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Abstract

We propose an iterative reconstruction scheme for optical diffraction tomography that exploits the split-step non-
paraxial (SSNP) method as the forward model in a learning tomography scheme. Compared with the beam
propagation method (BPM) previously used in learning tomography (LT-BPM), the improved accuracy of SSNP
maximizes the information retrieved from measurements, relying less on prior assumptions about the sample. A
rigorous evaluation of learning tomography based on SSNP (LT-SSNP) using both synthetic and experimental
measurements confirms its superior performance compared with that of the LT-BPM. Benefiting from the accuracy of
SSNP, LT-SSNP can clearly resolve structures that are highly distorted in the LT-BPM. A serious limitation for quantifying
the reconstruction accuracy for biological samples is that the ground truth is unknown. To overcome this limitation,
we describe a novel method that allows us to compare the performances of different reconstruction schemes by using
the discrete dipole approximation to generate synthetic measurements. Finally, we explore the capacity of learning
approaches to enable data compression by reducing the number of scanning angles, which is of particular interest in

minimizing the measurement time.

Introduction

Quantitative-phase imaging (QPI) enables the mea-
surement of the phase-contrast information of transpar-
ent samples such as biological cells. QPI contrast is
generated from the refractive index (RI) contrasts within
and around a sample. Because this contrast mechanism is
endogenous, quantitative-phase information does not
require external labeling, such as immunostaining, which
may perturb the sample. QPI contains the coupled
information of sample thickness and RI contrast. Optical
diffraction tomography (ODT) provides the 3D RI dis-
tribution of a sample by combining multiple 2D QPI
measurements from various illumination anglesl’z.
Reconstructed tomograms provide structural information
that has been extensively utilized to study hematology™*,
morphological parameters®, and biochemical informa-
tion® which are summarized in several review papers™’ .
In ODT, the way in which multiple 2D measurements are
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combined into unified 3D information is critical. Under
the assumption of a weakly scattering sample, the Wolf
transform'® has been widely used. Depending on how the
2D projections are processed, we obtain either the Born or
Rytov approximations for the Wolf transform'. Each
method has its limitations'’, but the Rytov approximation
is known to be more appropriate than the Born approx-
imation for many biological applications’?. However,
when a sample is thicker and more complex, the Rytov
approximation is no longer valid. This limits the useful-
ness of ODT for imaging complex samples.

Recently, methods have emerged to overcome the lim-
itations of the Born and Rytov approximations by taking
multiple scattering into account'*™°, It was shown using
Mie theory” that learning tomography (LT)'**, an
approach that exploits the beam propagation method
(BPM) as the forward model to capture multiple scatter-
ing, has superior performance compared with that of the
conventional imaging method based on the Rytov
approximation. We refer to it as LT-BPM. LT uses the
forward model of dividing 3D samples into multislices
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followed by slice-by-slice propagations. Due to the mul-
tislice modeling of forward models by LT, the resulting
structure is similar to that of a neural network, and we can
use the error back-propagation algorithm to calculate the
gradient. The BPM consists of two steps: non-paraxial
diffraction followed by phase modulation. The diffraction
step used in the BPM assumes kon(x,y,z) & kono, where
ko is the free-space wavenumber, #, is the RI of the
medium, and #n(x,,z) represents RI variations. In addition,
the phase modulation steps use a distance, dz/cosf, to
modulate the phase throughout propagation, given the
propagation step (dz) and the illumination angle (6).
However, for thicker and more complex samples, as light
propagates through the samples, multiple diffracted
beams of light are generated, and it is not valid to use one
single value, dz/cosf, to represent optical path lengths.
This deviation from the fixed distance, dz/cos6, increases
with increasing the illumination angle due to the nature of
the cosine function®.

In this paper, we show that the accuracy of LT recon-
structions of a 3D object is increased when we use the
split-step non-paraxial (SSNP) method rather than the
BPM. We refer to it as LT-SSNP. The SSNP method
exploits not only the field but also the derivative of the
field along the optical axis to model the propagation®>**,
While the BPM requires this approximation,
kon(x,y,z) = kong, to decouple diffraction from phase
modulation, SSNP does not require the approximation,
benefiting from propagating the derivative of the field at
the same time. Phase modulation affects the derivative
and is used concurrently in the next step of the diffraction
calculation. LT-SSNP uses the same iterative scheme used
in LT-BPM. To fairly assess LT-SSNP and compare it
with the LT-BPM, synthetic measurements are generated
using Mie theory and the discrete dipole approximation
(DDA). For spherical and cylindrical objects, Mie theory
provides the analytical solution to the Helmholtz equa-
tion®, Therefore, the solution of Mie theory takes into
account multiple scattering. Here, we also use the DDA to
simulate light scattering by an arbitrarily shaped sample
to generate more complex synthetic data. The DDA is a
general method for calculating the scattering and
absorption caused by an arbitrarily shaped sample
represented by finite discrete dipoles®®. These dipoles
react not only to incident light but also to one another,
which places the resulting fields under high orders of
scattering. It has been shown that the DDA works well for
samples whose RI values fairly match those of the sur-
roundings, such as biological cells in a liquid medium®”.
Therefore, we use Mie theory for multiple cylinders and
the DDA for a cell phantom, as well as a cluster of 15 red
blood cells (RBCs). After generating synthetic measure-
ments by using either Mie theory or the DDA, the LT-
BPM and LT-SSNP are used to reconstruct the 3D RI of
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each sample, and the accuracy of each reconstruction is
evaluated quantitatively.

