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Ethylene signaling plays a pivotal role in mechanical-stress-induced root-growth

cessation in Arabidopsis thaliana
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ABSTRACT

Plant roots show growth cessation as a primary response to mechanical stress. To clarify the molecular
basis of this response, we have previously established an assay system to monitor the root growth
response of Arabidopsis seedlings to mechanical stimuli using dialysis membrane-covered agar media.
Here we examined the effect of plant hormones and their related molecules on this response. Amino-
cyclopropane carboxylate, a precursor of ethylene, remarkably enhanced the growth reduction while
silver ions, which block ethylene perception, nullified the response. Furthermore, salicylic acid, which
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inhibits ethylene biosynthesis, alleviated the root growth reduction, whereas methyl jasmonate had no
apparent effect on the response. These results suggest that the root-growth cessation observed in
response to mechanical stress involves ethylene signaling; however, this response may be independent
from the pathway that integrates signals from ethylene and jasmonate.

Plant organs sense and respond to mechanical stimuli during
growth. Because roots grow toward gravity, they continually
encounter obstacles in the soil, which leads to cessation of the
growth, followed by restarting the growth in the direction that
is possible. A pioneering study has revealed that, in the shoot
of Arabidopsis, touch stimulation activates the expression of
a subset of touch-induced genes, which encode calmodulin-
related proteins and a xyloglucan endotransglycosylase.'™
Mechanical signaling involves the rapid elevation of cytosolic
Ca®" concentration in plant cells.*”” This process may be
mediated by stretch-activated or voltage-gated ion channels
located in the plasma membrane.'® Ca** ions, in turn, activate
downstream signaling pathways involving reactive oxygen
species'™'” and plant hormones such as ethylene and
auxin.">”'® However, the details of these downstream signal-
ing events remain elusive mainly because few assay systems
exist that allow monitoring of the growth response of the
plant body to mechanical stress. To study in detail the mole-
cular basis of the growth response to mechanical stress in
roots, we generated a simple assay system using agar media
covered with a dialysis membrane, which mimics mechanical
stress because it prevents the roots from penetrating the agar
media.'®

In our recent study, which identified a proton pump inhibi-
tor, omeprazol, as a chemical compound that enhances the root-
growth reduction in response to mechanical stress,'” Arabidopsis
seedlings were grown for 1 day after germination on vertically
placed 0.8% (w/v) agar plates supplemented with half-strength
Murashige and Skoog (MS) medium and 1% (w/v) sucrose;
subsequently, the seedlings were transferred to plates that were
supplemented with the test compound and covered with
a dialysis membrane (12,000-14,000 MWCO, Spectra/Por 4,

Spectrum Laboratories). The plates were incubated horizontally
or vertically for 2 days and the growth of primary roots in each
plate was measured using Image J. In the current study, to fully
assess the effect of chemicals on the root-growth response to
mechanical stimuli, one-day-old seedlings were transferred to
dialysis-membrane-covered plates with each test compound
and once incubated vertically for 1 day. They were then sub-
jected to vertical or horizontal growth for further 2 days in the
presence of chemicals.

