicators has to be considered. Damaged buildings lose their functionality 
due to a number of characteristics including the type of floor, the location of vital equipment related to the 
electricity network, the heating or the water supply, etc. This information should be also included in an inven-
tory database of elements at risk.

•	 The index may be expanded to include vulnerability indicators for more hazard types enabling in this way a 
multi hazard approach to physical vulnerability.

Finally, the physical vulnerability of buildings should be analysed and assessed in a wider framework of vul-
nerability and should be seen in an institutional context and in combination with socio-economic data.

Methods
The construction of the PVI is based on the recommendations of the Handbook on Constructing Composite 
Indicators20.

Theoretical framework.  The theoretical framework should define the concept, the indicators and the selec-
tion criteria20. Herein, the theoretical framework should include a definition of vulnerability. The UNISDR39 
definition of vulnerability is used and the method is adjusted to it. Thus, vulnerability comprises “the conditions 
determined by physical, social, economic and environmental factors or processes which increase the susceptibil-
ity of an individual, a community, assets or systems to the impacts of hazards”.

Selection of variables.  The approach presented here is based on the PTVA, a method for vulnerability 
assessment originally developed for tsunami hazards. Given the differences between the two processes (tsunami 
and torrential hazards) the collection of additional indicators is considered essential. The indicators considered 
are shown in Table 2.

Scoring and normalization of data.  Categorical, numeric and binary raw data were collected. Each indi-
cator was given a score which allows the comparison with the other indicators (normalization). The scores are 

Figure 8.  The share of the most frequent factor level for the set of indicators used (for the abbreviation of the 
indicators see Table 2).
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based on the PTVA method34. The Relative Vulnerability Index (RVI) developed in PTVA34 is given by the fol-
lowing equation:

= +RVI WV SV1/3 2/3 (1)

where WV is the vulnerability to water intrusion (number of inundated levels/number of all levels), and SV is the 
Structural Vulnerability which is the product of Building Vulnerability (BV), Protection (Prot) and Exposure (Ex):

SV BV Ex Prot (2)= × ×

Dall’Osso et al.34 assume that the overall Relative Vulnerability Index (RVI) is equal to 2/3 of the SV and 1/3 of 
the WV. We consider this assumption arbitrary. Therefore, we use WV and Ex as any other indicators and we test 
their relevance using statistical methods.

Each indicator related to the Bv (Table 4) and to Prot (Table 5) was given a score ranging from 1 to 5 according 
to whether and to which degree the specific characteristic contributes to a decrease or an increase of the overall 
physical vulnerability of the building respectively. The Ex is given by the depth of water expected at the building 
location. The scoring of the indicators related to the WV and the Ex are shown in Table 6.

Weighting and aggregation.  The different versions of the PTVA used expert judgement, AHP and ques-
tionnaires to define the weight of the indicators. Herein, we perform a different weighting based on the feature 
importance of each indicator with the actual degree of loss during past events (Table 3).

Determining weights for available input variables is one of the most important aspects of calculating a vul-
nerability index due to potentially large effects of different feature weights on the outcome. From a statistical 

Indicator 1 2 3 4 5

MAT Stone Mixed Brick Wood

MAI Very good (new) Good Average Very bad

FLO Multi-storey building Single-storey building

RAI Yes No

WALL 1 m 0.5 m 0.3 m

ORI Parallel to the flow Square building Perpendicular to the 
flow

GEOM Solid Long parallel to 
the flow

Long 
Perpendicular 
to the flow

Complicated

PROP No Yes

AUX No Yes

LOC_OP Back side or no 
openings Side Flow side

H_OP
More than or equal to 
the expected intensity: 
H > I or H = I

Less than the expected 
intensity: H < I

Q_OP Good/very good Average Bad (or all glass 
facade)

BAS No Yes

BAS_OP No, or covered Yes, no flow 
side Yes, flow side

DIS Attached Large Medium Small

GR Flat Mild Steep

Table 4.  The scoring of indicators related to the Building Vulnerability (Bv).

Indicator 1 2 3 4 5

Surrounding 
vegetation (SUR_V) In forest High bushes/dense 

vegetation Single trees Low vegetation No vegetation

Building row towards 
the torrent (ROW) >5 4 3 2 1

Natural or artificial 
barrier (e.g. 
embankment)SUR_B

Yes No

Material of 
surrounding wall 
(SUR_Wm)

Stone/brick/concrete Mixed 
(concrete + wood) Wooden fence Wire fence No wall

Height of surrounding 
wall (SUR_Wh) H > 80% of water depth 60% < H < 80% of 

water depth
40% < H < 60% of 
water depth

20% < H < 40% of 
water depth

0% < H < 20% of 
water depth

Table 5.  The scoring of indicators related to the protection (Prot).
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point of view this is closely related to the aspect of feature selection in model construction. Given data sparsity 
in a high-dimensional feature space, removing redundant or irrelevant variables is an important step towards 
reducing input data dimension and consequently increasing model performance. Essentially, variable selection 
is characterized by a trade-off between bias and variance: with increasing model complexity, bias decreases while 
variance increases, eventually leading to overfitting and poor model generalization performance40.