In this analysis, we include an investigation of the per-
formance of each algorithm with respect to regularization.
The iterative reconstruction scheme used for both the LT-
BPM and LT-SSNP minimizes a cost function that com-
prises two terms: data fidelity and regularization. The data
fidelity term is defined by whether the forward model
applies either the BPM or the SSNP, and the regulariza-
tion term introduces prior knowledge about the sample
characteristics such as edge sparsity and non-negativity.
The relative importance of the two terms in the cost
function is controlled by the regularization parameter. We
compare the LT-BPM and LT-SSNP by using varying
regularization parameters with the goal of minimizing the
influence of the regularization term so that the results are
primarily based on the forward model rather than on prior
knowledge. For the simulations described, we confirm
that LT-SSNP shows lower dependency on the regular-
ization parameter due to the accuracy of SSNP. In other
words, the use of a more accurate forward model permits
LT-SSNP to extract more information from the mea-
surements and to rely less on regularization. More
importantly, for highly aggregated samples subject to
significant multiple scattering, LT-SSNP allows individual
objects and structures to be clearly distinguished, while
this observation cannot be made when using the LT-BPM.

We validate the proposed method by using experi-
mental ODT data from a yeast cell and from HCT116
human colon cancer cells. To image biological cells with
fine details, it is critical to reduce the influence of the
regularization term, as high regularization not only
smooths out the imaging artifacts but also useful infor-
mation, leading to deterioration in the quality of the
reconstruction. Tomograms of a yeast cell reconstructed
by using LT-SSNP show successful results with high
quality even with a very low regularization parameter,
while the LT-BPM fails to recover fine details within and
around the cells. In the case of experimental measure-
ments of biological cells, the true RI distribution is not
known, which prevents the direct assessment of the
accuracy of the various ODT methods. To overcome this
issue, we generate two sets of semisynthetic measure-
ments by using the DDA for each of the RI reconstruc-
tions from the LT-BPM and LT-SSNP. A comparison of
the discrepancies between the semisynthetic and experi-
mental measurements reflects the proximity of each
solution to the real RI values.

Finally, we explore the capacity of LT-SSNP to produce
accurate reconstructions with a reduced number of illu-
mination angles®®*’. This is of particular interest because
the number of scanning angles is directly related to the
measurement time. A comparison of each reconstruction
method for a varying number of scanning angles indicates
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that learning approaches provide a dramatic improvement
over conventional methods. Overall, the more accurate
forward model used in LT-SSNP translates to excellent
results even with low regularization and a small number
of illumination angles.

Results

In this section, we compare the LT-BPM and LT-SSNP,
which belong to the same family of LT reconstruction
schemes, except for the forward models, namely, the BPM
and the SSNP, respectively. LT minimizes the cost func-
tion, which consists of two terms as follows:

- )
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where the first term is the data fidelity term and R is the
3D total variation (TV)? regularization term to impose
edge sparsity on the solution. The relative importance
between two terms is controlled by the regularization
parameter, 7. y<) € CM denotes the experimental mea-
surements at the Kth slice for each illumination angle /,
and L is the total number of angles. SK> (x) represents the
estimate by a forward model (either the BPM or the
SSNP) at the Kth slice, which is the last slice of the
(). .
volume, to be compared with y;’ given a current solution,
x € RN, P RN is a convex set that imposes a non-
negativity constraint. In the supplementary section, we
describe the calculation of the gradient for SSNP. Once
we calculate the gradient of the data fidelity term in Eq.
(1), the optimization scheme uses the fast iterative
shrinkage-thresholding algorithm (FISTA)®' as explained
in ref. *' for 3D isotropic TV regularization, with eight
randomly chosen angles in each iteration.

