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Summary

Statistical regularities in the environment create prior beliefs that we rely on to optimize our 

behavior when sensory information is uncertain. Bayesian theory formalizes how prior beliefs can 

be leveraged and has had a major impact on models of perception, sensorimotor function, and 

cognition. However, it is not known how recurrent interactions among neurons mediate Bayesian 

integration. Using a time interval reproduction task in monkeys, we found that prior statistics warp 

neural representations in the frontal cortex allowing the mapping of sensory inputs to motor 

outputs to incorporate prior statistics in accordance with Bayesian inference. Analysis of recurrent 

neural network models performing the task revealed that this warping was enabled by a low-

dimensional curved manifold, and allowed us to further probe the potential causal underpinnings 

of this computational strategy. These results uncover a simple and general principle whereby prior 

beliefs exert their influence on behavior by sculpting cortical latent dynamics.

Graphical Abstract

¶Corresponding author and lead contact Mehrdad Jazayeri, Ph.D., Robert A. Swanson Career Development Professor, Associate 
Professor, Department of Brain and Cognitive Sciences, Investigator, McGovern Institute for Brain Research, Investigator, Center for 
Sensorimotor Neural Engineering, MIT 46-6041, 43 Vassar Street, Cambridge, MA 02139, USA, Phone: 617-715-5418, Fax: 
617-253-5659, mjaz@mit.edu.
*Equal contribution
Author contributions
H.S. and M.J. conceived the in-vivo experiments. H.S. collected the physiology data. D.N. and M.J. conceived the in-silico 
experiments with recurrent neural networks. D.N. trained, simulated and analyzed the networks. H.S. and N.M. analyzed the 
physiology data. M.J. supervised the project. All authors were involved in interpreting the results and writing the manuscript.
+Department of Brain & Cognitive Sciences, McGovern Institute for Brain Research

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

DATA AND CODE AVAILABILITY
The published article includes all datasets generated or analyzed during this study. The code supporting the current study is available 
from the corresponding author on request.

Declaration of Interests
The authors declare no competing interests.

HHS Public Access
Author manuscript
Neuron. Author manuscript; available in PMC 2020 September 04.

Published in final edited form as:
Neuron. 2019 September 04; 103(5): 934–947.e5. doi:10.1016/j.neuron.2019.06.012.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



eTOC

Sohn, Narain, Meirhaeghe et al. found that prior beliefs warp neural representations in the frontal 

cortex. This warping provides a substrate for the optimal integration of prior beliefs with sensory 

evidence during sensorimotor behavior.

Introduction

Past experiences impress upon neural circuits information about statistical regularities in the 

environment, which helps us in all types of behavior, from reaching for one’s back pocket to 

making inferences about others’ mental states. There is, however, a fundamental gap in our 

understanding of how behavior exploits statistical regularities in relation to how the nervous 

system represents past experiences. The effect of statistical regularities on behavior is often 

described in terms of Bayesian theory, which offers a principled framework for 

understanding the combined effect of prior beliefs and sensory evidence in perception (Knill 

and Richards, 1996), cognition (Thomas L. Griffiths et al., 2008), and sensorimotor function 

(Körding and Wolpert, 2004). On the other hand, the effects of experience on neural activity 

have been described in terms of cellular mechanisms that govern the response properties of 

neurons. For example, natural statistics are thought to shape response properties of early 

sensory neurons through adjustments of synaptic connections (Girshick et al. 2011; 

Simoncelli and Olshausen 2001; Berkes et al. 2011; Fiser et al. 2010). Single-unit responses 

in many brain areas are though to encode recent sensory events (Akrami et al., 2018), motor 

responses (Darlington et al., 2018; Gold et al., 2008; Janssen and Shadlen, 2005), reward 

expectations (Platt and Glimcher, 1999; Seo et al., 2014; Sugrue et al., 2004), and temporal 
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contingencies (Narain et al. 2018). However, an understanding of how experience-dependent 

neural representations enable Bayesian computations is lacking.

Recent studies have focused on an analysis of the structure of in-vivo cortical activity in 

trained animals and in-silico activity in trained recurrent neural networks (RNNs) to gain a 

deeper understanding of how neural populations perform computations (Churchland et al., 

2012; Chaisangmongkon et al., 2017; Mante et al., 2013; Remington et al., 2018a; Wang et 

al., 2018; Yang et al., 2019). Following this emerging multidisciplinary approach, we 

analyzed the structure of neural activity in the frontal cortex of monkeys and in-silico 
activity in RNNs in a Bayesian timing task. Results provided evidence that prior statistics 

establish curved manifolds of neural activity that warp the underlying representations of 

time and cause biases in accordance with Bayesian integration.

Results

Task and behavior

Two rhesus macaques performed a time-interval reproduction task, which we refer to as the 

Ready-Set-Go (RSG) task (Figure 1A). The task consists of an estimation epoch followed by 

a production epoch. In the estimation epoch, animals had to estimate a sample interval, ts, 
demarcated by two visual flashes (Ready followed by Set). In the production epoch, animals 

had to produce a matching interval by either initiating a saccade or by moving the joystick to 

the left or right (Go), depending on the location of a peripheral target. Monkeys received 

reward if the produced interval, tp, between Set and Go was sufficiently close to ts (Figure 

1B).

We manipulated the animals’ prior expectations by sampling ts from one of two uniform 

prior distributions, a ‘Short’ prior ranging between 480 and 800 ms, and a’Long’ prior 

ranging between 800 and 1200 ms Figure(1C). The task enabled us to also manipulate 

sensory uncertainty since measurements of time intervals become more variable for longer 

intervals, a property known as ‘scalar variability’ (Malapani and Fairhurst, 2002). Since the 

two prior distributions overlapped at ts = 800 ms, the task further offered the opportunity to 

characterize how neural representations are independently modulated by prior beliefs. The 

prior condition and the desired effector were switched across short blocks of trials (block 

length: 4.0 ± 4.4 trials; uniform hazard) and the trial type was explicitly cued throughout 

each trial (Figure 1D). The rationale for including two response modalities and two 

directions of response was to ensure that the neural correlates of Bayesian integration 

identified would generalize across multiple experimental conditions.

To verify that animals learned to perform the task, we used a regression analysis to assess 

the dependence of tp on ts. The regression slopes were positive, indicating that animals were 

able to estimate ts, and were less than unity, indicating that responses were biased toward to 

the mean of the prior (Figure 1E and S1, Table S1). The effect of the prior was most 

conspicuous at the overlapping ts for which biases were in opposite directions for the two 

prior conditions (rank-sum test, p<10−43 in animal H, p<10−75 in G; Figure 1E, Table S2). 

This effect was present immediately after block transitions (Figure S2), indicating that 
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animals rapidly switched between priors. These results indicate that animals learned the task 

contingencies and relied on their prior expectation of ts.

Next we used a Bayesian observer model to analyze the behavior (Figure 2A). Assuming 

that measurement noise scales with the interval (Malapani and Fairhurst, 2002), and that the 

observer relies on the experimentally imposed uniform prior, the behavior of the model is 

captured by a sigmoidal function that maps noisy measurements, tm, to optimal estimates, te 

(Jazayeri and Shadlen, 2010). This model makes three predictions. First, it predicts the 

tradeoff between response bias and variance. Accordingly, fits of the model to behavior 

captured the bias and variance (Figure 2C,D) for both animals and across all experimental 

conditions (Figure S1, Table S3). Second, the model predicts larger biases for intervals near 

the two ends of the distribution (Figure 2E). Consistent with this prediction, tp increments at 

the extrema of the prior were smaller than increments near the mean (signed-rank test, 

p<10−11 in animal H, p<10−12 in G; Figure 2F and see S1 for another test of sigmoidal 

behavior). Third, due to scalar variability, biases for the Long prior should be larger than the 

Short prior condition (Figure 2G), which we confirmed empirically (Figure 2H, Table S1). 

Together, these results provide strong evidence that animals used a Bayesian strategy to 

perform the RSG task.

Single-neuron response profiles

We recorded neural activity in the dorsomedial frontal cortex including the supplementary 

eye field (SEF), the dorsal region of the supplementary motor area (SMA), and pre-SMA. 

Our choice of recording areas was motivated by previous work showing a central role for 

DMFC in motor timing, movement planning and learning in humans (Coull et al., 2004; Cui 

et al., 2009; Halsband et al., 1993), monkeys (Chen and Wise, 1996; Histed and Miller, 

2006; Lara et al., 2018; Lu et al., 2002; Merchant et al., 2013; Mita et al., 2009; Ohmae et 

al., 2008; Schall et al., 2002), and rodents (Emmons et al., 2017; Kim et al., 2013; Matell et 

al., 2003; Murakami et al., 2014).

