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Abstract

The evolution of HIV-1 protein sequences should be governed by a combination of factors including nucleotide muta-
tional probabilities, the genetic code, and fitness. The impact of these factors on protein sequence evolution is inter-
dependent, making it challenging to infer the individual contribution of each factor from phylogenetic analyses alone. We
investigated the protein sequence evolution of HIV-1 by determining an experimental fitness landscape of all individual
amino acid changes in protease. We compared our experimental results to the frequency of protease variants in a publicly
available data set of 32,163 sequenced isolates from drug-naı̈ve individuals. The most common amino acids in sequenced
isolates supported robust experimental fitness, indicating that the experimental fitness landscape captured key features
of selection acting on protease during viral infections of hosts. Amino acid changes requiring multiple mutations from the
likely ancestor were slightly less likely to support robust experimental fitness than single mutations, consistent with the
genetic code favoring chemically conservative amino acid changes. Amino acids that were common in sequenced isolates
were predominantly accessible by single mutations from the likely protease ancestor. Multiple mutations commonly
observed in isolates were accessible by mutational walks with highly fit single mutation intermediates. Our results
indicate that the prevalence of multiple-base mutations in HIV-1 protease is strongly influenced by mutational sampling.
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Introduction
Mutations are important to HIV-1 and many other viruses
because they enable evasion of immune recognition (Nowak
et al. 1991) and escape from antiviral drug treatments (Kantor
et al. 2004). For example, when the mutation rate was re-
duced by engineering a high-fidelity polymerase in polio, the
resulting viruses had an impaired ability to infect and colonize
in mice (Pfeiffer and Kirkegaard 2005; Vignuzzi et al. 2006).
Similar observations of reduced infectivity for engineered
high-fidelity viruses have been made in chikungunya virus
(Coffey et al. 2011) and human enterovirus 71 (Meng and
Kwang 2014). In HIV-1, mutations that either increase or de-
crease the mutation rate show reduced replication efficiency
in cell culture (Dapp et al. 2013), suggesting that the mutation
rate of HIV-1 has been subject to natural selection.

HIV-1 generates mutations as an inherent part of its infec-
tion cycle. HIV-1 is an RNA virus that replicates in host cells
through a DNA intermediate. The process of reverse tran-
scribing viral RNA into DNA is error prone and is a main
contributor to the mutations that HIV-1 accumulates
(Preston et al. 1988; Cuevas et al. 2015). The error rate of

HIV-1 replication in cell culture has been measured as 3 �
10�5 mutations per base per replication cycle (Mansky 1996).
This corresponds to one mutation for every two to three
genomes of HIV-1. In addition to errors that occur during
genome copying, additional mutations are caused after syn-
thesis by host cytidine deaminases. Recent analyses of the
frequency of null alleles of HIV-1 integrated as proviruses
within host DNA, but incapable of infection (Cuevas et al.
2015), indicate that the in vivo error rate may be higher than
estimates from cell culture. Of note, these findings may be
influenced by selection pressure that should disfavor func-
tional proviruses that would kill the parental cell unless si-
lenced. Because of the large number of virions in an infected
individual, even conservative estimates of the error rate lead
to tremendous genetic diversity. In a widely cited review
(Perelson 2002), modeling of HIV-1 infection kinetics indi-
cated that, “mutations will occur in every position in the
genome multiple times each day and that a sizeable fraction
of all possible double mutations will also occur.”

Although mutations in HIV-1 occur at the nucleic acid
level, many of the functional impacts are caused by changes
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in the encoded protein sequence (Zanini et al. 2017). The
amino acid changes that are efficiently sampled by HIV-1
depend on multiple factors including the probabilities of dif-
ferent types of nucleic acid mutations and the genetic code.
Single-nucleotide mutations are the most frequent errors
generated when HIV-1 replicates (Mansky 1996; Abram
et al. 2010). Amino acids that are accessible by a single mu-
tation from the parental sequence should be more frequently
sampled during HIV-1 infection and evolution. Within the
genetic code, amino acids with similar physical and chemical
properties are encoded by nearby codons making it likely that
single-nucleotide mutations will cause conservative amino
acid changes (Woese 1965). Detailed analyses indicate that
strong selection acts on the genetic code (Sengupta and Higgs
2015) and that only one in a million random genetic codes is
as effective at minimizing disruptive amino acid changes from
single-base mutations (Freeland and Hurst 1998). Amino acid
changes that require multiple-base mutations could be infre-
quent due in part to disruptive amino acids causing fitness
defects.

Here, we sought to understand how the genetic code
impacts protein evolution in HIV-1 where most if not all
single-nucleotide mutations are sampled within an infected
individual. We chose to focus on protease for a number of
reasons including a wealth of available sequence data, the
relatively small size of the 99 amino acid gene that expedited
experimental analyses, and the lack of antibody pressure on
protease during infection that facilitated comparison of cell
culture experiments with selection in hosts. Of note, muta-
tions in protease can influence immune recognition of pep-
tides displayed on major histocompatibility complex of
infected cells, but it is not clear how this impacts selection
on protease sequence (Mueller et al. 2011). We observed that
many amino acids requiring multiple mutations were infre-
quent in sequenced isolates yet were compatible with effi-
cient viral replication. Despite the extensive genetic diversity
of HIV-1 within an infected individual, our results indicate
that inefficient sampling of amino acids requiring multiple
mutations in protease has strongly impacted its evolution.