Multiple cylinders by using Mie theory

We applied the LT-BPM and LT-SSNP on a highly
scattering simulated sample consisting of a 3 x 3 grid of
cylinders. Each cylinder is 6 um in diameter with an RI of
1.05 immersed in air. The center-to-center distance is
9 um. We varied the regularization parameter to investi-
gate the accuracy of the forward model for each algo-
rithm. The results are presented by mapping the
difference between the reconstructed tomogram for each
method and the known solution, as shown in Fig. 1a. The
LT-BPM shows many artifacts inside the cylinders and
smearing of the RI in the region between the cylinders.
These artifacts of the forward model cannot be eliminated
even by increasing the regularization parameter. Reg-
ularization only smooths out the overall reconstruction.
In contrast, LT-SSNP clearly distinguishes each cylinder
without interstitial artifacts even with the weakest reg-
ularization parameter tested, that is, 0.257 =0.01. Inter-
estingly, increasing the regularization parameter to
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47 =0.16 reduces the reconstruction quality when using
the LT-SSNP algorithm. The total Error, which is defined
as follows:

2
Error (xrecon, xtrue) = M (2)
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was also calculated as a function of the iteration number,
as shown in Fig. 1b. X,econ is the reconstructed RI contrast
from the medium RI, and X is the ground truth RI
contrast. Figure 1b displays the Error plots of the LT-BPM
and LT-SSNP by using the regularization parameter that
produced the lowest Error value for each algorithm: 47 =
0.16 for the LT-BPM and 7=0.04 for LT-SSNP. This
analysis quantitatively confirms the better accuracy of LT-
SSNP. In the case of multiple cylinders, it is critical to
model distortions in the wavefront (phase modulation)
introduced by the precedent samples, which determine
the illumination on subsequent samples. We further
analyzed this scenario by varying the number of layers in
multiple cylinders and summarized the results in the
supplementary material.

RBC cluster using discrete dipole approximation

To investigate the performance of each algorithm with
highly scattering samples in 3D, we performed a similar
test on a simulated cluster of RBCs. The shape of a single
RBC is sketched in Fig. 2a, while the organization of the
cluster is shown in Fig. 2b. Reconstructions were per-
formed by using various regularization parameters; for
each algorithm, we show only the reconstruction by using
the regularization parameter that gives the lowest Error:
87=0.2 for the LT-BPM and 7 =0.025 for LT-SSNP. In
Figs. 2¢, 3, different slices (xy, ¥z, and xz) of the 3D RI
distributions resulting from each method are presented,
along with the difference map with respect to the ground
truth. Both the LT-BPM and LT-SSNP show better
reconstructions compared with reconstructions based on
the Rytov approximation, which is expected since Rytov
does not consider multiple scattering. By comparing the
LT-BPM and LT-SSNP, we can see that the RI tomogram
resulting from LT-SSNP shows clearer and more accurate
reconstructions of each RBC, producing homogeneous RI
distributions within each RBC.

Cell phantom using discrete dipole approximation

To evaluate the LT-BPM and LT-SSNP algorithms on a
sample whose RI values are not homogeneous and which
contains fine details, we generated a synthetic cell phan-
tom. The phantom contains four different RI values cor-
responding to the cytoplasm, nucleus, nucleolus, and
lipids*?. Synthetic measurements were made by using the
DDA in the same manner as for the RBCs. Again, we
present for each algorithm only the results obtained by
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Fig. 1 Reconstruction results of cylinders using the LT-BPM and LT-SSNP for various regularization parameters (r = 0.04). a Difference maps
between reconstructions from the LT-BPM/LT-SSNP and the ground truth (reconstruction—truth). b Plots of the Error of the LT-BPM and LT-SSNP by
using the regularization parameter that produced the minimum Error value
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Fig. 2 Reconstruction results of a RBC cluster using the LT-BPM and LT-SSNP. a Parameters used to define the shape of the RBC. b 3D rendering
of the RBC cluster, which consists of 15 identical RBCs. ¢ 3D RI and difference maps for a cluster of 15 RBCs. Top to bottom: ground truth, Rytov
approximation, LT-BPM, and LT-SSNP (r = 0.025). Left: xy, yz and xy slices of the 3D RI. Right: difference maps between the reconstructed Rl and the
ground truth
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Fig. 3 Reconstruction results of a cell phantom by using Rytov, the LT-BPM, and LT-SSNP at four different z planes (r=0.025). a Left
column: the yz slice, with the z-positions of the yx slices indicated by using dashed lines. Second through fifth columns: yx slices at the positions
indicated in the left column. b Magnification of the regions indicated by the boxes in part (a)

using the regularization parameter that produced the
lowest Error value (47 =0.1 for the LT-BPM and r=
0.025 for LT-SSNP). The reconstruction results are shown
in Fig. 3a. Figure 3b displays the magnified regions, which
are indicated by the yellow boxes in Fig. 3a. The

reconstructions obtained with the LT-BPM show that the
cytoplasmic regions are highly distorted, similar to the
artifacts observed inside the cylinders and RBCs. More
importantly, the small lipids indicated by the red arrows
are hardly distinguishable due to the inaccuracy of the
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BPM. By contrast, the LT-SSNP not only distinguishes the
shapes of fine structures but also correctly positions them
along the optical axis.