During the estimation epoch, many neurons had heterogeneous responses profiles that were 

modulated by elapsed time in a prior-dependent fashion (Figure 3A). Consequently, 

responses at the time of Set varied with both the prior and ts (Figure 3B). The presentation of 

Set triggered a transient modulation of firing rates (Figure 3B(i–iii,v)). Following this 

transient, neurons exhibited a range of monotonic (e.g., ramping) or non-monotonic 

response profiles that were often organized according to ts irrespective of the prior condition 

(Figure 3B(i–iii,vi)). Responses of many neurons during the Set-Go epoch were temporally 

scaled with respect to ts (i.e., stretched in time for longer ts), an effect that was most 

conspicuous as a change of slope among the subset of ramping neurons (Figure 3B(ii,vi)). 

This temporal scaling is consistent with recent recordings in this area in a range of simple 

motor timing tasks (Emmons et al., 2017; Merchant et al., 2011; Mita et al., 2009; 

Remington et al., 2018a; Wang et al., 2018).

The influence of prior was most evident at the overlap ts of 800 ms (Figure 3C). Despite 

identical task demands and temporal contingencies, many neurons had highly distinct firing 

rate patterns depending on the prior condition, with a maximum difference in firing rate 

during the support of the prior between 480 and 800 ms (Figure 3D). Remarkably, this effect 
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was present immediately after block transitions (Figure S2). We used a generalized linear 

model (GLM) to quantify the influence of ts and prior condition on spike counts (Figure 3E; 

see Methods). Results indicated that approximately 30% of neurons were modulated by 

elapsed time (27% Monkey H, 31% Monkey G), and more than 60% were sensitive to the 

prior condition (65% Monkey H, 62% Monkey G). These results suggest that neural 

responses during the support of the prior were shaped by a combination of the animal’s prior 

belief and the measured interval, which are the two key ingredients for computing the 

Bayesian estimate of ts.

Geometry and dynamics of population activity

The relationship between neurons with complex activity profiles and the computations they 

perform may be understood through population-level analyses that depict their collective 

dynamics as neural trajectories (Buonomano and Maass, 2009; Churchland et al., 2012; 

Fetz, 1992; Rabinovich et al., 2008; Remington et al., 2018b; Shenoy et al., 2013). Recent 

work has used this approach to elucidate neural computations in a wide range of motor and 

cognitive tasks (Carnevale et al., 2015; Hennequin et al., 2014; Mante et al., 2013; Michaels 

et al., 2016; Rajan et al., 2016; Remington et al., 2018a; Rigotti et al., 2010; Wang et al., 

2018). Following this line of work, we sought to understand the computational principles of 

Bayesian integration in the RSG task by analyzing the population activity in DMFC.

We applied principal component analysis (PCA) to study the evolution of neural trajectories 

for various experimental conditions. Our initial analysis indicated that neural responses 

associated with different effectors, target directions, and task epochs resided in different 

regions of the state space (Figure S4). Therefore, we applied PCA separately to neural 

responses across experimental conditions and task epochs. For all datasets, the population 

activity in each epoch was relatively low dimensional: 3–4 principal components (PC) in the 

estimation epoch and 5–10 PCs in the production epoch explained nearly 75% of total 

variance (Figure S3).

In the estimation epoch, neural trajectories associated with the two prior conditions were at 

different initial states at the time of Ready and became progressively more distinct 

throughout their evolution (Figure 3F and S3; Movie S1). A notable feature of population 

activity in this epoch was the presence of curved neural trajectories during the support of 

each prior; i.e., approximately between 480 and 800 ms in the Short prior and between 800 

and 1200 ms in the Long prior. The presence of this prior-specific curvature was consistent 

with responses of single neurons, many of which were selectively modulated during the 

support of each prior (Figure 3A(i,iii,iv)). This feature was ubiquitous for all experimental 

conditions (Figure S3), although the corresponding neural activity patterns resided in 

different parts of the state space (Figure S4).

The curved portion of the trajectories associated with the two prior conditions were parallel 

in the state space, suggesting that they relied on similar patterns of activity (Figure S4). 

Notably, the subspace for the 480 to 800 ms of the Short prior was shared to a greater extent 

with the subspace for the 800 to 1200 ms than the 480 to 800 ms of the Long prior (“Short 

In Long”; Figure S4). These findings are consistent with the observation that activity profiles 

of single neurons during the support of the prior were similar across the two prior conditions 
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(Figure 3A). These results highlight a potential link between the curvature and the neural 

representation of the prior.

In the production epoch, trajectories were at different initial states at the time of Set (Figure 

3G, Movie S2). The Set flash caused a rapid displacement of neural states, after which 

neural states evolved toward a terminal state (Go) at a progressively slower rate for longer ts 

(Figure 3G). The prior-dependent initial conditions, the Set-triggered transient response, and 

the ts-dependent rate of evolution of firing rates were all evident in the responses of many 

single neurons (Figure 3B). Both the role of speed in the control of movement initiation time 

(Wang et al., 2018), and the importance of initial state in adjusting the speed (Remington et 

al., 2018a) have been demonstrated previously. The question that remains is how the brain 

establishes a sigmoidal mapping during the support of the prior so that the speed of the 

ensuing trajectories is appropriately biased according to Bayesian integration.

Bayesian estimation through latent dynamics

A property of a curved trajectory is that when projected onto a line connecting its two ends, 

equidistant points along the trajectory become warped. In other words, points near the ends 

of the projected line become biased toward the middle (Figure 4A), which qualitatively 

matches the sigmoidal mapping predicted from the Bayesian model (Figure 2). Based on this 

realization, we hypothesized that the curvature of neural trajectories during the support of 

the prior provides a computational substrate for Bayesian estimation. According to this 

hypothesis, which we refer to as the “curved manifold hypothesis”, the animal’s Bayesian 

behavior can be understood in terms of two computational stages (Figure 4B): 1) neural 

states evolving along the curved trajectory during the support of the prior provide an 

implicit, instantaneous representation of the Bayesian estimate of ts (te), and 2) this Bayesian 

estimate adjusts the speed of the neural trajectory in the production epoch, which in turn, 

enables animals to optimally bias their responses.

1. Encoding Bayesian estimate along curved trajectory during prior support.
—We asked whether projections of neural states along the curved trajectory onto a one-

dimensional ‘encoding axis’ could establish a sigmoidal mapping similar to the Bayesian 

estimator (Figure 2A). Naturally, the answer depends on the choice of the encoding axis. 

Based on our understanding of the geometry of the problem (Figure 4A), we reasoned that a 

good candidate for the encoding axis is the vector pointing from the states associated with 

the shortest to the longest ts for each prior condition (u; Figure 4B). Neural projections onto 

u exhibited biases that matched the Bayesian model fitted to the behavior (R2 = 0.993 for the 

Short prior, 0.996 for the Long prior; Figure 4C), and this match was specific to our choice 

of u (i.e., projection onto other randomly chosen vectors in the state space failed to produce 

a sigmoidal function, Figure S5). Indeed, the neural projections were better explained by the 

Bayesian model than a linear model for both priors (signed-rank test for RMSE, p=0.008 for 

the Short prior, p=0.008 for the Long prior; Figure 4D). As a negative control, we also 

analyzed neural data in the Long prior condition during a period temporally matched to 

support of the Short prior (“Short In Long” in Figure 4D) and found no evidence of 

sigmoidal representations (two-way repeated-measures ANOVA for RMSE with the prior 
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conditions and the models as factors, F1,7=161.43, p<10−5 for their interaction; post-hoc 

signed-rank test between the Bayesian and linear models for Short In Long, p=0.74).

A fundamental property of a Bayesian observer is that responses become more biased 

toward the mean of the prior when measurements are more uncertain (Figure 2G). As 

predicted, in the RSG task, we find larger behavioral biases for the Long prior condition 

(Figure 2H). Applying the same logic to the neural data, if projections onto the encoding 

vector represent te, they too should exhibit larger biases for the Long condition. A direct 

comparison of projected neural states between the two priors was consistent with this 

prediction: the Long prior exhibited more bias than the Short prior as measured by slope of a 

regression line relating projections to ts (signed-rank test, p=0.008; Figure 4D). Together, 

these results suggest that the curved trajectory in DMFC allow neural states to carry an 

implicit and instantaneous representation of te during the support of the prior.

2. Controlling speed based on Bayesian estimate during the Set-Go epoch.—
Previous work has demonstrated that flexible production of timed intervals is made possible 

through adjustments of the speed at which neural trajectories evolve toward an action-

triggering state (Afshar et al., 2011; Churchland et al., 2008; Hanes and Schall, 1996; Wang 

et al., 2018). Accordingly, the neural representations of te along the encoding axis should 

serve as initial conditions to dictate the speed during the ensuing production epoch (Figure 

4B). We therefore examined the relationship between speed and neural projections on the 

encoding axis within each prior condition. For both conditions, larger projections along the 

encoding axis were associated with slower speeds across all conditions (Figure 4E; Pearson 

correlation, ρShort=−0.74, p<10−7, ρLong=−0.51, p<10−3). Crucially, we also tested whether 

speeds inherited biases from the warped organization of initial conditions at the time of Set. 