Results and Discussion

Analyses of Protease Sequences from Isolates
To explore mutation and selection acting on circulating HIV-
1 in the absence of drug pressure, we analyzed the amino acid
sequence of protease (Shafer et al. 2000) from 30,987 protease
inhibitor–naı̈ve people infected with subtype B HIV-1 (fig. 1).
We calculated the frequency of each amino acid at each po-
sition in protease as an estimate of fitness independent of
genetic background. As with many previous analyses of HIV-1
sequence evolution (Humphris-Narayanan et al. 2012;
Ferguson et al. 2013; Butler et al. 2016; Flynn et al. 2017;
Louie et al. 2018), we assume that the sequence prevalence
in isolates represent a steady-state distribution. Evolutionary
simulations have shown that immune pressure on HIV-1 ef-
fectively performs extensive sampling of viral sequence space,
making the steady-state assumption reasonable (Shekhar
et al. 2013). In addition, fitness landscapes of HIV-1 inferred

from multiple-sequence alignments directly, with no correc-
tion for ancestry, correlate with experimental fitness measure-
ments (Ferguson et al. 2013). The steady-state assumption is
counterintuitive because evolution is dynamic by nature, and
although there is abundant evidence showing that protease
sequence is currently at steady state, there is no guarantee
that this will remain the case indefinitely. Of note, the steady-
state assumption is also consistent with the experimental
results in this work when variation in experimental measure-
ment is taken into consideration.

Analyses of HIV-1 sequences indicate a symmetric radial or
star pattern of evolution (Flynn et al. 2017), such that the
consensus sequence is a likely ancestral sequence. Consistent
with this line of reasoning, we observed that the consensus
sequence is the most abundant sequence, representing 2.5%
of sequenced isolates (supplementary fig. S1, Supplementary
Material online). The sequence of protease in our experimen-
tal system (pNL4.3) is the consensus of the sequenced isolates
indicating that it represents the likely ancestral sequence.

The majority of possible amino acids were observed rarely
or not at all in isolates (fig. 1A), indicating that protease
function is subject to strong purifying selection and that
the likely ancestral sequence is highly adapted. Amino acids
that were not accessible from the consensus by single muta-
tions were underrepresented in the sequenced isolates.
Although 79% of amino acids that were one mutation from
the consensus were observed in isolates, 73% of amino acids
two base substitutions away were not observed (fig. 1B).
There are two main reasons that an amino acid may be at
low frequency in a population: mutation and selection. If an
amino acid causes a fitness defect, selection will drive it to low
frequency. For neutral amino acids without any fitness effects,
the probability of the amino acid will be proportional to the
rate at which mutations cause the amino acid (Kimura 1983).
The disproportionate fraction of multiple mutations that
were unobserved could be due to limited mutational proba-
bilities (fig. 1C), and/or fitness distributions skewed toward
deleterious relative to single mutations (fig. 1D). We investi-
gated these possibilities further by experimentally determin-
ing a protein fitness landscape for HIV-1 protease.

Quantification of Experimental Fitness
We performed an EMPIRIC (Hietpas et al. 2011) mutational
scan of the HIV-1 protease gene as outlined in figure 2A. We
individually randomized each amino acid position of protease
in the NL4-3 strain of HIV-1 and quantified the experimental
fitness of each possible mutation during infection of a T-cell
line using a deep sequencing readout that our lab had previ-
ously developed and adapted to analyze HIV-1 (Duenas-
Decamp et al. 2016). Based on our previous work, the errors
from processing and sequencing using this approach are a
small fraction compared with the frequency of the vast ma-
jority of mutations in our initial libraries. Stop mutations
provide an additional useful check on the reliability of the
experimental measurements. For example, if the frequency of
a stop mutation were primarily due to sequencing errors,
then it may persist in the sequencing readout and appear
highly fit. Fitness measurements were scaled as selection
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coefficients (s) where 0 corresponds to wildtype (WT) or
neutral and �1 corresponds to a null allele defined based
on premature stop codons (see Materials and Methods).
Across the sequence of protease, premature stop codons
cause severe fitness defects (supplementary table S1,
Supplementary Material online), indicating that sequencing
noise rarely if ever prevents observation of strong fitness
defects.

Synonymous mutations provide an additional type of in-
ternal control. Across the sequence of protease, synonymous
mutations tended to exhibit estimated selection coefficients
centered on 0 (supplementary fig. S2, Supplementary Material
online), suggesting that fitness impacts were primarily deter-
mined by amino acid changes. Of note, synonymous muta-
tions showed statistically significant deviations from neutral
expectations in two 14 amino acid windows: at the beginning
of protease and centered at amino acid position 54 (supple-
mentary fig. S2, Supplementary Material online). The esti-
mated selection coefficients of synonymous mutations at
the beginning of protease are consistent with selection on
the amino acid sequence of the p6 reading frame that over-
laps with this region of protease (supplementary fig. S3,
Supplementary Material online) as has been previously ob-
served for the region of overlap between tat and rev genes in
HIV-1 (Fernandes et al. 2016). We do not have explanations
for the observed effects of synonymous mutations at the
region centered on position 54 of protease. The effects of
synonymous mutations between experimental replicates
showed weak correlation (R2 ¼ 0.01, supplementary fig. S2,
Supplementary Material online), suggesting that much of the
observed effects arose from experimental variation or noise.
To reduce the impacts of noise, we chose to estimate the

effects of each amino acid change in protease by summing
sequencing counts over all synonyms (supplementary table
S1, Supplementary Material online).