Experimental validation using a yeast cell

To validate the relative performances of the LT-BPM
and LT-SSNP on experimental data, we acquired ODT
images of a yeast cell. Again, we evaluated different reg-
ularization parameters for the reconstructions obtained
by using the LT-BPM and LT-SSNP. Figure 4 shows the
reconstruction results for a slice close to the image plane.
For both the LT-BPM and LT-SSNP, the high regular-
ization parameter 47 = 0.1 results in too much smoothing,
and it becomes difficult to resolve fine details. Therefore,
it is necessary to reduce the regularization parameter.
However, in the case of the LT-BPM, lowering the value
of the regularization parameter introduces artifacts simi-
lar to those present in the simulation results in the pre-
vious section. By contrast, the LT-SSNP can reconstruct
fine details without introducing strong artifacts. There-
fore, we used 7=0.025 for the LT-BPM and /4=
0.00625 for LT-SSNP and further analyzed the sample for
different z planes, as shown in Fig. 5. Since we used higher
regularization for the LT-BPM, we can clearly see that
images tend to be smoothed out and fine details are lost,
as indicated by the red arrows in Fig. 5. By contrast, the
LT-SSNP reveals structures that are not observable in the
Rytov and LT-BPM reconstructions. In addition, even
with the higher regularization, the LT-BPM still shows
several artifacts, as indicated by the black arrows in Fig. 5.

A serious limitation for quantification of the recon-
struction accuracy for real biological samples such as this
yeast cell is the fact that the true RI distribution is
unknown. However, we were able to further evaluate the
differences between the LT-BPM and the LT-SSNP by
using the semisynthetic measurements generated by using
the DDA. While we generated synthetic measurements by
using synthetic samples in all previous cases, the RI
reconstructions obtained by using the LT-BPM and the
LT-SSNP served as samples for the DDA to generate
semisynthetic measurements in this case. The projection
error—the difference in phase information between the
experimental data and these simulated measurements—
reflects how close the solution is to the true RI distribu-
tions, as shown in Fig. 6a. Figure 6b maps the 2D pro-
jection error for two randomly selected angles as well as
the average across the full set of angles for each algorithm.
In the case of the LT-BPM, differences are clearly
observed when compared with the LT-SSNP, which
shows remarkable consistency with the experimental
measurements. We quantified the mean projection error
(radians/pixel) for each and used this metric to quantify
the accuracy of the LT-SSNP compared with that of the
LT-BPM (Fig. 6¢). The average projection error across all
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Fig. 4 Reconstruction results of a yeast cell by using the LT-BPM and

LT-SSNP for various regularization parameters (t = 0.025)
\ J

angles was 65% lower for the LT-SSNP than for the LT-
BPM.

Data compression demonstrated on experimental data—
HCT116 cells

The tomographic reconstruction based on the Wolf
transform and the Rytov approximation directly maps
multiple 2D measurements into the 3D Fourier space.
Therefore, any missing information in measurements
directly deteriorates the final reconstruction. However,
the LT-SSNP is an iterative reconstruction scheme. The
iterative reconstruction begins with an initial guess
(usually based on the Rytov approximation), and the
initial solution is updated based on the calculated error
gradient by using the forward model. In addition, prior
knowledge about the sample is imposed on the current
guess during the iterative process. Therefore, even if the
measurements are underdetermined due to missing
measurements, the learning approaches can fill in some of
the missing information. This idea was validated by
reducing the number of illumination angles used for each
method. The experimental data used for this investigation
were ODT images of a pair of HCT116 human colon
cancer cells. These cancerous epithelial cells contain
information in small structures relative to the size of the
cell and highlight the importance of reconstructions that
can capture these fine details. Reconstructions were per-
formed by using Rytov, linear tomography?’, and the LT-
SSNP by using different numbers of projection angles (45,
24, 12, and 4) uniformly spaced in the range from 0 to
360°. The linear tomography method uses the same
iterative reconstruction scheme as the LT-SSNP, except
with single scattering as the forward model. For the
quantitative analysis, we also compare the structural
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similarity index (SSIM)*® for reconstructions from com-
pressed measurements with the full measurement case,
namely, 360 angles at the focal plane. The results, plotted
in Fig. 7, show a dramatic improvement in the recon-
struction quality for linear tomography and the LT-SSNP
because the two methods iteratively fill up empty com-
ponents introduced from missing measurements but
using different forward models. In the case of the HCT116
cells, Rytov produces fairly good reconstructions that
reveal intracellular structures with 360 full projections,
despite the underestimation due to the missing-cone
problem. The Rytov reconstructions, on the other hand,
rapidly deteriorate as the number of illumination angles
decreases. Compared with Rytov and linear tomography,
the LT-SSNP is more robust in the number of projections,
providing reconstructions with only four scanning angles
with nearly the same quality as reconstructions by using
the full 360-angle data, as confirmed by the SSIM in Fig.
7b. We believe that the LT-SSNP can benefit from both
the iterative scheme and an accurate forward model. In
addition, we further tested the compression using the cell
phantom, which has higher RI contrasts; the results have
been added to the supplementary material.