If Bayesian computation occurs during the support of the prior, speeds ought to incorporate 

the Bayesian biases immediately following Set. Accordingly, we computed the speed of 

neural trajectories early in the production epoch (i.e., initial speed) and examined the 

relationship between initial speed and ts. An unbiased speed profile predicts that the speeds 

should be proportional to 1/ts. The speed profile for each prior condition, however, 

demonstrated systematic biases with a central tendency: trajectories associated with shorter 

ts were slower than expected from an unbiased speed profile, and vice versa (Figure 4F; 

Wilcoxon sign-rank test on measured versus unbiased regression slopes relating speed to ts, 
p<10−3 combining conditions and animals). This biased speed profile is fully consistent with 

the pattern seen in the behavior. Finally, we verified that the overall speed of dynamics 

throughout the production epoch was predictive of the resulting tp across both priors and 

across all experimental conditions (Figure 4G; Pearson correlation, ρShort=−0.58, p<10−4, 

ρLong=−0.52, p<10−3). Together, these results support the curved manifold hypothesis 

according to which the curved trajectory supplies a Bayesian estimate of elapsed time, which 

controls the speed of dynamics during the production epoch allowing animals to produce 

Bayes-optimal behavior.

Alternative mechanisms

We considered three alternative mechanisms that could, in principle, establish a Bayesian 

sigmoidal mapping.
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H1. Speed hypothesis: Bayesian integration through modulation of speed in 
the estimation epoch (Figure 5A).—One way to create a sigmoidal warping is to have 

neural states near the two ends of the prior evolve more slowly than near the prior mean. We 

tested this hypothesis by estimating the instantaneous speed of neural trajectories throughout 

the support of each prior. Results were not consistent with these predictions: for both prior 

conditions, speed remained unmodulated throughout the support of each prior (Figure 5b; 

signed-rank test for zero regression slopes during the support, p=0.64 for Short, p=0.08 for 

Long).

H2. Transient hypothesis: Bayesian integration by shaping the post-Set 
transient (Figure 5C).—Another way to create sigmoidal warping is to have the Set-

triggered transient converge in the state space so as to elicit a bias in neural states toward the 

prior mean. To test this alternative, we computed the distance between neural trajectories 

during the first 200 ms following Set. Results indicated that neural trajectories for different 

ts in each prior evolved parallel to one another (signed-rank test for zero regression slopes 

relating the distance to time after Set, p=0.92 for the shortest ts, p=0.13 for the longest ts, 
across datasets and priors; Figure 5D; see also Figure 3G and S3). This suggests that the Set 

caused a ts-independent transient response in DMFC that did not contribute significantly to 

the bias.

H3. Threshold hypothesis: Bayesian integration by establishing ts-
dependent movement thresholds (Figure 5E).—Finally, the biases could be induced 

by influencing the action-triggering state (i.e., threshold). If the threshold for fast trajectories 

(associated with shorter ts) is pushed further away, the neural trajectories would have to 

travel a longer distance before reaching the action-triggering state, which would generate a 

positive bias. This model predicts, in particular, that states at the time of threshold-crossing 

should be different across ts, but more similar shortly before reaching the threshold due to 

speed differences (Figure 5E left). The distance between neural trajectories should therefore 

decrease to a minimum before movement initiation, and increase again to reflect the ts-
dependent threshold at the time of Go (Figure 5E right). However, the distance profile of 

neural trajectories did not show this converging-diverging pattern; instead, the distance 

between trajectories appeared to drop steadily throughout the production epoch, even near 

the time of motor initiation (Figure 5F; one-tailed sign-rank test for time of minimum 

distance occurring strictly before movement initiation, p=1.5 × 10 −4, see Figure S5 for 

individual condition and animal).

The curved manifold hypothesis captures the variance of Bayesian estimates

Next we asked whether the curved manifold hypothesis could additionally account for the 

variance of te. According to the Bayesian model, the variance of te as a function of ts exhibits 

an inverted-U shape (Figure 6A): the sigmoidal mapping causes estimates near the extrema 

of the prior to be more biased and less variable than estimates near the mean of the prior, 

which are unbiased but more variable.

From a geometrical standpoint, neural states projected onto the encoding axis would be able 

to readily capture this inverted-U pattern if a sizeable portion of variance across trials is 
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aligned to the curvature (Figure 6A). To test this possibility, we needed to derive accurate, 

trial-by-trial estimates of neural states. Such analysis is challenging but tractable if two 

conditions are concurrently met (Pandarinath et al., 2018; Williams et al., 2018; Yu et al., 

2009): (1) data includes sufficiently large number of simultaneously recorded neurons, and 

(2) neural trajectories are governed by a small number of latent factors. Under these 

assumptions, Gaussian Process Factor Analysis (GPFA) can recover reliable estimates of 

single-trial neural trajectories (Afshar et al., 2011; Cowley et al., 2013; Yu et al., 2009).

We therefore focused our analysis on high-yield sessions (N=48 for monkey H, N=107 for 

monkey G) and used GPFA to extract high-fidelity, single-trial neural trajectories for the 

estimation epoch. We projected the neural states at the time of Set onto the encoding axis, 

and computed the variance of the projections for each ts separately (Figure 6B; see 

Methods). The resulting variance profile of single-trial projections resembled an inverted U-

shape on average, with a tendency for lower variances at the extrema of each prior (one-

tailed signed-rank test on coefficients for quadratic term in polynomial fitting, p=0.0273, 

Figure 6C; see Figure S6 for monkey G). This analysis indicates that the curved manifold 

hypothesis can additionally predict the second-order statistics of the Bayesian estimate. We 

also confirmed that the mean of the single-trial projections inferred from GPFA had a 

sigmoidal shape (signed-rank test between increments of mean Xu around extreme ts versus 

those near middle ts, p=0.0078) and higher slope for the Short prior (one-tailed signed-rank 

test for regression slope between Short and Long, p=0.0625; Figure 6D), consistent with 

results inferred from the trial-averaged firing rates (Figure 4C), and the behavior of the 

Bayesian estimator (Figure 2F,H). Finally, the single-trial neural state estimates derived from 

the GPFA analysis enabled us to validate the three-way relationship between neural states 

during the support of the prior (before Set), the speed of neural trajectories after Set, and the 

resulting tp (Figure S6).

Recurrent network models of cortical Bayesian integration

Recurrent neural network models (RNNs) have proven useful in elucidating how neural 

populations in higher cortical areas support various motor and cognitive computations 

(Mante et al., 2013; Rajan et al., 2016; Song et al., 2016; Sussillo et al., 2015; Yang et al., 

2019). To gain further insight into how neural systems implement Bayesian inference, we 

trained RNNs to perform the two-prior RSG task (Figure 7A). On each trial, the network 

received a fixation cue as a tonic input whose value was adjusted by the prior condition. A 

second input administered the Ready and Set via two pulses that were separated by ts. The 

network was trained to generate a linear ramping signal during Set-Go that would reach a 

fixed threshold (“Go”) at the correct time to reproduce ts. Using a suitable training strategy 

(see Methods), we were able to build RNNs whose behavior was captured by a Bayesian 

observer model (Figure 7B).

Like DMFC neurons, RNN units displayed heterogeneous response profiles and were 

strongly modulated during the support of the prior (Figure S7). Similar to DMFC, the overall 

network activity was low dimensional during both the estimation and production epochs 

(Figure S7). Most importantly, network population trajectories exhibited the geometrical 

features of neural trajectories in DMFC. For instance, the network trajectories also exhibited 
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curvature during the support of the prior (Figure 7C and S7). Finally, during the production 

epoch, the initial condition and speed of trajectories were organized by ts (Figure 7C).

Next, we developed an on-manifold perturbation protocol to probe the causal link between 

the curved manifold and Bayesian integration. We allowed the network to evolve during the 

Ready-Set epoch, suspended the dynamics shortly before Set, placed the network into a 

desired altered state, and released the network to observe the effect of this perturbation on 

the behavior (see Methods for control experiments). The perturbation was designed to 

systematically displace neural states along the encoding axis – a strategy that we refer to as 

re-encoding. We reasoned that if indeed the curved manifold and the encoding vector u are 

responsible for warping neural representations of time, then perturbing the network state 

along the axis would lead to changes in behavior in a predictable manner.