To assess the reliability of our fitness estimates, we com-
pared estimated selection coefficients for technical repeats for
three regions encompassing 30 of the 99 amino acid positions
in protease (fig. 2B). The estimated selection coefficients for
amino acids tended to cluster around neutral (s¼ 0) and null
(s¼�1), as has been almost universally observed for system-
atic or random mutation studies (Jiang et al. 2013; Canale
et al. 2018). The neutral cluster and the null cluster are well
distinguished in both experimental replicates. Overall, the
experimental replicates were linearly correlated with an inter-
cept close to 0, a slope close to 1, and R2 ¼ 0.82 indicating
that normalization of data between replicates was effective.
Analyses of the difference between replicate experiments
indicate that small effect mutations had less measurement
variance than mutations with severe fitness defects (fig. 2B)
consistent with greater sampling of fit variants in sequencing.

Single and Double Nucleotide Mutations
Single-base mutations tend to cause chemically conservative
amino acid changes compared with changes that are more
distant in the genetic code, requiring two or more mutations.
We examined the experimental protein fitness landscape ac-
cessible by single and multiple mutations (fig. 3). To account
for the potential accumulation of synonymous mutations, we
considered the minimum number of mutations required to
change between each pair of amino acids. Using this ap-
proach, there were 827 single mutations from the likely an-
cestral protease sequence, and 1,063 double mutations.
Because the third position in codons is often degenerate,

A

1-base 2-base 3-base

Fi
tn

es
s

1-base 2-base 3-base

Fi
tn

es
s

C
Limited mutational probabilities

Fitness defects

0

0.25

0.5

-4 -2 0-∞
Log10 frequency

Fr
ac

ti
o

n

D

0

0.5

1

1-base 2-base 3-base
Mutations from consensus

Fr
ac

ti
o

n
 u

n
o

b
se

rv
ed

 a
m

in
o

 a
ci

d
s

B

***

***

FIG. 1. Amino acid frequencies of patient derived HIV-1 protease indicate biased accumulation of single-base mutations. (A) Frequency distri-
bution of amino acids observed in sequenced isolates. More than 50% of amino acids were not observed. (B) The fraction of unobserved amino
acids requiring one, two, or three mutations from a likely ancestral protein sequence. We used a v2 test for statistical significance and *** indicates
P< 0.00001. (C) Depiction of fitness landscapes where all mutations exhibit similar fitness and biases for single mutations would come entirely
from mutational probabilities. (D) Potential landscapes that exhibit strong fitness preference for amino acid changes accessible by single-nucle-
otide conversions.
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there are very few amino acid changes the require triple
mutations, and there were 90 for protease. Because of the
small number of triple mutations and biases in where they
were located on the protease structure, we focused our anal-
yses on single and double mutations.

The distributions of estimated selection coefficients for
both single and double mutations were bimodal with clusters
near null and neutral (fig. 3A). Indicating that the tendency
for amino acid changes to cause all or none impacts on fitness
is not dependent on single or double mutations. This obser-
vation is consistent with the capability of both single and
double mutations to cause small or large changes in the
physical properties of amino acids. For example, a single mu-
tation can cause a small physical change from aspartate to
glutamate, or a large physical change from aspartate to tyro-
sine. The genetic code biases for conservative amino acid
changes by single mutations, but it does not prevent single

mutations from causing dramatic amino acid changes. We
used variation in measurements of the WT amino acids at
each position (including synonyms) to define a range of WT-
like experimental fitness and assessed the proportion of single
and double mutations that were in this range (fig. 3B). Amino
acids caused by single mutations were significantly more likely
to exhibit WT-like fitness than those caused by double muta-
tions, consistent with the bias of the genetic code for phys-
ically conservative amino acids. This difference is significant
because of a combination of the quantity and quality of ex-
perimental measurements, though the effect size is modest.
Our analyses indicate that an amino acid change caused by a
double mutation was roughly 80% as likely to display WT-like
fitness compared with a change caused by a single mutation.

Estimated Selection Coefficients Compared with
Frequency in Circulating Variants
We compared experimental fitness with the frequency of
amino acids at each position in the inhibitor-naı̈ve HIV-1
sequences (fig. 4). The most frequently observed amino acids
in isolates tended to have WT-like fitness in the NL4-3 genetic
background under the conditions of our experiments.
Among amino acid states at frequency below 0.003 in the
isolates, many were null-like in NL4-3. Epistasis provides one
explanation for this observation as the fitness of these amino
acids could depend strongly on genetic background. In future
work, it will be interesting to use the experimental fitness
measures to guide analyses of epistasis. For the purposes of
this study, we chose to focus on mutations where fitness in
our experiments is likely a fair indicator of the fitness or mu-
tational sampling of these mutations in circulating viral pop-
ulations. Because strongly deleterious alleles are extremely
unlikely to rise to high frequency (Ohta 1973), our findings
indicate that for commonly (f> 0.003) observed amino acids,
experiments with NL4-3 provide a reasonable estimate of the
fitness effects of mutations in circulating HIV-1. Of note, this
does not necessarily mean that epistasis is uncommon or
unimportant in HIV-1 protease as epistasis is a general feature
of protein evolution (Pollock et al. 2012) that has been shown
to mediate HIV-1 protease function (Hinkley et al. 2011).
Rather, NL4-3 protease is the consensus of clinical sequences,
and the common clinical amino acid changes in protease may
frequently occur on a genetic background that is similar
enough to NL4-3 to have closely related effects.