Discussion

In this study, we have proposed a new tomographic
reconstruction algorithm, the LT-SSNP, which is based
on the SSNP forward model, for imaging complex highly

scattering samples with fine details. By benefiting from the
accuracy of the SSNP, the LT-SSNP extracts a maximum
amount of information from measurements rather than
relying on prior assumptions and generalizations about the
sample structure. The LT-SSNP was quantitatively eval-
uated and compared with the previous algorithm, the LT-
BMP, by using synthetic measurements. These synthetic
measurements with a known solution were generated by
using Mie theory for multiple cylinders, and the DDA for
an arbitrarily shaped cluster of RBCs and a cell phantom.

In the case of multiple cylinders, the LT-SSNP shows
clear reconstruction of each sample without introducing
artifacts. The more interesting point is that the LT-SSNP
does not require strong regularization. This is because the
SSNP forward model is accurate enough that regulariza-
tion is not necessary to compensate for poor data fidelity,
while the LT-BPM could not properly carry out the
reconstruction even with high regularization. For the RBC
cluster in 3D, the LT-SSNP returns more homogeneous
distributions even with a lower value of the regularization
parameter than that of the LT-BPM. This fact is critical
when imaging complex samples because too much reg-
ularization smooths out fine structures and makes them
impossible to resolve. The cell phantom simulation con-
firms the performance of the LT-SSNP on a sample with
high-resolution information. The LT-SSNP is more
accurate and permits the use of a lower regularization
parameter, which allows details of the 3D refractive index
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Fig. 6 Evaluation of LT algorithms by using semisynthetic error estimation. a Overall scheme of semisynthetic measurement generation by
using the DDA. b Phase-difference maps for two randomly selected angles and the average for all angles. The color bar is in radians. ¢ Calculation of
the projection error in retrieved-phase information from experimental measurements and semisynthetic data

to be identified without artificially being smoothed out by
regularization.

Importantly, the added capabilities of the LT-SSNP are
dramatic for imaging biological samples containing
information across many scales, as confirmed by applying
it to tomographic images of a yeast cell. The

reconstructed tomograms by using the LT-SSNP clearly
reveal structures that are not observable in the case of
Rytov and the LT-BPM. Semisynthetic measurements
based on the RI reconstructions of the LT-BPM and the
LT-SSNP numerically validate the accuracy of the LT-
SSNP reconstructions. The averaged phase-difference
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map represents how close the reconstruction using each
method is to the real sample. In contrast to the averaged
phase-difference map of the LT-BPM, which produces
many discrepancies inside the sample, that of the LT-
SSNP shows consistency with the experimental mea-
surements. The numerical evaluation shows that the LT-
SSNP produces a 65% reduction in the projection error
compared with that of the LT-BPM.

Furthermore, we explored the capacity of learning
approaches to enable data compression by reducing the
number of scanning angles. The LT-SSNP shows a dramatic
improvement in image quality by using a small number of
illumination angles when compared with the conventional
direct inverse method by using the Rytov approximation.
Even with a low number of projections, the LT-SSNP benefits
from its weak dependency on the regularization parameter.

Materials and methods
Simulation

We used Mie theory to derive the field scattered by
multiple cylinders (2D)**. A total of 101 illumination
angles uniformly distributed between —45° and 45° were
used. To perform a deeper assessment of the LT-BPM and
LT-SSNP algorithms, we also tested on synthetic mea-
surements in arbitrary-shaped samples: an RBC cluster
and a cell phantom.