Classical machine learning approaches are often targeted towards obtaining the best predictive models given 
available training data. Therefore, their focus is on finding a minimal number of features that is optimal for classi-
fication, thereby solving the so-called minimal-optimal problem. While this may result in best possible predictive 
performance, any model constructed using a minimal-optimal strategy is merely a black box. This poses some 
restrictions on interpretability, because minimal-optimal attributes are typically determined by technical factors 
(i.e. a favourable signal-to-noise ratio) rather than causal relationships between independent features and the 
dependent variable. However, if the focus is on inference instead of prediction, one is usually primarily inter-
ested in understanding the underlying mechanisms linking predictors to the subject of interest, thus, requiring 
information on all attributes that are somewhat causally related to the target variable. This emphasis on causal 
significance between the selected feature set and the target variable leads to the all-relevant problem. An excellent 
description and discussion of these two concepts is provided by Nilsson et al.41.

In the present case, we are interested in identifying all attributes that are – at least in some circumstances –  
relevant for determining the degree of loss. Therefore, our feature set is obtained by employing Boruta, an 
all-relevant feature selection algorithm based on random forests37. Essentially, Boruta is a permutation-based 
testing strategy that relies on comparing the relevance of each single feature to randomly shuffled copies of all 
variables (“shadow attributes”). By conducting two-sided tests of equality on the Z score (i.e. the standardized 
and normalized accuracy loss) between each attribute and the best performing shadow attribute, all features are 
iteratively flagged as important (i.e. significantly more important than the shadow attributes) or unimportant (i.e. 
significantly less important than the shadow attributes).

In order to obtain optimal results, random forest hyperparameter tuning was performed prior to using Boruta 
to define (i) the number of variables to possibly split at in each node, (ii) the minimum node size as well as (iii) 
the number of trees, using an exhaustive grid search with cross-validation. The resulting Boruta feature selection 
revealed seven relevant features (Fig. 2).

The equation used for the calculation of the relative vulnerability index used in the present paper is the 
following:

( )PVI w WV w Ex w I w I( ) (3)b
m

b b
BV

p
n

p m p
Prot

1 2 1 2 1 2∑ ∑= × + × + += + = + +

where PVI indicates the Physical Vulnerability Index, WV is the vulnerability to water intrusion, Ex is the expo-
sure, I denotes the indicators used for building vulnerability (superscript BV) and protection (superscript Prot), 
m and n denote the number of relevant indicators for BV and Prot respectively, and w is the weight of each indi-
cator. Weightings (wi) are calculated as relative contribution of each relevant feature to the total importance of all 
j relevant features by dividing the respective features’ median importance (fi ) by the sum of median importances 
for all relevant features:





=
∑ =

w
f

f (4)
i

i

j
N

i1

Based on the resulting weighting (Table 3) the final equation used for each building is:

WV ExPVI ( 0 23) ( 0 28) (H 0 20) (SUR 0 12) (SUR 0 07)

(ROW 0 06) (ORI 0 04) (5)
OP Wh Wm= × . + × . + × . + × . + × .

+ × . + × .

where WV: the vulnerability to water intrusion, Ex: the exposure, HOP: the height of windows, SURWh: the height 
of the surrounding walls, SURWm: the material of the surrounding walls, ROW: the building row towards the tor-
rent and ORI: the orientation of the building.

The PVI index and classification.  The choice of the classification method is closely related to the aim of 
the vulnerability assessment (e.g. priority settings, reinforcement priority or funding allocation, support for deci-
sion making) and it can be misleading. The most commonly used classification methods in GIS are natural breaks 
(Jenks), equal interval, quantile (equal counts) and standard deviation. The choice of the classification method is 
related to the use of the vulnerability map.

Presentation and dissemination.  In general, indicators and indices may be visualized in tables, bar or line 
charts or trend diagrams20. However, due to the geographical nature of the PVI, and the need to communicate the 

Indicator 1 2 3 4 5

Vulnerability to Water 
Intrusion (WV) [0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1]

Exposure (Ex) 0–1 m 1–2 m 2–3 m 3–4 m >4 m

Table 6.  The scoring of indicators related to the vulnerability to water intrusion (WV) and Exposure (Ex).
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information to a large number of stakeholders (e.g. local authorities, emergency services and the public) the use 
of geographical information systems is the most appropriate way of representation.

Data availability
The dataset generated and analysed in the present study may become available upon request.
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