Amino acids that were rarely observed in isolates (gray
dots in fig. 4A) displayed a wide range of experimental fitness
in NL4-3. We considered different potential reasons for this
range of fitness. We considered the possibility that viruses
may expand more readily during infections of human hosts
than in cell culture. However, this seems unlikely as cell cul-
ture is generally a more permissive environment compared
with hosts because there is no immune pressure (Vignuzzi
et al. 2006). Epistasis may provide an explanation for the
infrequently observed clinical amino acids that have a strong
fitness defect in NL4-3, as the genomes where these amino
acids occur could have accumulated secondary permissive
mutations.
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We also considered that null alleles may appear from se-
quencing errors in the database and/or from sequencing of
noninfectious viral particles that could be generated from
activated proviruses with genetic defects (Maldarelli et al.
2014). We cannot distinguish between these mechanisms
because they both cause similar appearances of null alleles
in isolates. Consistent with these mechanisms, stop codons
were present in the protease sequence database. To estimate

the likelihood of observing a null protease allele in the data-
base, we compared the number of observed stop codons
(127) to the number of single-base mutations from the likely
ancestral sequence that could lead to a stop codon (98).
Based on this ratio, we explored how many null amino acids
we may expect to find in the sequenced isolates. We defined
amino acids as null if they had estimated selection coefficients
within two standard deviation of the average stop codon in
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the EMPIRIC scan (supplementary table 1, Supplementary
Material online). There were 1,001 single mutations that
could lead to a null amino acid. Based on the ratio of stop
codons to single-base mutational pathways to stop codons,
we expected roughly 1,300 null amino acids accessible by
single-nucleotide mutations in the clinical database. We ob-
served 1,061, which represents 82% of expectations based on
the number of stop codons in the database. These findings
indicate that termination codons and most experimentally
null alleles seen in the database are likely generated by similar
mechanisms, which could be errors in sequencing or non-
viable viral lineages.

As each stop mutation accessible by a single mutation
from the consensus was observed about once in sequenced
isolates, we used this as a cutoff for amino acids that are likely
either unfit and/or poorly sampled in natural evolution.
Similarly, we used a frequency cutoff >0.003 to delineate
mutations that are likely highly fit and well sampled in natural
evolution (fig. 4A). Eighty-six percent of high frequency amino
acids were accessible by single mutations (fig. 4B), consistent
with mutational sampling having a large impact on the ge-
netic diversity of HIV-1 protease. Seventeen percent of infre-
quently observed amino acids were accessible by single
mutations. These infrequently observed single mutations
were predominantly strongly experimentally deleterious
(fig. 4B), indicating that single mutations that are experimen-
tally fit are also fit and efficiently sampled during the natural
evolution of HIV-1. In contrast to single mutations, the ex-
perimental fitness distribution of infrequent double muta-
tions was bimodal with peaks that overlapped either null or
neutral. The neutral peak indicates that many fit double
mutations are inefficiently mutationally sampled during nat-
ural evolution. Together, these observations indicate that
HIV-1 thoroughly samples single-nucleotide mutations, con-
sistent with previous modeling (Perelson 2002); and selection
is a primary determinant of infrequent single-base mutations
in sequenced isolates.

Predicting Mutation Frequency in Sequenced Isolates
There are multiple factors that complicate comparison of the
local protein fitness landscape with amino acid frequency
observed in isolates including experimental noise, mutational
sampling, and epistasis. Because of noise in our experiments,
actual selection coefficients may differ from our estimates.
The frequency of mutations in isolates is mediated by a com-
bination of selection and mutational probabilities. Because
the protein fitness landscape that we determined is based
only on selection, adding a mutational model should improve
the prediction of the frequency in isolates. Epistasis has been
shown to impact frequencies in sequenced isolates (Flynn
et al. 2017) as the probability of a mutation depends on
fitness in different genetic backgrounds (Hinkley et al.
2011). Both epistasis and experimental noise will contribute
to differences between predicted and actual frequencies.

We considered these complications as we explored rela-
tionships between amino acid frequency in sequenced iso-
lates and the experimental protein fitness landscape (fig. 5).
Estimated selection coefficients correlate with amino acid

frequency in isolates (fig. 5A) largely driven by a cluster of
mutations with severe experimental fitness defects that were
also rarely or never observed in sequenced isolates. This clus-
ter is consistent with the precision of our estimated selection
coefficients to clearly distinguish strongly deleterious muta-
tions from those that are capable of efficient replication. In
addition, these results indicate that epistasis in protease
among drug-naı̈ve hosts infrequently leads to genetic back-
grounds that rescue mutations with null-like fitness defects in
the likely ancestral background.

To investigate contributions of mutational sampling to
amino acid frequency, we used a steady-state quasispecies
model that combined experimental fitness without epistasis
and a simple mutational model based on the error rate (3�
10�5 per site per generation) during HIV-1 replication in cell
culture (fig. 5B). This approach did not improve the correla-
tion between the fitness landscape and frequency in se-
quenced isolates. Of note, the quasispecies model caused a
stratification of amino acids that are visible as four vertical
groupings of data points in figure 5B. In addition, the quasis-
pecies model predicted rare amino acids that were orders of
magnitude lower in frequency than most corresponding
observations in isolates. In figure 5B, the right-most vertical
group corresponds to the amino acid at each position with
the highest estimated experimental fitness, which resulted in
a dominant steady-state sequence that differed at multiple
positions from the likely ancestor of the isolates. The apparent
adaptive mutations in the fitness landscape are consistent
with expected experimental noise (fig. 2) which has a large
impact on predicted frequency for these mutations.