For RBC simulations, the discrete dipole approxima-
tion®*** was applied to an RBC cluster, in which the
surface of each RBC is defined by using the following
equation:

pr+28p* 2 + 28 + PP+ Q2 +R=0 (3)
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where p is the radius in cylinder coordinates (p> = x* + y?)
and §, P, Q, and R are parameters derived from d, 4, b, and
¢ shown in Fig. 2a, respectively. In this paper, d, h/d, b/d,
and c/d were set to 7.7 um, 0.3542, 0.1752, and 0.6196,
respectively, as suggested in ref. >, We refer interested
readers to previous studies®®*’ for a more complete pre-
sentation of the DDA simulation of an RBC. By using a
single simulated RBC, a cluster consisting of 15 identical
RBCs was generated, as shown in Fig. 2b. In addition, we
generated a synthetic cell phantom with four different RI
values corresponding to the cytoplasm, nucleus, nucleo-
lus, and lipids®>. To derive the scattered field from the
cluster and the cell phantom, samples were scanned by
using 40 uniformly distributed illumination angles on a
circle with an incident angle of 45°. For every simulation
mentioned above, the sample with an RI of n was
immersed in air, and the wavelength used was 600 nm.
This is equivalent to a case in which the RI of the medium
is ny and the sample with an RI of # x ny is illuminated at a
wavelength of 600 x ny nm. The number of dipoles per
wavelength for both simulations was set to 12. Table 1
summarizes the numerical and experimental parameters
used for the simulations as well as for the experiments.

Experiments

The experiments were performed by using a conven-
tional optical diffraction tomography configuration in
which a spatial light modulator was used to control the
illumination angle. A total of 360 holograms were recor-
ded for each sample in a circular pattern with 1° resolu-
tion at an incidence angle of 35°. Additional details about
the optical setup and sample preparation are provided in
the supplementary section.

Semisynthetic simulation
The semisynthetic measurements were calculated by
using the reconstruction results acquired from the LT-
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BMP and the LT-SSNP as samples for the DDA. The size

of the dipole was set to %%:0.0%nm, where A =

0.532nm is the wavelength of the laser and no=1.338.
Both the values were set from the values used in the
experiments. The grid size of the reconstructions from the
LT-BPM and the LT-SSNP was 99 nm. The reconstruction
results were interpolated to a grid, one pixel of which was
the size of a dipole. Then, we quantized the RI values by
using the following equation: round(*== x 1000)/1000,

where #.econ denotes the reconstructed RI values. Simu-
lations were performed for 160 nonoverlapping angles,
which were calculated from the experiments.

Reconstruction algorithm

We implemented the algorithms by using custom
scripts in MATLAB R2018a (MathWorks Inc., Natick,
MA, USA) on a desktop computer (Intel Core i7-6700
CPU, 3.4 GHz, 32 GB of RAM). To accelerate the com-
putation, a graphic-processing unit (GPU, GeForce GTX
1070) with custom-made functions based on the com-
pute unified device architecture (CUDA) was utilized.
The gradient, calculated from a data fidelity term, D(x),
was 0D(x)/0x, the amplitude of which is proportional to
the amplitude of D(x). The LT-BPM and the LT-SSNP
use different data fidelity terms. The LT-BPM calculates
the difference in the fields u(x,%,2). In contrast, the LT-
SSNP requires differences in both u(x,y,z) and its deri-
vative du(x,y,z)/dz. Therefore, calibration of the optimi-
zation parameters between the methods is necessary to
make the LT-BPM and the LT-SSNP use similar opti-
mization parameters. The FISTA requires two para-
meters: step size (y) and regularization parameter (7).
The calibration of those parameters can be performed by
calculating the ratio C between ||u(x,y,2)|[5 and

||u(x,,2) + du(x,y,z)/dz||}. We approximated this as
the average value of (14-1ik,)? for the illumination ks,

Table 1 Reconstruction parameters
Size pm/pixel n y C Iterations  Time/iteration (s)
LT-BPM  LT-SSNP
Cylinders 1024 x 256 0.15 1.05 le-3 90 400 2.81 7.19
RBCs 512x512x180 0.15 1.05 le-3 57 200 13.6 19.27
Cell phantom 350 x 350 128 0.15 1.0248 (cytoplasm), 1.0210 (nucleus), 1.0413  1e-3 57 200 345 5.01
(nucleolus), and 1.0886 (lipids)

Yeast 150 % 150 % 80 0.1 NA 025e-3 163 200 035 05
HCT116 256X 256 x 170 0.1 NA 0.25e-3 160 200 3.14 4.36
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which corresponds to a case in which u(x,5,z) is replaced
with a planar wave, e!/k*thky+kz) Therefore, the LT-
BPM, which uses the parameters y and 7, can be directly
compared with the LT-SSNP, which uses the parameters
y/C and 7 x C. For convenience, we labeled the figures
according to the parameters used for the LT-BPM. The
actual parameter values for the LT-SSNP can be easily
calculated given C, which is provided in Table 1. The
total number of iterations used in the FISTA is also
provided in Table 1. Twenty iterations were used for the
TV optimization step in all cases.