Using this strategy, we perturbed the network activity in two ways: 1) compression along u 
toward the middle ts (mean of the prior), and 2) linear translation along u. According to our 

hypothesis, the projection of activity along u provides an implicit representation for the 

Bayesian estimate of ts. The compression should therefore lead to increased bias toward the 

mean ts (Figure 7D). The translation, on the other hand, should result in a systematic shift in 

the values of tp towards longer or shorter intervals (Figure 7E) depending on the direction of 

the translation. Results confirmed these predictions: tp values exhibited progressively larger 

regression to the mean for larger compressive perturbations (Figure 7D), and underwent an 

overall upward or downward shift as a result of translation (Figure 7E). These in-silico 
experiments provide additional evidence for a potential causal role of the curved manifold in 

Bayesian computation.

Discussion

The central challenge in understanding Bayesian computations is the need for a framework 

that can bridge explanations across multiple scales. Most previous studies sought to 

understand Bayesian integration at the level of single neurons. This was also our starting 

point. We found that prior beliefs and sensory measurements concurrently modulated the 

firing rates of single neurons (Figure 3). Many previous studies have made similar 

observations. For example, some studies found that the stochastic nature of spiking activity 

in single neurons could provide the means to implicitly encode sensory likelihoods (Jazayeri 

and Movshon, 2006; Ma et al., 2006). Others found that task-related firing rates of single 

neurons before the presentation of sensory information may be modulated by prior 

expectations (Basso and Wurtz, 1997; Rao et al., 2012), and firing rates after the 

presentation of sensory information may reflect Bayesian estimate of behaviorally-relevant 

variables (Beck et al., 2008; Funamizu et al., 2016; Hanks et al., 2011; Jazayeri and Shadlen, 

2015). There have also been attempts to apply reliability-weighted linear updating schemes 

– commonly used in cue combination studies (Angelaki et al., 2009; Fetsch et al., 2009; Gu 

et al., 2008) – to explain how single-neurons might combine sensory evidence with prior 

expectations (Darlington et al., 2018; de Xivry et al., 2013). Together, these results have 

provided valuable insights into single-neuron representations of prior beliefs and sensory 

measurements. However, probing the system at the level of single neurons has not led to a 
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principled understanding of the computational logic that populations of neurons implement 

to perform Bayesian integration.

To address this challenge, we investigated population neural activity using a framework that 

is rooted in the language of dynamical systems. The behavior of a dynamical system is 

constrained by the coupling between interacting variables in the system (Remington et al., 

2018b). Recent theoretical studies have found that the same framework can be used to 

explain how synaptic coupling between neurons constrain the population activity pattern 

across a network of recurrently interacting neurons. In particular, it has been shown that 

structured connectivity in RNN models establishes low-dimensional manifolds with 

powerful computational capacities (Mastrogiuseppe and Ostojic, 2018) for integration 

(Wang, 2008), categorization (Chaisangmongkon et al., 2017), gating (Mante et al., 2013), 

timing (Goudar and Buonomano, 2018; Laje and Buonomano, 2013; Remington et al., 

2018a; Wang et al., 2018), learning (Athalye et al., 2017; Golub et al., 2018; Sadtler et al., 

2014), movement control (Gallego et al., 2017; Hennequin et al., 2014; Kaufman et al., 

2014; Michaels et al., 2016; Shenoy et al., 2013; Sussillo et al., 2015) and forming 

addressable memories (Hopfield, 1982). According to this framework, the computations that 

a neural system performs can be understood through an analysis of the geometry and 

dynamics of activity across the population (Gallego et al., 2017, 2018; Remington et al., 

2018a; Sussillo, 2014).

Using this approach, we found a simple computational principle for how neural circuits 

perform Bayesian integration. We found that prior statistics that were presumably embedded 

in the coupling between neurons, established low-dimensional curved manifolds across the 

population. This curvature, in turn, warped the underlying neural representations giving rise 

to biased responses consistent with Bayes-optimal behavior. This mechanism was evident 

across multiple behavioral conditions including different prior distributions and different 

effectors suggesting that it may entail a general computational strategy for Bayesian 

integration.

Notably, the curved manifold not only explained the prior-dependent bias, but also 

accounted for the drop in variance of single-trial Bayesian estimates near the extrema of the 

prior, consistent with the predictions of a Bayesian estimator. The fact that the variance of 

projected states as a function of ts exhibits an inverted-U shape suggests that a large fraction 

of variability occurs along the trajectory (Figure 6A). This implies, in turn, that one of the 

main contributors of noise in the system might be the speed of the trajectory (Hardy et al., 

2018; Mello et al., 2015; Wang et al., 2018).

This computational strategy also emerged in an RNN model trained on the same task. While 

previous work has demonstrated that artificial network models can perform a variety of 

sensory, motor, and decision-making tasks (Chaisangmongkon et al., 2017; Mante et al., 

2013; Remington et al., 2018a; Wang et al., 2018; Yang et al., 2019), training networks to 

encode and integrate prior beliefs has remained a challenge. Relying on our understanding of 

the importance of signal-dependent noise in timing (Hardy et al., 2018; Mello et al., 2015; 

Wang et al., 2018), we were able to create a suitable training strategy that allowed the 

networks to integrate prior beliefs. In particular, we found that, among multiple training 
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regimes with different types of noises (see Methods), introduction of external noise 

mimicking scalar measurement variability was key to inducing the prior-dependent bias in 

the network.

One of the most highly sought-after advancements in systems neuroscience is an ability to 

exert full control over neural activity, which would allow the experimenter to investigate the 

behavioral and neural consequences of setting the population activity to a specific state 

(Jazayeri and Afraz, 2017). This is currently impossible because we do not have a technique 

that can adjust the firing rates of many neurons concurrently, although notable efforts in this 

direction have been made (Bashivan et al., 2019; O’Connor et al., 2013; Ponce et al., 2019). 

The possibility of such concurrent modification would be extremely valuable in further 

testing the merits of our curved manifold hypothesis, as it would allow us to validate 

whether neural states along the curved trajectory truly encode the animal’s internal 

estimates. Although it was not possible to perform this experiment in-vivo, establishing a 

recurrent neural network model of Bayesian integration allowed us to causally probe 

potential underlying mechanisms by performing such targeted population-level perturbations 

in-silico. The results of these experiments validated two key aspects of the curved manifold 

hypothesis: the orderly organization of the Bayesian estimates along the trajectory, and the 

role of the curvature in inducing regression toward the mean of the prior. Given the overall 

similarities of in-vivo and in-silico networks in terms of the response properties associated 

with Bayesian integration (Figure 7, S7), this causal validation of the mechanism in-silico 
provides tantalizing evidence that future experiments may find analogous results in-vivo.

To put our findings in perspective, it is important to distinguish between the classic 

formulation of Bayes-optimal integration and the various algorithms the brain might use to 

optimize behavior in accordance with Bayesian theory. The classic formulation of Bayesian 

integration defines the likelihood function and prior probability distribution explicitly and 

uses them to compute a posterior distribution from which an optimal estimate can be 

inferred depending on a desired cost function. However, the derivation of optimal estimates 

from sensory measurements can be implemented by numerous isomorphic computational 

algorithms that do not necessarily depend on an explicit representation of the likelihood 

and/or the prior (Fiser et al., 2010; Ma and Jazayeri, 2014; Raphan and Simoncelli, 2006). 

Indeed, theoretical (Simoncelli, 2009) and behavioral (Acerbi et al., 2012; Jazayeri and 

Shadlen, 2010; Stocker and Simoncelli, 2006) studies have highlighted that Bayes-optimal 

behavior can be implemented by simple deterministic functions that map noisy measurement 

to optimal estimates. Our work supports this hypothesis; it shows that recurrent interactions 

between neurons establish manifolds whose geometry confers upon the population activity 

patterns an implicit representation of the optimal estimate without relying on explicit 

representations of the prior distribution and/or the likelihood function.

Although we focused on Bayesian integration in the domain of time, the key insights 

gleaned from our results may apply more broadly to perception, sensorimotor function, and 

cognition. For example, numerous studies have found an important role for natural scene 

statistics in vision and have shown that the organization of tuning in neurons of the primary 

visual cortex follow those statistics (Simoncelli and Olshausen, 2001). This observation is 

often explained in terms of efficient coding (Ganguli and Simoncelli, 2014; Simoncelli and 
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Olshausen, 2001). In this framework, neurons form heterogeneous basis sets that are tuned 

to the statistics of the environmental variables. In our timing task, we also found single 

neurons that developed flexible tuning for the support of each of the two priors (Figure 3). In 

other words, single neurons in our experiment also abided by the principles of efficient 

coding. However, our work goes beyond the representational notion of efficient coding and 

provides an understanding of how populations of neurons perform computations relevant to 

behavior. Our results suggest that statistical regularities in the environment create 

geometrically constrained manifolds of neural activity that can suitably perform Bayesian 

integration.