We were concerned that differences between the domi-
nant quasispecies sequence and the likely ancestral sequence
of the isolates might complicate further interpretations.
Based on the assumption that the likely ancestral sequence
was strongly selected and thus highly fit and that estimated
adaptive mutations were largely due to measurement error,
we explored fitness landscapes that we artificially manipu-
lated by setting a fitness ceiling for non-WT amino acids
(fig. 5C). We examined different ceilings and found that
they resulted in similar correlations between predicted and
observed frequency. For presentation purposes, we used a
ceiling that favored WT amino acids by 4% in fitness relative
to other amino acids. Adding this fitness ceiling improved the
correlation between modeled and isolate frequencies, indicat-
ing that noise in experimental measurements around neutral
fitness can translate into large impacts on predicted
frequency.

Because the use of a fitness ceiling for non-WT amino acids
is artificial, we were cautious to limit further analyses to prop-
erties such as mutation rate that may be robust to this ma-
nipulation. In the quasispecies model, mutation rate will
influence the likelihood of single, double, and triple muta-
tions. Since the ceiling is applied to each of these types of
amino acid changes, it should not have a large impact on the
predicted likelihood of single, double, and triple mutations.
Indeed, the second through fourth vertical groups were qual-
itatively similar to the unadjusted fitness landscape. In both
models, these groups consisted of amino acids that are one,
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two, and three mutations away from the sequence with the
highest fitness. In the ceiling model, there are fewer apparent
triple mutations in isolates because the dominant sequence is
the WT. With the ceiling, a linear fit (fig. 5C) still predicts rare
amino acids orders of magnitude lower than observations in
isolates. Together, these observations indicate that the
mutation rate in the model is too low to account for
the observed frequencies. We considered how experimen-
tal noise and epistasis may influence the observed corre-
lations. We expect that experimental noise would be
randomly distributed and would not contribute to the
observed grouping of single, double, and triple mutations.
Similarly, we expect epistasis to favor some amino acids
and disfavor others and not to influence the grouping of
single, double, and triple mutations. Thus, cautious inter-
pretation of our results indicates that the mutation rate
of HIV-1 in hosts may be higher than the mutation rate in
cell culture consistent with a recently reported error rate
of 4 � 103 based on the intrapatient frequency of stop
codons (Cuevas et al. 2015).

We examined how the mutation rate measured within
hosts impacted the quasispecies model. With a ceiling-
manipulated fitness landscape, we find that the higher
mutation rate (fig. 5D) provides an improved correlation
between the quasispecies model and frequencies from
isolates. Of note the distribution of the number of muta-
tions per variant from this model was similar to the dis-
tribution seen in the sequenced isolates (supplementary
fig. S4, Supplementary Material online), indicating that
the combination of mutational model and ceiling ad-
justed fitness landscape is sufficient to recapitulate gross
features of sequence diversity in isolates. The higher mu-
tation rate also removed the separation between amino
acids with one, two, and three mutations and resulted in a
slope between predicted and observed frequencies that
was closer to one such that the predicted frequency of
rare mutations more closely matched observed fre-
quency. Both of these observations suggest that the

higher rate more accurately captures the influence of mu-
tational probabilities on HIV-1 protease evolution.

These analyses highlight some of the challenges that re-
main for understanding and predicting mutations in circulat-
ing HIV-1, particularly estimating small effect mutations with
the precision required for accurate evolutionary models, and
systematically accounting for epistasis. Although these chal-
lenges remain the focus of ongoing efforts, the current work
indicates that experimental fitness landscapes provide im-
proved predictions of amino acid frequencies compared with
estimates from protein structure–based models (fig. 5E).
Although there is much we do not understand in detail about
mutational frequencies in the natural evolution of HIV-1, in-
cluding epistasis, experimental protein fitness landscapes are
an important benchmark for testing and refining models.

Mutational Walks
For multiple-nucleotide mutations, there were many experi-
mentally fit amino acids that were infrequently observed in
sequenced isolates (fig. 4B). Mutational probabilities that limit
access to two- and three-base mutations provide a compel-
ling rationale for these observations. According to well-
established population genetic theory (Kimura 1983), the
probability of a neutral mutation is proportional to the rate
of the mutation. As single-nucleotide changes are the most
common mutation in HIV-1 (Mansky 1996), amino acid
changes requiring multiple-base changes should often arise
by the serial accumulation of individual independent muta-
tions. The likelihood of this mechanism of multiple-base
change is the product of the probabilities of each individual
mutation and is less likely than the single-base mutations. The
lower likelihood of multiple-base mutations compared with
single-base mutations should limit their frequency in popu-
lations of HIV-1.