Overall scheme of the learning tomography

Both algorithms (LT-BPM and LT-SSNP) start from
measured electric fields (including both amplitude and
phase information) from the holographic data. An initial
guess of the RI distributions is obtained by using the
Rytov tomographic reconstruction method. By using
either the BPM or the SSNP as the forward model, the
scattered field is estimated given the plane-wave illumi-
nation propagating through this initial guess. The square
of the difference between the estimated and the measured
fields is the cost function, which is minimized by adjusting
the index values contained in the forward model through
the FISTA. At the same time, an intermediate step of
regularizations such as smoothness and non-negativity is
included. This process is repeated until the total cost
function converges.

Split-step non-paraxial method

In this section, we briefly describe the SSNP in 3D
which is the physical forward model used in the LT-SSNP.
Bhattacharya and Sharma®® implemented this method by
using a matrix formalism for wave propagation in 3D.
Here, we describe a fast Fourier transform implementa-
tion for more efficient use of memory.

The propagation of a scalar wave u(x,,z) through a
medium #(x,%,z) in 3D must satisfy the following wave
equation:

82 82 2
(@+a_)/2+a_22) u(x,y,z) + kgnz(xvya Z)M(xvyvz) =0 10.

(4)
where ko = 271/) is the free-space wavenumber for a given

wavelength A in a vacuum. Eq. (4) can be written in matrix
form

dv(x,y,z)

1) M,y 2)v(,,2) 5)
where,
u(x,y,2)
V(x, Vs Z) = u(x,y,2) (6)

0z
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and
0 1

Hixy,2) = —(§+%+kgn2(x,y,z)) of

When we consider an inhomogeneous sample immersed
in a homogeneous medium, 7y, it is possible to split the
matrix H into two terms that correspond to diffraction
and phase modulation. Note that no approximation is
assumed up to this point. We refer interested readers to
the supplementary section for a detailed explanation.

Author’s contributions

J.L. carried out the algorithm modeling and computations. AA. built the
optical setup and carried out the optical experiments. EA. prepared the
samples. D.P. supervised the project. All authors contributed to the discussion
and wrote the paper.

Conflict of interest
The authors declare that they have no conflict of interest.

Supplementary information is available for this paper at https://doi.org/
10.1038/541377-019-0195-1.

Received: 12 February 2019 Revised: 14 August 2019 Accepted: 19 August
2019
Published online: 11 September 2019

References

1. Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation,
Interference and Diffraction of Light. (Cambridge University Press, 1999).

2. Lee, K et al. Quantitative phase imaging techniques for the study of cell
pathophysiology: from principles to applications. Sensors 13, 4170-4191
(2013).

3. Yoon, J. et al. Label-free characterization of white blood cells by measuring 3D

refractive index maps. Biomed. Opt. Express 6, 3865-3875 (2015).
Park, Y. et al. Refractive index maps and membrane dynamics of human red
blood cells parasitized by Plasmodium falciparum. Proc. Natl Acad. Sci. USA 105,

13730-13735 (2008).

5. Kim, K et al. Three-dimensional label-free imaging and quantification of lipid
droplets in live hepatocytes. Sci. Rep. 6, 36815 (2016).

6. Cooper, K. L. et al. Multiple phases of chondrocyte enlargement underlie
differences in skeletal proportions. Nature 495, 375-378 (2013).

7. Kim, K et al. Optical diffraction tomography techniques for the study of cell
pathophysiology. J. Biomed. Photonics Eng. 2, 020201 (2016).

8. Jin, D. et al. Tomographic phase microscopy: principles and applications in
bioimaging [Invited]. J. Opt. Soc. Am. B 34, B64-B77 (2017).

9. Park Y, Depeursinge, C. & Popescu, G. Quantitative phase imaging in bio-

medicine. Nat. Photonics 12, 578-589 (2018).

Wolf, E. Three-dimensional structure determination of semi-transparent

objects from holographic data. Opt. Commun. 1, 153-156 (1969).

11. Slaney, M, Kak, A. C. & Larsen, L. E. Limitations of imaging with first-order
diffraction tomography. IEEE Trans. Microw. Theory Tech. 32, 860-874 (1984).

12, Sung, Y. et al. Optical diffraction tomography for high resolution live cell
imaging. Opt. Express 17, 266-277 (2009).

13. Tian, L. & Waller, L. 3D intensity and phase imaging from light field mea-
surements in an LED array microscope. Optica 2, 104-111 (2015).

14. Kamilov, U. S. et al. Learning approach to optical tomography. Optica 2,
517-522 (2015).

15. Kamilov, U. S. et al. A recursive Born approach to nonlinear inverse scattering.
IEEE Signal Process. Lett. 23, 1052-1056 (2016).