STAR Methods

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Mehrdad Jazayeri (mjaz@mit.edu). This study did not 

generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experimental procedures conformed to the guidelines of the National Institutes of Health 

and were approved by the Committee of Animal Care at the Massachusetts Institute of 

Technology. Experiments involved two naive, awake, male behaving monkeys (species: M. 

mulatta; ID: H and G; weight: 6.6 and 6.8 kg; age: 4 yrs old). Animals were head-restrained 

and seated comfortably in a dark and quiet room, and viewed stimuli on a 23-inch monitor 

(refresh rate: 60 Hz). Eye movements were registered by an infrared camera and sampled at 

1kHz (Eyelink 1000, SR Research Ltd, Ontario, Canada). Hand movements were registered 

by a custom single-axis potentiometer-controlled joystick whose voltage output was sampled 

at 1kHz (PCIe6251, National Instruments, TX). The MWorks software package (http://

mworks-project.org) was used to present stimuli and to register hand and eye position. 

Neurophysiology recordings were made by 1–3 24-channel laminar probes (V-probe, Plexon 

Inc., TX) through a bio-compatible cranial implant whose position was determined based on 

stereotaxic coordinates and structural MRI scan of the two animals. Analysis of both 

behavioral and spiking data was performed using custom MATLAB code (Mathworks, MA).

METHOD DETAILS

Two-prior time-interval reproduction task

Task contingencies.: Animals were trained on an interval-timing task that we refer to as the 

Ready-Set-Go (RSG) in which they had to measure a sample interval, ts, and produce a 

matching interval tp by initiating a saccade or by moving a joystick. Each experimental 

session consisted of 8 randomly interleaved conditions, 2 effectors (Hand and Eye), 2 

movement targets (Left and Right), and 2 prior distributions of ts (Long and Short).

Trial structure.: Each trial began with the presentation of a circle (diameter: 0.5 deg) and a 

square (side: 0.5 deg) immediately below it. Animals had to fixate the circle and hold their 

gaze within 3.5 deg of it. The square instructed animals to move the joystick to the central 

location. To aid the hand fixation, we briefly presented a cursor whose instantaneous 
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position was proportional to the joystick’s angle and removed it after successful hand 

fixation. Upon successful fixation and after a random delay (500 ms plus a random sample 

from an exponential distribution with mean of 250 ms), a white movement target was 

presented 10 deg to the left or right of the circle (diameter: 0.5 deg). After another random 

delay (250 ms plus a random sample from an exponential distribution with mean of 250 ms), 

the Ready and Set stimuli were flashed sequentially around the fixation cues (outer 

diameter: 2.2 deg; thickness: 0.1 deg; duration: 100 ms). The animal had to measure the 

sample interval, ts, demarcated by Ready and Set, and produce a matching interval, tp, after 

Set by making a saccade or by moving the joystick toward the movement target presented 

earlier (Go). Across trials, ts was sampled from one of two discrete uniform prior 

distributions, each with 5 equidistant samples, a “Short” distribution between 480 and 800 

ms (µShort = 640 ms, σ2
Short = 8533 ms2), and a “Long” distribution between 800 and 1200 

ms (µLong = 1000 ms, σ2
Long = 13333 ms2).

The 4 conditions associated with the 2 effectors and 2 prior conditions were interleaved 

randomly across blocks of trials. For 15 out of 17 sessions, the block size was set by a 

minimum (3 and 5 trials for H and G, respectively) plus a random sample from a geometric 

distribution with a mean of 3 trials that was capped at a maximum (20 for H and 25 for G). 

The resulting mean ± SD block lengths were 4.0 ± 4.4 and 13.3 ± 3.1 trials for H and G, 

respectively. In 2 sessions in H, switches occurred on a trial-by-trial basis. Because animal G 

had more trouble switching between conditions, block switches involved a change of prior or 

effector but not both. The position of the movement target was randomized on a trial-by-trial 

basis. Throughout every trial, the fixation cue provided information about the underlying 

prior and the desired effector. One of the two fixation cues was colored and the other one 

was white. The animal had to respond with the effector associated with the colored cue 

(circle for Eye and square for Hand), and the cue indicated the prior condition (red for Short 

and blue for Long).

To receive reward, animals had to move the desired effector in the correct direction, and the 

magnitude of the relative error defined as |tp − ts | /ts had to be smaller than 0.15. When 

rewarded, reward decreased linearly with relative error, and the color of the response target 

changed to green. Otherwise, no reward was given and the target turned red. Trials were 

aborted when animals broke the eye or hand fixation prematurely before Set, used incorrect 

effector, moved opposite to the target direction, or did not respond within 3ts after Set. To 

compensate for lower expected reward rate in the Long prior condition due to longer 

duration trials (i.e., longer ts values), we set the inter-trial intervals of the Short and Long 

conditions to 1220 ms and 500 ms, respectively.

Electrophysiology

Recording.: We recorded from 617 and 741 units in monkey H and G, respectively in the 

dorsomedial frontal cortex (DMFC), comprising supplementary eye field (SEF), 

presupplementary motor area (Pre-SMA), and dorsal portion of the supplementary motor 

area (SMA). No recordings were made in the medial bank. Regions of interest were selected 

according to stereotaxic coordinates with reference to previous studies recording from the 

SEF (Fujii et al., 2002; Huerta and Kaas, 1990; Schlag and Schlag-Rey, 1987; Shook et al., 
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1991) and Pre-SMA (Fujii et al., 2002; Matsuzaka et al., 1992), and the existence of task-

relevant modulation of neural activity. Recorded signals were amplified, bandpass filtered, 

sampled at 30 kHz, and saved using the CerePlex data acquisition system (Blackrock 

Microsystems, UT). Spikes from single-units and multi-units were sorted offline using 

Kilosort software suites (Pachitariu et al., 2016). We collected 456 single-units (H:196, G:

260) and 902 multi-units (H:421, G:481) in 69 penetrations across 29 sessions (H:17, G:12).

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of behavior

Model free analysis of behavior.: We analyzed behavior in sessions with simultaneous 

neurophysiological recordings (H: 17 sessions, 26189 trials, G: 12 sessions, 30777 trials). 

First, we used a probabilistic mixture model to exclude outliers from further analysis. The 

model assumed that each tp was either a sample from a task-relevant Gaussian distribution or 

from a lapse distribution, which we modeled as uniform distribution extending from the time 

of Set to 3ts. We fit the mean and standard deviation of the Gaussian for each unique 

combination of session, prior condition, ts, effector, and target directions. Using this model, 

we excluded any trial in which tp was more likely sampled from the lapse distribution 

(3.84% trials in H and 5.7% trials in G).

We measured the relationship between tp and ts separately for each combination of prior, 

effector, and target direction in individual sessions using linear regression (tp = βts + ε). 

Since tp is more variable for larger ts due to scalar variability, we used a weighted regression; 

i.e., error terms for each ts were normalized by the standard deviation of the distribution of tp 

for that ts. We tested whether regression slopes were larger than 0 and less than 1 (Figure 1 

and S1, Table S1).

Analysis of behavior with a Bayesian model.: We fit a Bayesian observer model to 

behavioral data (Figure 2). The Bayesian observer measures ts using a noisy measurement 

process that generates a variable measured interval, tm. The measurement noise has a 

Gaussian distribution with a mean of zero and a standard deviation that scales with ts with 

constant of proportionality wm. The observer combines the likelihood function, p(tm|ts), with 

the prior, p(ts), and uses the mean of the posterior, p(ts|tm), to compute an estimate, te. For a 

uniform prior, and under scalar property of time measurements, the mapping between te and 

tm is sigmoidal (Figure 2). The observer aims to produce te through another noisy process 

generating a variable tp. We assumed that production noise scales with te with constant of 

proportionality wp. For each prior, the model also included an offset term (b) to 

accommodate any overall bias in tp. Using maximum likelihood estimation (MLE), we fit 

the 4 free parameters of the model (wm, wp, bShort, and bLong) to data for each animal, 

effector, and target directions after pooling across sessions (Table S3).

Analysis of single- and multi-unit activity—Most analyses were performed in a 

condition-specific fashion (2 priors, 5 ts per prior, 2 effectors, and 2 directions). We excluded 

units for which we had less than 5 trials per condition, and units whose average firing rate 

was less than 1 spike/s. The remaining units included in subsequent analyses were 536 and 

636 in H and G, respectively. To plot response profile of individual neurons (Figure 
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3A,B,C), we smoothed averaged spike counts in 1-ms bins using a Gaussian kernel with a 

standard deviation of 25 ms.