Because simultaneous replacement of two or more nucleo-
tides in a codon is rare (Mansky 1996), mutational walks of
separately occurring single-base mutations may provide rele-
vant access to these types of amino acid changes. The

-10 0

-4

-2

0

-1 0Lo
g

10
 F

re
q

u
en

cy
 in

 is
o

la
te

s

Estimated 
selection coefficient

�=3*10-5

Log10 Frequency
of quasispecies model

R2=0.35 R2=0.22

�=3*10-5; non-WT ceiling

Log10 Frequency
of quasispecies model

-10 0

R2=0.53

Log10 Frequency
of quasispecies model

-10 0

�=4*10-3; non-WT ceiling

Log10 Frequency
Rosetta model

R2=0.60 R2=0.28

A B C D E

-10 0-20

FIG. 5. Capability and challenges in predicting amino acid frequency in sequenced isolates. (A) Correlation between amino acid frequency in
sequenced isolates and estimated selection coefficients. Unobserved amino acids were omitted from these analyses because we do not have
quantifiable estimates of their likely frequency. (B) Amino acid frequencies were estimated using a quasispecies model based on estimated
selection coefficients and the mutation rate of HIV measured in cell culture. (C) An artificial fitness ceiling was applied to non-WT mutations in
order to match the dominant quasispecies sequence with WT. (D) As in panel C, except that the quasispecies model used, the error rate estimated
from observations of premature stop codons in hosts. (E) Correlation between frequencies predicted based on previously published (Humphris-
Narayanan et al. 2012) structural modeling of the impacts of mutations on the folding stability, dimerization, and binding to substrates of HIV-1
protease.

Boucher et al. . doi:10.1093/molbev/msz022 MBE

804

Deleted Text: 2-
Deleted Text: 3-
Deleted Text: wildtype
Deleted Text: ˣ
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz022#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz022#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz022#supplementary-data
Deleted Text: are 
Deleted Text: ,
Deleted Text: While 
Deleted Text: to
Deleted Text: -
Deleted Text:  
Deleted Text: While 
Deleted Text: '
Deleted Text: w
Deleted Text:  
Deleted Text:  
Deleted Text: to


likelihood of a mutational walk depends on the fitness effects
of intermediate steps (Gillespie 1983; Elena and Lenski 2003).
If an intermediate step is strongly deleterious, then the path-
way will be unlikely to occur even if the final state is neutral.
We examined the intermediates for two-nucleotide muta-
tions (fig. 6) where we identified a set of both common
and unobserved clinical amino acids with similar high fitness.
Among the two-base mutations common in circulating var-
iants (fig. 6A), estimated selection coefficients for intermedi-
ate one-base mutations exhibited a narrow and highly fit
distribution. Intermediates for a random sample of equally
fit but unobserved two-base mutations (fig. 6B) exhibited a
broader range of effects with some fitness measurements
close to null. The fitness of intermediates for these unob-
served mutations was significantly lower (P¼ 0.0003) than
for intermediates for common circulating mutations consis-
tent with mutational walks contributing to multiple-
nucleotide codon changes during natural evolution.

Mutational Tolerance
Because mutational pathways likely contribute to the sam-
pling of amino acid changes in circulating variants, we exam-
ined if multiple mutations preferentially occurred at amino
acid positions that were tolerant to amino acid changes
(fig. 7). Positions in HIV-1 protease tended to be either highly
sensitive where most amino acid changes caused null-like
phenotypes, or highly tolerant where most amino acid
changes caused minor alterations to fitness. If mutational
walks contribute to multiple-base mutations, they may be
more likely to occur at tolerant positions that would have
more opportunities for intermediate steps with high fitness.
We first examined amino acid changes in sequenced isolates
that were accessible by single mutations. Compared with all
positions, we observed single-mutations less frequent at
highly sensitive positions, consistent with the idea that posi-
tions where most mutations are strongly deleterious are un-
likely to accumulate mutations.

Multiple-base mutations in sequenced isolates occurred
predominantly at highly tolerant amino acid positions com-
pared with both the overall distribution of sensitivity and the
distribution of single mutations (fig. 7). Because selection is
weaker at tolerant positions, they should more freely accu-
mulate mutations during HIV-1 evolution. Such broad peaks
in local fitness landscapes provide a greater opportunity for
mutational walks to amino acids that involve multiple-base
changes.

Conclusions
Combined analyses of the sequenced isolates and an exper-
imental protein fitness landscape of HIV-1 protease indicate
that sampling of multiple-base substitutions in the same co-
don is limited during HIV-1 evolution. Largely for this reason,
the distribution of amino acid changes in circulating variants
is skewed toward amino acid changes accessible by single-
nucleotide mutations. The mutations that HIV-1 accumulates
during genome copying are predominantly single-nucleotide
changes that are unlikely to simultaneously occur in the same
codon. Therefore, the likelihood of observing multiple

mutations depends on the fitness of single mutation inter-
mediates. Because the majority of amino acid changes require
multiple mutations, this mechanism of mutational sampling
can have a large influence on protein sequence evolution,
even for viruses such as HIV-1 that have high genetic diversity
in hosts.

Strong evidence indicates that the genetic code was se-
lected to favor conservative amino acid changes by single-
nucleotide mutations (Sengupta and Higgs 2015); yet, we
observe many multiple-base mutations that support efficient
HIV-1 expansion in our experiments. These two observations
are not mutually exclusive. Our observations of multiple-base
mutations with small fitness effects are at least in part due to
a common feature of proteins, the tendency for many sites to
be highly tolerant to amino acid changes even for proteins
whose sequences are highly conserved in nature (Roscoe et al.
2013; Mishra et al. 2016). Tolerant sites often permit any
amino acid change such that multiple-base mutations at
these positions will not exhibit strong defects. Because toler-
ant positions appear to be a general feature of proteins, our
observations that mutational sampling constrains the amino
acid sampling of HIV-1 likely extend to many other proteins
and organisms.