In the medium with no test compound, the roots of
Arabidopsis seedlings showed an approximately 2-fold reduction
in net growth on horizontal plates compared with vertical ones
(Figure 1(a)). We first confirmed that omeprazole obviously
enhanced the growth reduction (Figure 1(b,c)) in a way that
was similar to the case of simultaneous treatment with omepra-
zole and mechanical stress.'” Given that omeprazole acts as an
inhibitor of Ca** or H' pumps, it may cause a delay in the
recovery from cessation of growth. We then tested a series of
plant growth regulators and found that 300 nM of amino-
cyclopropane carboxylate (ACC; used as a precursor of ethylene)
resulted in a severe growth reduction of the roots, while salicylic
acid (SA) alleviated the growth reduction during horizontal
growth (Figure 1(b,c)). Other plant-growth regulators, including
an artificial auxin, naphthaleneacetic acid, methyl jasmonate
(Me]JA), gibberellin A4, abscisic acid, brassinolide, kinetine, and
thermospermine, had no significant effect on the root-growth
reduction (Figure 1(b,c)). The concentrations of these plant-
growth regulators tested here were based on those used in
many studies, while different concentrations of ACC and MeJA
were further examined. ACC had an enhancing effect on the
root-growth reduction at concentrations ranging from 0.1 to
3 uM although increased ACC concentrations were inhibitory
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Figure 1. Effect of plant growth regulators on the root growth under mechanical stress. (a) effect of a dialysis membrane (as a mechanical barrier) on root
growth. One-day-old seedlings were transferred onto dialysis-membrane-covered agar plates that were placed vertically or horizontally (day 0) and grown for
2 days (day 2). The arrowheads indicate the position of the root tip at day 0. Bars, 10 mm. (b) effect of omeprazol (OMP), plant growth regulators, and the
related compounds on root growth after transfer to vertically (white bars) and horizontally (gray bars) placed plates, as shown in (a). Each chemical (3 pM
OMP, 30 nM naphthaleneacetic acid (NAA), 300 nM ACC, 300 nM MeJA, 1 uM gibberellin A4 (GA4), 1 uM abscisic acid (ABA), 1 nM brassinolide (BL), 100 nM
kinetine, 30 uM thermospermine (Tspm), and 10 pM AgNOs) was supplemented continuously after germination. (c) Ratio of horizontal to vertical root growth
shown in (b). (d) effect of different concentrations of ACC and MeJA on the root growth under mechanical stress. (e) ratio of horizontal to vertical root growth
shown in (d). In (b) to (e), the error bars represent SD (n > 20). The asterisks indicate statistically significant differences between means, as assessed using

Student’s t-test (P < .01).

of the growth itself (Figure 1(d,e)). These concentrations of ACC
are consistent with those used in a previous study on the
response of Arabidopsis roots to ethylene.'® Although MeJA
was also inhibitory of the growth itself at micromolar levels, as
shown in previously,” lower concentrations of MeJA were
shown to have no apparent effect on the ratio of horizontal vs.
vertical root growth (Figure 1(d,e)). We also examined the effect
of silver ions, which block the binding of ethylene to its receptor,
on the growth response to mechanical stress and confirmed that
they almost nullified the response (Figure 1(b,c)).

In summary, among other plant growth regulators, ethy-
lene plays a central role in the mechanical-stress-induced
root-growth cessation. A simplified hypothetical model of
the signaling pathway underlying this response in
Arabidopsis is shown in Figure 2. However, some caution is
warranted because hormones or chemicals may have varying
effects. A study indicates that silver ions can promote auxin
efflux independently of the inhibitory effect on ethylene
perception.”’ SA was shown to alleviate the growth cessation
effectively. This might be attributable to the inhibitory effect
of SA on ethylene production from ACC. Other studies
reported that SA inhibits ethylene biosynthesis in some
plant species.”"”> However, given the diverse effects of SA
on the plant stress response, other possibilities should also be
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Figure 2. A possible model of the signaling pathway that mediates mechanical
stress-induced root growth cessation in Arabidopsis. This model is simplified and
additional pathways could exist.




considered. There is also increasing evidence indicating that
the SA- and ethylene/JA-mediated pathways are mutually
antagonistic in the defense response.”> Conversely, other
plant growth regulators that are implicated in mechanical-
stress signaling, including MeJA** and gibberellin,> had no
apparent effect on the root growth response. The hierarchical
relationship between an ER membrane-localized ethylene sig-
nal mediator, ETHYLENE INSENSITIVE2 (EIN2), and two
transcription factors, EIN3 and ETHYLENE RESPONSE
FACTORI1 (ERF1), has been reported in previous studies.*®
Because signals from JA and ethylene are integrated into ERF1
during the defense response,”” the mechanical-stress signaling
addressed here may be uncoupled from the function of ERFI.
To date, we have shown that a loss-of-function mutant of the
EIN2 gene displays no root-growth cessation in this assay
system.'” Further mutant analyzes will help identify all of
the molecules that participate in this signaling pathway.
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