Generalized linear model.: We used a generalized linear model (GLM) to assess which 

neurons were sensitive to the prior and ts. We modeled spike counts in an 80-ms window 

immediately before Set, rSet, as a sample from a Poisson process whose rate was determined 

by a weighted sum of a binary indicator for prior (Iprior: 1 for Long, 0 for Short) and 5 

binary indicators for ts values (Its) associated with the Short prior for which we also knew 

the firing rate for the Long prior. The model was augmented by 2 additional binary 

indicators to account for independent influences of the effector (Ieffector: 1 for Hand, 0 for 

Eye), and direction (Idirection:1 for Left, 0 for Right).

rset = j = 1
5 βtsIts( j) + βpriorI prior + βe f f ectorIe f f ector + βdirectionIdirection

Equation 1

To get the most reliable estimate for the regression weights, we included spike counts based 

on all trials with attrition (i.e., firing rate at time t was computed from spikes in all trials in 

which Set occurred after t), and estimated β parameters of the model using MLE for all 

included neurons. To assess the significance of the effect of the prior condition, we used 

Bayesian information criteria (BIC) to compare the full model (Equation 1) to a reduced 

model that did not include a regressor for the prior (Equation 2):

rset = j = 1
5 βtsIts( j) + βe f f ectorIe f f ector + βdirectionIdirection

Equation 2

We also used a GLM to assess which neurons were sensitive to ts. Since values of ts were 

different between the priors, we used two distinct GLMs, one for data in the Short prior and 

one for the Long prior (Equation 3):

rset = j = 1
5 βtsIts( j) + βe f f ectorIe f f ector + βdirectionIdirection

Equation 3

Equation 3 has the same format as Equation 2 but was used to assess neural data in the two 

prior conditions separately. To identify the neurons that were sensitive to ts, we used BIC to 

compare the ts-dependent GLM (Equation 3) to a reduced GLM in which there was no 

sensitivity to ts (Equation 4):
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rset = β0 + βe f f ectorIe f f ector + βdirectionIdirection

Equation 4

Neurons were considered ts-dependent if the BIC was lower in the full model either for the 

Short or for the Long prior condition (Figure 3).

Analysis of population neural activity

Principal component analysis.: To examine the trajectory of population activity in state 

space, we applied principal component analysis (PCA) to condition-specific, trial-averaged 

firing rates (bin size: 20 ms, Gaussian smoothing kernel width: 40 ms). Since neurons 

modulated during estimation and production epochs were largely non-overlapping (Figure 

S4), we performed PCA separately on the two epochs. We first constructed firing rate 

matrices of all neurons and time points [time points × neurons]. This yielded 16 matrices (2 

priors × 2 effectors × 2 directions × 2 epochs). We then concatenated the matrices across the 

two prior conditions along the time dimension and applied PCA to each of the resulting 8 

data matrices to find principal components (PCs) for each unique combination of effector 

and direction, separately in the two epochs.

In the estimation epoch, firing rates for each ts were estimated with attrition (i.e., firing rate 

at time t was computed from spikes in all trials in which Set occurred after t). However, 

results were qualitatively unchanged if firing rates were estimated without attrition. In the 

production epoch, to accommodate different trial lengths (i.e., variable tp), we estimated 

firing rates only up to the shortest tp for each ts. Neural trajectories in the two epochs were 

analyzed within the subspace spanned by the top PCs that accounted for at least 75% of total 

variance (Figure S3). We will use X(t) to refer to a neural state within the PC space at time t.

Analysis of neural projection.: In the estimation epoch, we examined the curvature in 

neural trajectories during the support of each prior by projecting X(t) onto an ‘encoding 

axis’, u, defined by a unit vector connecting the state associated with the shortest ts (ts_min) 

to that with the longest ts (ts_max) for that prior. We denote the projected states by Xu. To 

reduce estimation error, we computed multiple difference vectors connecting X(ts_min+Δt) to 

X(ts_max-Δt) for every Δt=20 ms, and used the average as our estimate of u. We used 

bootstrapping (resampling trials with replacement 1000 times) to compute 95% confidence 

interval for Xu. We quantified the similarity between Xu and the Bayesian estimates (te) 
inferred from model fits to behavior using linear regression (Xu = α + βte). Since we 

included spike counts across trials with attrition, there were nearly 5 times more data for the 

shortest ts compared to the longest ts within each prior. Accordingly, for each ts, error terms 

were weighted by the number of data points included for that ts (5 for the shortest ts, 4 for 

the second shortest, and so forth). We then used the coefficient of determination (R2) to 

assess the degree to which te was explained by the neurally inferred Xu. To further validate 

the warping hypothesis that Xu encodes te, we tested whether any linear model of ts (Xu = α 
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+ βts) can fit Xu better. The number of free parameters (α, β) were matched between the 

Bayesian and linear models as te was computed only from behavioral data. The model fit 

was compared in terms of Root Mean Squared Error (RMSE) between the actual and 

predicted Xu for individual datasets (2 animals × 2 effectors × 2 directions). As a negative 

control of our analysis, we applied the same projection analysis to data of the Long prior 

from 480 ms to 800 ms after Ready, which corresponded to the support of the Short prior 

(‘Short In Long’). We also compared the slope β for ts between the two prior conditions 

(Figure 4D) as we performed in the behavioral analysis (Figure 2G, H). Finally, we tested 

the specificity of our results with respect to the chosen u by performing the same analysis for 

1000 randomly chosen encoding axes (u’), and comparing the corresponding R2 values 

(Figure S5).

We examined two later links of the cascade model (Figure 4B) during the production epoch. 

A key component in the production epoch was the speed of the neural trajectory travelling 

the state space. For each dataset, we computed the speed as the average Euclidean distance 

(in the PC space accounting for at least 75% of the total variance) between neural states 

associated with successive bins (20 ms), divided by the duration separating Set and the time 

of Go. First, we related the trajectory speed to the projected state along the encoding axis (u) 

across the prior and ts to test if the state served as an initial condition to set up the speed of 

the ensuing trajectory (Figure 4E). We then assessed how the speed during the production 

epoch was associated with the behavioral output, tp (Figure 4G). We computed a correlation 

coefficient between the tp averaged across trials of each dataset and the trajectory speed and 

tested its statistical significance (p<0.05).

Test of alternative mechanisms.: To test alternative neural models for generating bias 

(Figure 5), we focused on two main features of neural trajectories: speed and distance across 

trajectories of the different priors and ts. We applied PCA as before but only to the period of 

interest for each alternative model (from Set to Set+200 ms for the ‘Set transient model’, 

from Go-800 ms to Go for the ‘Threshold model’). For the ‘Speed model’, we estimated 

instantaneous speed of the trajectory in the full neural space to avoid any potential distortion 

by smoothing and PCA (Figure 5B). For distance metric, trajectory of the middle ts (i.e. 

prior mean) was used as a reference from which the distance was computed (Figure 5D,F).

Analysis of neural state variance.: To estimate variance of neural states across individual 

trials during the support of the prior (Figure 6A), we used the following procedure. 1) We 

estimated the single-trial neural trajectories by applying Gaussian Process Factor Analysis 

(GPFA) (Cowley et al., 2013; Yu et al., 2009) to data from simultaneously recorded neurons 

in a single session (N= 48 in H, 96 in G) with cross validation. GPFA allowed us to avoid 

arbitrarily selecting size of the smoothing kernel and to estimate shared variability across 

population of neurons. 2) We projected the single-trial states onto the encoding vector (u) 

(Figure 6B). 3) We calculated variance and mean of the neural projections for each ts in each 

prior condition. We also used GPFA to obtain single-trial estimate of the trajectory speed 

during the production epoch. We examined correlation between the trial-by-trial speed and 

the neural projection (Figure S6) and correlation between the speed and tp across trials 

(Figure S6). To ensure that our analysis correctly captured the trial-by-trial relationship 
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between speed and tp and not their co-dependence on ts (Figure 4E,G), we measured 

correlations after z-scoring single-trial data for each ts, and used the total-least squares 

algorithm to ensure that the estimation errors of both speed and tp were taken into account.

Recurrent neural network—We constructed a randomly connected firing-rate recurrent 

neural network (RNN) model with N = 200 nonlinear units. The network dynamics were 

governed by the following equations:

τẋ(t) = − x(t) + Jr(t) + Bω(t) + cx + ρx(t)

Equation 5

r(t) = tanh(x(t))

Equation 6

x(t) is a vector containing the activity of all units and r(t) represents the firing rates of those 

units, obtained by a nonlinear transformation of x. Time t was sampled every millisecond for 

a total duration of T = 3500 ms. The time constant of decay (τ) for each unit was set to 10 

ms. The unit activations also contain an offset cx and white noise ρx(t) sampled at each time 

step from zero-mean normal distributions with standard deviation lying in the range between 

0.01 and 0.015. The matrix J represents recurrent connections in the network. The network 

received multi-dimensional input ω through synaptic weights B = [bc, bs]. The input 

comprised of a prior-dependent context cue ωc(t) and an input ωs(t) that provided Ready and 

Set pulses. In ωs(t) Ready and Set were encoded as 20 ms pulses with a magnitude of 0.4 

that were separated by time tm, where tm ∼ N(ts, tswm). wm represents the weber fraction by 

which the noise process scales. The amplitude of the prior-dependent context input ωc(t) was 

set to 0.3 for the Short prior and 0.4 for the Long prior contexts. Networks produced a one-

dimensional output z(t) through summation of units with weights wo and a bias term cz.