Materials and Methods

Library Construction
To facilitate the initial introduction of mutations, protease
plus 50 bases of upstream and downstream flanking sequence
bracketed by KpnI sites was cloned from pNL4-3 into
pRNDM (Hietpas et al. 2012). Each codon of protease in
the pRNDM plasmid was individually subjected to site satu-
ration mutagenesis using a cassette ligation strategy (Hietpas
et al. 2012). A pNL4-3Dprotease plasmid was generated to
efficiently accept protease variants from the pRNDM con-
struct. The pNL4-3Dprotease plasmid was constructed with
a unique AatII restriction site. The pNL4-3Dprotease plasmid
was treated with AatII enzyme followed by T4 DNA polymer-
ase without nucleotides to remove the 30 overhang. Protease
variant libraries in pRNDM were excised with KpnI and
treated with T4 DNA polymerase without nucleotides in or-
der to remove 30 overhangs. The protease variant libraries and
treated pNL4-3Dprotease samples contained 25 bases of
complementarity at both ends and this facilitated efficient
assembly using Gibson Assembly. All enzymes were from New
England Biolabs. Samples with mutations at 9–10 consecutive
positions in protease were pooled to generate 10 library sam-
ples that together include mutations at each of the 99 posi-
tions in protease.

Growth Competition
Viral recovery and competitions were performed similar to
previous descriptions (Duenas-Decamp et al. 2016). Briefly,
2.5 lg of plasmid DNA encoding full length HIV-1NL4-3 was
transfected into 293T cells using calcium phosphate.
Supernatant of recovered P0 viral libraries was harvested after
48 h, clarified by filtration through 0.45 lm filters, and stored
at �20 �C. We used an RT assay, which quantifies reverse

Constrained Mutational Sampling of Amino Acids . doi:10.1093/molbev/msz022 MBE

805

Deleted Text: -
Deleted Text: t
Deleted Text: to
Deleted Text: to
Deleted Text: s
Deleted Text: is 
Deleted Text: c
Deleted Text: '
Deleted Text: '
Deleted Text: -
Deleted Text: c
Deleted Text: &thinsp;
Deleted Text: rs
Deleted Text: -


transcriptase activity by real-time polymerase chain reaction,
to normalize virion production (Vermeire et al. 2012). Viral
infections, including technical replicates, were performed us-
ing 5.0 � 108 RT units of virus (P0) and 3.0 � 106 Jurkat

T cells in 500 ll RPMI complete media for 2 h. Cells were
washed twice with sterile PBS and seeded in 1.5 ml of RPMI
complete media in a 24-well plate. P1 viral supernatant was
collected and cells were split on days 2, 4, 8, 11, 14, and 16.
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FIG. 6. Frequently observed amino acid changes requiring two-nucleotide changes are accessible by fit intermediates compared with highly fit
amino acid changes that were unobserved. (A) Number of amino acids with experimental fitness similar to commonly observed natural mutations.
Amino acids were considered fit if they exhibited selection coefficients greater than the average minus one standard deviation of commonly
observed (frequency>0.003) mutations. The partitioning of fit 1- and 2-base mutations is statistically different (P¼ 10�16) based on a Pearson’s v2

test with Yates’ continuity correction. (B) Orange circles show estimated selection coefficients for amino acid changes requiring two-nucleotide
changes that were observed with a frequency>0.003 in clinical samples. Purple circles show the most fit amino acid intermediate and black circles
show on-pathway synonymous codons of the likely ancestral amino acid. (C) Sky blue circles represent a randomly selected set of highly fit amino
acid changes requiring two-nucleotide mutations that were not observed in the sequenced isolate data set. Blue circles represent the most fit
amino acid intermediate and black circles show on-pathway synonymous codons of the likely ancestral amino acid. Based on a Wilcoxon rank-sum
test, the intermediates for the frequently observed amino acid changes exhibit higher fitness (P< 0.0003) than the intermediates for the
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Fresh media were replaced after each collection time point.
Viral RNA was isolated from P1 viral supernatant collected on
days 4 and 8 using Qiagen’s QIAamp MinElute Virus Spin kit.
Ultracentrifugation of 300 ll of viral supernatant was per-
formed to pellet virions using a Beckman Optima Max XP
ultracentrifuge with a TLA-55 rotor at 25,000 rpm for 1 h at
4 �C. Supernatant was removed and virion-associated RNA in
the pellet was isolated according to the kit protocol, and
eluted in 20 ll.

DNA Preparation and Sequencing
Samples were prepared for sequencing essentially as previ-
ously described (Duenas-Decamp et al. 2016). HIV-1 genomic
RNA was extracted from supernatants containing virions us-
ing High Pure Viral RNA kit (Roche Inc.). SuperScript III and a
primer downstream of the randomized regions were used to
reverse transcribe viral RNA to cDNA. The cDNA samples
were processed as previously described (Hietpas et al. 2012)
to add barcodes to distinguish pre- and post-selection
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samples as well as to add base sequences needed for Illumina
sequencing. In our previous work, we optimized and tested
the accuracy of the sequence-based readout of variant fre-
quency. Importantly, base call errors from processing and
sequencing were a small fraction of variant frequency in the
initial libraries for the vast majority of mutations using this
procedure (Duenas-Decamp et al. 2016). Sequencing data
from the current work has been submitted to the Short
Read Archive under BioProject ID PRJNA476312.