16. Liu, H. Y. et al. SEAGLE: Sparsity-driven image reconstruction under multiple
scattering. [EEE Trans. Comput. Imaging 4, 73-86 (2018).

17. Soubies, E, Pham, T. A. & Unser, M. Efficient inversion of multiple-scattering
model for optical diffraction tomography. Opt. Express 25, 21786-21800 (2017).

Bl


https://doi.org/10.1038/s41377-019-0195-1
https://doi.org/10.1038/s41377-019-0195-1

Lim et al. Light: Science & Applications (2019)8:82

20.

21.

22.

23.

24.

25.

26.

27.

Lim, J. et al. Beyond Born-Rytov limit for super-resolution optical diffraction
tomography. Opt. Express 25, 30445-30458 (2017).

Pham, T. A. et al. Versatile reconstruction framework for diffraction tomo-
graphy with intensity measurements and multiple scattering. Opt. Express 26,
2749-2763 (2018).

Lim, J. et al. Learning tomography assessed using mie theory. Phys. Rev. Appl.
9, 034027 (2018).

Kamilov, U. S. et al. Optical tomographic image reconstruction based on beam
propagation and sparse regularization. IEEE Trans. Comput. Imaging 2, 59-70
(2016).

Bao, Y. J. & Gaylord, T. K. Clarification and unification of the obliquity factor in
diffraction and scattering theories: discussion. J. Opt. Soc. Am. A 34, 1738-1745
(2017).

Sharma, A. & Agrawal, A. Non-paraxial split-step finite-difference method for
beam propagation. Opt. Quantum Electron. 38, 19-34 (2006).

Sharma, A. & Agrawal, A. New method for nonparaxial beam propagation. J.
Opt. Soc. Am. A 21, 1082-1087 (2004).

Mie, G. Beitrdge zur Optik triber Medien, speziell kolloidaler Metalldsungen.
Ann. der Phys. 330, 377-445 (1908).

Yurkin, M. A. & Hoekstra, A. G. The discrete-dipole-approximation code ADDA:
capabilities and known limitations. J. Quant. Spectrosc. Radiat. Transf. 112,
2234-2247 (2011).

Yurkin, M. A. et al. Systematic comparison of the discrete dipole approximation
and the finite difference time domain method for large dielectric scatterers.
Opt. Express 15, 17902-17911 (2007).

28.

29.

30.

31

32.

33.

35.

36.

37.

38.

Page 12 of 12

Kaganovsky, Y. et al. Compressed sampling strategies for tomography. J. Opt.
Soc. Am. A 31, 1369-1394 (2014).

Brady, D. J. et al. Compressive tomography. Adv. Opt. Photonics 7, 756-813
(2015).

Beck, A. & Teboulle, M. Fast gradient-based algorithms for constrained total
variation image denoising and deblurring problems. [EEE Trans. Image Process.
18, 2419-2434 (2009).

Beck, A. & Teboulle, M. A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM J. Imaging Sci. 2, 183-202 (2009).

Mdiller, P, Schdrmann, M. & Guck, J. ODTbrain: a Python library for full-view,
dense diffraction tomography. BMC Bioinforma. 16, 367 (2015).

Wang, Z et al. Image quality assessment: from error visibility to structural
similarity. IEEE Trans. Image Process. 13, 600-612 (2004).

Schéfer, J, Lee, S. C. &Kienle, A. Calculation of the near fields for the scattering
of electromagnetic waves by multiple infinite cylinders at perpendicular
incidence. J. Quant. Spectrosc. Radiat. Transf. 113, 2113-2123 (2012).
D'Agostino, S. et al. Enhanced fluorescence by metal nanospheres on metal
substrates. Opt. Lett. 34, 2381-2383 (2009).

Yurkin, M. A. et al. Discrete dipole simulations of light scattering by blood cells.
(Universiteit van Amsterdam, 2007).

Kuchel, P. W. & Fackerell, E. D. Parametric-equation representation of bicon-
cave erythrocytes. Bull. Math. Biol. 61, 209-220 (1999).

Bhattacharya, D. & Sharma, A. Split step non-paraxial finite difference
method for 3D scalar wave propagation. Opt. Quantum Electron. 39,
865-876 (2007).



	High-fidelity optical diffraction tomography of�multiple scattering samples
	Introduction
	Results
	Multiple cylinders by using Mie theory
	RBC cluster using discrete dipole approximation
	Cell phantom using discrete dipole approximation
	Experimental validation using a yeast cell
	Data compression demonstrated on experimental data&#x02014;HCT116 cells

	Discussion
	Materials and methods
	Simulation
	Experiments
	Semisynthetic simulation
	Reconstruction algorithm
	Overall scheme of the learning tomography
	Split-step non-paraxial method

	ACKNOWLEDGMENTS