z(t) = wo
Tr(t) + cz

Equation 7

Network Training.: Prior to training, model parameters (θ), which comprised J, B, wo, cx, 

and cz were initialized. Initial values of matrix J were drawn from a normal distribution with 

zero mean and variance 1/N, following previous work (Rajan and Abbott, 2006). Prior to 

training, synaptic weights B and the initial state vector x(0) and unit biases cz were drawn 
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from a uniform distribution with range [−1,1]. The output weights, wo and bias cz were 

initialized to zero. During training, model parameters were optimized by truncated Newton 

methods (Martens and Sutskever, 2012) using backpropagation-through-time (Werbos, 

1990) by minimizing a squared loss function between the network output zi(t) and a target 

function fi(t), as defined by:

H(θ) = 1
T trI I

Ttr
(zi(t) − f i(t))

2

Equation 8

Here i indexes different trials in a training set (I = different prior contexts × intervals (ts) × 

repetitions (rc)). Ttr represents the epoch within a trial that was used to compute H(θ) and 

here corresponds to the production epoch. Accordingly, the target function fi(t) was only 

defined in the production epoch. The value of fi(t) was zero during the Set pulse. After Set, 

the target function was governed by two parameters that could be adjusted to make fi(t) 
nonlinear, scaling, non-scaling or approximately-linear:

f i(t) = A(e
t

αts − 1)

Equation 9

For the networks reported, fi(t) was an approximately-linear ramp function parametrized by 

A = 3 and α = 2.8. Solutions were robust with respect to the parametric variations of the 

target function (e.g., nonlinear and non-scaling target functions). In trained networks, tp was 

defined as the time between the Set pulse and when the output ramped to a fixed threshold 

(zi = 1).

During training, we employed three strategies to obtain robust solutions. In general, we 

injected three sources of variability: (1) Noise added to individual units in the RNN, (2) 

noise added to input, and (3) noise imposed by jittering the time of events (scalar 

variability). The third regime generated the most Bayes-consistent results. In this scheme, 

the RNNs were trained such that interval-dependent scalar noise was introduced into their 

observations (various trials tm ∼ N(ts, tswm)); however, the target was always held to be the 

mean of those likelihood functions (ts). In other words, interval between the Ready and Set 

pulses varied across trials with the scalar noise (tm) while the network was trained to 

generate a ramping output during the production epoch that would reach threshold at Set+ ts. 
Within this family of networks, we systematically varied two parameters (repeated across 

multiple networks), wm (weber fraction of the scalar noise) and the variance of white noise 

added to individual units to regularize the training procedure. However, it was challenging to 

train networks under such scalar noise. Complete failure of training was common and only 
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40% of networks were able to generate biased estimates that were consistent with Bayesian 

predictions. Importantly, all the networks that succeeded in performing Bayesian integration 

established the curved manifold.

Network causal experiment.: To evaluate the importance of the encoding axis on the 

behavior of the RNN at the time of Go, we performed a targeted perturbation experiment 

involving changes of the network state along the encoding axis (u) shortly before Set, which 

we refer to as ‘re-encoding’. We systematically altered network states along the u 20 ms 

before the onset of Set and examined the consequences of this perturbation on behavior. To 

verify our approach, we first performed a control experiment in which the perturbation was 

expected to have no appreciable effect on behavior. Specifically, we re-encoded the network 

state for each trial of each ts to the expected state for that ts under no perturbation (n = 3000 

trials per re-encoding). In this control experiment, perturbation had no effect on behavior (as 

expected) when we used a protocol in which (i) we allowed the network to stabilize for 10 

ms after re-encoding (on the same order as the time constant of individual units in the RNN), 

and (ii) administered the Set pulse 10 ms after stabilization (Figure 7D). Having established 

a working protocol for the re-encoding experiment, we performed two causal experiments 

involving compression and translation of network states on u.

For the compression experiments, we evaluated the network’s behavior after applying 

various levels of compression (40% and 80%) to network states toward the mean state (i.e. 

the state associated with the mean of the prior). For the translation experiments, the same 

procedure was used except that the re-encoding involved a 20% shift in network states in the 

positive or negative directions (i.e., resulting in increasing or decreasing ts) (Figure 7E). One 

constraint in the translation experiment was that the network could not tolerate large 

negative shifts (i.e., intervals shorter than 400 ms for the short prior and 800 ms for the long 

prior). Such translations placed the network state in regions of the state space in which the 

latent dynamics were no longer governed by the curved manifold.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

Monkeys estimated time by integrating sensory evidence with prior beliefs

Prior beliefs warped neural representations in the frontal cortex

Warped representations provided an optimal substrate for integrating beliefs

Recurrent neural network models validated the warping effect of prior beliefs
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Figure 1. Task and behavior.
(A) Schematic of a single trial of the Ready-Set-Go task. The animal has to estimate a 

sample interval, ts, between Ready and Set (estimation epoch), and produce a matching 

interval, tp, after Set with a delayed response (Go) via a saccade or a movement of the 

joystick (production epoch). (B) Reward as a function of relative error (tp-ts)/ts. (C) ‘Short’ 

and ‘Long’ prior distributions of ts. (D) Eight randomly interleaved trial types (see 

Methods): 2 prior conditions (Short and Long) × 2 effectors (Eye and Hand) × 2 target 

directions (Left and Right). (E) Behavior. Top: A representative session for monkey H 

showing tp pooled across effectors and target directions (small dots: individual trials; large 

open circles: average tp per ts; solid lines: Bayesian model; diagonal: unity line). The 

horizontal location of dots was jittered to facilitate visualization. Right: Histograms of tp for 

the overlapping ts (horizontal dashed line) for the two prior conditions (orange: Short; 

blue:Long; triangles: averages). Top-left inset: Average error (i.e., bias) for each ts (circles: 

data; solid lines: Bayesian model). Bottom-right inset: histogram of regression slopes 

relating tp to ts across sessions (red: Short; blue: Long; triangles: averages). Bottom: The 

same as top for Monkey G.
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Figure 2. Bayesian model and behavior.
(A) Bayesian observer model. The measurement (tm) is the sample interval (ts) plus white 

noise with standard deviation proportional to ts. The Bayesian estimator is a sigmoidal 

function that maps tm to an optimal estimate (te) (red: Short; blue: Long). te is biased toward 

the mean of the prior (arrows). The production interval (tp) is te plus scalar noise during 

production epoch. (B) The prior (top), the likelihood function (middle), the resulting 

posterior (bottom), and the posterior mean (circles) that represent the estimate. (C) 

Comparison of tp bias relative to ts between model and behavior across animals and 

conditions. (D) Same as C for variability. Individual trials were pooled across sessions for 

each condition to compute the variance. (E) The sigmoidal Bayesian estimator predicts that 

the average tp difference across neighboring ts (∆tp) should be larger around the mean of the 

prior distribution (∆tp(middle)), compared to its extrema, ∆tp (extreme) (average of ∆tp(max) 

and ∆tp(min)). (F) ∆tp (extreme) as a function ∆tp (middle) for each session and condition 

(prior, response modality, direction) pooled across the two monkeys. Each data point 

represents a session (red: Short; blue: Long). Top-right: Histogram of the difference between 

∆tp(middle) and ∆tp(extreme). The difference was similar between Short and Long (red and 

blue triangles) as predicted by the model. Triangles shows averages across datasets. See also 

Figure S1. (G) Model prediction for bias for the two prior conditions. (H) Slopes of 

regression lines relating tp to ts for individual sessions (small markers connected by gray 

lines), and the corresponding averages (big markers connected by a black line). Triangles 

represent monkey H, and circles, monkey G.
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Figure 3. DMFC response profiles and neural trajectories.
(A) Firing rate of 6 example neurons (i-vi) during the estimation epoch for Short (shades of 

red) and Long (shades of blue) prior conditions aligned to the time of Ready (vertical dashed 

line), and Set (open circles). Top left: the support of the prior. Labels (e.g., H7_3011e) 

indicate the animal (H versus G) and the effector (e for Eye and h for Hand). (B) Same as A 

during the production epoch. Due to animals’ behavioral variability, production epochs for 

the same ts were of different durations. The plot shows the average activity of neurons from 

the time of Set (vertical dashed line) to the minimum tp for each ts. (C) Firing rate of 3 of the 

neurons in panel A throughout the trial for the overlap ts of 800 ms (Short: orange, Long: 

blue). The shaded area shows the difference in firing rates between the two prior conditions 