Sequence Analysis
Viral RNA samples drawn from transfected cells at days 0
(initial transfection from HEK293 cells to T cells), 4 and
8 were processed using Illumina 36-bp single read sequencing
on a Genome Analyzer II. Reads with a Phred score of 20 or
above (>99% confidence) across all 36 bases were used for
time-dependent analysis. Using these counts, for each species,
i, the selection-rate constant (Lenski et al. 1991), relative to
the mean Malthusian fitness of stop codons can be defined as
the slope of a normalized logarithmic abundance versus time:

~mi ¼
d

dt
ln½NiðtÞ=kðtÞ� ¼ mi �mk;

where Ni(t) refers to counts at time t, mi is the unnormalized
Malthusian fitness, and k(t) are normalization counts that
correspond to the Malthusian fitness of stop codons such
that

mk ¼
d

dt
ln kðtÞ ¼ 1

nstop

d

dt
ln
�Ynstop

k¼1

NkðtÞ
�
;

where nstop is the number of stop codons in the library. This
normalization convention ensures that the mean fitness of
stop codons is zero. We estimated the relative Wrightian fitness
of each variant by normalizing to the Malthusian fitness of the
WT sequence (wi ¼ ~mi/~mWT), such that wWT ¼ 1. Selection
coefficients were calculated as si ¼ wi – 1. In order to collect
measurements across the entire protease sequence, a set of ten
nonoverlapping EMPIRIC libraries was prepared, each one
spanning nine or ten contiguous amino acid positions. For
three of these libraries, biological replicate experiments were
performed and analyzed using the same approach.

Analyses of Protease Sequences from Circulating
Isolates
Sequence information for HIV-1 protease from circulating
isolates was collected from the Stanford University HIV
drug resistance database (Rhee et al. 2003; Shafer 2006) in
April 2017 using the Genotype-Rx protease data set. The
protease sequences were restricted to include only subtype
B strains that were annotated “None” for treatment with
protease inhibitors and had a complete nucleotide sequence
(i.e., “NASeq”). These requirements resulted in 32,163 sequen-
ces from 30,987 unique subjects. Eleven thousand four hun-
dred eighty-seven sequences contained at least one position
with an annotated mixture of amino acids (e.g., “KR” repre-
sents a mixture of lysine and arginine). At positions annotated
with mixtures, each amino acid in the reported mixture was

counted as an equal fraction of the mixture. When multiple
sequences were present from the same individual, we
weighed each sequence by the reciprocal of the number of
sequences, such that every host was equally represented. We
did not count stop codons because they represent known
null alleles, of which there were 127 in the data set. We ex-
amined the impacts of excluding mixtures on the relationship
between amino acid frequency and fitness (supplementary
fig. S5, Supplementary Material online). Excluding sequences
that contained mixtures did not dramatically alter the corre-
spondence between frequency and experimental fitness. We
examined the location of amino acid mixtures (supplemen-
tary fig. S6, Supplementary Material online) and note that
they tend to occur at positions that exhibit the most amino
acid divergence between different isolates. This observation is
consistent with many of the mixtures representing intrahost
variation and was a motivation for including reported amino
acid mixtures in our analyses.

Modeled Populations
Although data collected via EMPIRIC provide a direct readout
of relative fitness for the various species in the library, under
certain population dynamics assumptions these fitness meas-
urements can also be used to extrapolate initial (constructed)
populations to those at later times.

The quasispecies model (Eigen 1971; Eigen et al. 1988) has
previously been used to describe the evolutionary dynamics of
HIV-1 (Nowak et al. 1990). Since our measurements were done
on libraries of single codon substitutions that did not include
higher order substitutions, we consider an additive quasispecies
model where the codon and amino acid frequencies at differ-
ent positions are independent of one another. The discrete-
time quasispecies model for the codon frequencies is

f
ðiÞ
j ðtþ 1Þ ¼

P
kW
ðiÞ
jk f
ðiÞ
k ðtÞ

FðiÞðtÞ;

where f
ið Þ

j ðtþ 1Þ is the frequency of codon j at position i at

time tþ 1, W
ðiÞ
jk is the mutation-selection matrix describing

the fitness change caused by mutation of codon j to codon k

at position i, f
ið Þ

k ðtÞ is the frequency of codon k at position i at

time t, and F ið Þ tð Þ is the average fitness of the population at
time t and is calculated as

FðiÞðtÞ ¼
X

j

X
k

W
ðiÞ
jk f
ðiÞ
k ðtÞ:

The mutation-selection matrix, W
ðiÞ
jk ¼ w

ðiÞ
j Qjk is the product

of a site-specific fitness landscape, w
ðiÞ
j defined by the

EMPIRIC data and a single-site mutational landscape (Jain
and Krug 2006),

Qjk ¼
l

ðl� 1Þð1� lÞ

� �djk

ð1� lÞN;

where each residue position implies a (single codon) se-
quence length N¼ 3, and l¼ 4 represents the possible
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nucleotides at any position in this sequence, l is the mutation
rate, and djk is the Hamming distance between codons j and k.

We computed the steady-state solution to the quasispe-
cies model, given by the dominant eigenvector of W

ðiÞ
jk . In

order to predict steady-state frequency distributions under
this model, two different mutation rates were employed (see
fig. 5): An error rate of 3 � 10�5 previously measured in cell
culture (Mansky 1996), and an error rate of 4 � 10�3 based
on observations of premature stop codons observed in hosts
(Cuevas et al. 2015). When the fitness used in our quasispecies
model included a ceiling that favored WT amino acids by 4%,
the higher of these two mutation rates led to an accurate
description of the mean number of mutations in the steady-
state population (supplementary fig. S4, Supplementary
Material online).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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