(∆FR). (D) Root-Mean-Squared (RMS) of ∆FR during the trial (bin size: 160 ms; thin gray 

line: data from 2 animals × 2 effectors × 2 directions; thick black line: mean across 8 

datasets; shaded area: s.e.m.). (E) Pie chart of the percentage of neurons with activity 

dependent on the prior (“prior-dep.”) and/or ts (“ts-dep.”), determined by a generalized linear 

model (green: only prior-dependent, dark red: only ts-dependent, light red: both prior- and ts-
dependent, white: the remaining neurons). (F) Neural trajectories during the estimation 

epoch for a representative dataset (Monkey H, Eye Left condition) in the subspace spanned 

by the first three principal components (PCs) with the same color scheme as panel A 

(triangles: Ready; circles: Set; arrows: temporal evolution of trajectories). (G) Same as F for 

the production epoch (circles: Set; squares: Go). Trajectories were truncated at the minimum 

tp for each ts (dashed line: neural states 200 ms after Set; small dots: neural states at 20-ms 

increments). The distance between consecutive dots reflects speed. See Figure S3 for other 

datasets.
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Figure 4. Neural signatures of Bayesian integration.
(A) A geometric illustration of how linear projection of points along a 2D curve onto a 1D 

line could cause sigmoidal nonlinearity (gray dashed lines). (B) The cascade of 

computations during the Ready-Set-Go task for different sample intervals (ts). The prior 

distribution of ts (leftmost panel) establishes curved trajectory during the estimation epoch 

(second leftmost panel). Projection of neural states along the curved trajectory onto an 

encoding axis (purple vector, u) creates a warped 1D representation of time that exhibits 

prior-dependent biases. In the ensuing production epoch (after the presentation of Set), the 

initial conditions (second rightmost panel; gray diamonds) reflect the warped representation 

of time and lead to biased speed profiles (dotted line: unbiased speed profile with 1/ts, see 

panel F). The biased speed profiles, in turn, allow the system to exhibit Bayes-optimal 

behavior (rightmost panel). (C) Projection of neural states in the estimation epoch onto the 

encoding axis (u) as a function of ts for a representative condition (Monkey H, Hand Left 

condition) along the Bayesian model fit to behavior (line). Projections onto u (right ordinate 

axis) were linearly mapped onto the tp range (left ordinate axis) with two free parameters for 

scaling and offset (circles: projections every 20 ms; red: Short; blue: Long; shaded area: 

95% bootstrap confidence intervals). (D) Top: The difference between Root-Mean-Squared-

Error (∆RMSE) of the Bayesian and linear model fits with the same number of free 

parameters (red: Short; blue: Long; green: Short in Long, see main text). Triangles at top 
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show mean ∆RMSE averaged across individual datasets (2 animals × 2 effectors × 2 

directions) for each prior condition. Bottom: regression slope relating neural projections to ts 

for the Short and Long prior conditions (gray lines: individual datasets; black line with 

colored circles: mean). (E) Speed of neural trajectories from Set to Go as a function of the 

projection of the neural state at Set onto u. The speed was estimated by averaging distances 

between successive bins of the states in the state space (thin lines: individual datasets across 

animals and conditions; thick line: average). Error bars are s.e.m. (F) Speed profile across ts 

within each prior. The dashed line represents the unbiased speed profile; we used the middle 

speed as reference, and scaled it according to each interval assuming constant travelling 

distance. To ensure that speed biases were already present early in the production epoch, 

speeds were computed as the average speed between Set and Set+400ms (i.e., initial speed). 

Results are presented in the same format as in E. (G) Average produced interval (tp) as a 

function of speed at which neural states evolved during the production epoch. Results are 

presented in the same format as in E.
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Figure 5. Alternative mechanisms.
(A) Speed model (H1). Top: Bayesian estimation during the support of the prior (shaded red) 

through modulation of speed. Bottom: If speed of neural trajectory is modulated according 

to an inverted U-shape (accelerating then decelerating; right), projections off of the 

trajectory would exhibit regression to the mean (gray dashed lines). (B) Instantaneous speed 

of neural trajectories during the estimation epoch for Short (red) and Long (blue) prior 

conditions computed in the full neural state space (thin lines: individual conditions for each 

animal; thick line: averages; shaded regions: s.e.m.) Speeds were relatively constant during 

the support of the prior and did not follow the pattern predicted by H1. (C) Transient model 

(H2). Top: Bayesian estimation through transient responses triggered by Set (shaded red). 

Bottom: The Set flash could pushes the system along slightly converging trajectories across 

ts causing regress to the mean. This predicts a reduction of distance between consecutive 

trajectories shortly after Set (right). (D) Distance between neural trajectories during the first 

200 ms following Set. For each prior, we used the trajectory associated with the middle ts as 

reference (horizontal lines at y=0). For each time point along the reference trajectory, we 

computed the distance to the four other trajectories within each prior (shaded regions: s.e.m. 

across datasets). Trajectories were analyzed using PCA between Set and Set+200ms across 

the two prior conditions (>75% variance explained). Distance were relatively fixed and did 

not converge as predicted by H2. (E) Threshold model (H3). Top: Bayesian estimation 
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through adjustment of threshold at the time of Go (shaded red). Bottom: If action-triggering 

states (curved dashed line) are biased such that faster trajectories (i.e., associated with 

shorter ts) have to travel longer distances to reach the threshold, threshold-crossing times 

(triangles) would exhibit regression to the mean even with unbiased speeds (left). This 

predicts a distinctive nonmonotonic organization of neural trajectories: distances between 

trajectories associated with different ts exhibit a large-small-large (squares-circles-triangles) 

pattern before the Go response (right). (F) Distance between neural trajectories aligned to 

the motor response. Similar to D, we used the middle trajectory as reference for the two 

prior conditions (left for Short, right for Long). Distances decreased monotonically and did 

not follow the distinctive pattern predicted by H3. Shaded area represents 95% confidence 

interval across conditions and animals. Distances were computed in the PC space obtained 

across ts and accounting for ~60% of the total variance; results remained unchanged when 

more PCs were included. See also Figure S5.
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Figure 6. Trial-by-trial analyses.
(A) A geometric interpretation of how a curved neural trajectory could establish the bias-

variance trade-off expected from the sigmoidal Bayesian estimator in our task. Curvature 

causes neural states near the two ends to be mapped onto a relatively narrow range (smaller 

error bars). This squashes variability of neural projections (Xu) and predicts an inverted-U 

profile for variance as a function of ts (inset). (B) Single-trial estimate of neural states (X). 

Bottom: Neural trajectories during the support of the Short (red) and Long (blue) prior 

conditions based on neural state estimates derived from a Gaussian process factor analysis 

(GPFA; see Methods). Top: Neural states for each ts projected onto the encoding axis (u). 

(C) Variance of projected neural states (Xu) across ts. We z-scored Xu of all trials before 

computing the variance for each ts (thin lines: individual conditions; thick line: averages 

across conditions; shaded area: s.e.m. across conditions). (D) Projected neural states 

averaged across single-trials as a function of ts for both priors. See also Figure S6.
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Figure 7. Recurrent neural network model of Bayesian integration.
(A) Schematic of RNN experimental design. RNN received two inputs. One provides a tonic 

input encoding the prior condition (Short: red; Long: blue), and the other supplies two pulses 

representing Ready (R) and Set (S). The network was trained to generate a linearly ramping 

output whose slope was inversely related to the sample interval between R and S (ts). The 

Go response (G) was elicited when the output reached a threshold (dashed line). The 

production interval (tp) was measured as the time between S and G. (B) Network behavior 

shown using the same format as in Figure 1E. Inset top: Bias (circles) and variance 

(triangles) of network responses compared to that of a Bayesian model for the Short (red) 

and Long (blue) prior conditions using the same procedure as Figure 2C,D. Inset bottom: 

Regression coefficient analysis for the two priors (same color scheme) for different network 

runs. (C) Network unit trajectories shown using the same format as Figure 3F,G. (D) Top: 

Schematic showing perturbed states (white circle) that are compressed toward the state 

associated with the mean ts (arrows) relative to the original states (gray circles). Bottom: 

Network behavior with no compression (dark hue, neutral re-encoding), with 40% 

compression (intermediate hue, and with 80% compression (light hue) for the Short (red) 

and Long (blue) prior conditions. Solid lines represent corresponding fits to the Bayesian 

model. (E) Same as D for translational perturbation with either 20% positive translation 
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along the moving trajectory or 20% negative translation against the moving trajectory. Solid 

lines represent the Bayesian model translated by an offset. See also Figure S7.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Rhesus macaque (Macaca mulatta) Alpha genesis N/A

Software and Algorithms

MATLAB MathWorks https://www.mathworks.com/products/matlab.html

KiloSort Pachitariu et al., 2016 https://github.com/cortex-lab/KiloSort

Other

CerePlex Direct Blackrock Microsystems https://blackrockmicro.com/neuroscience-research-products/neural-data-
acquisition-systems/cereplex-direct-daq/

Plexon V-Probes Plexon https://plexon.com/products/plexon-v-probe/

Eyelink 1000 eye tracker SR Research https://www.sr-research.com/products/eyelink-1000-plus/
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