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Abstract

Background: Drug resistant malaria is a growing concern in the Democratic Republic of the Congo (DRC), where
previous studies indicate that parasites resistant to sulfadoxine/pyrimethamine or chloroquine are spatially clustered.
This study explores longitudinal changes in spatial patterns to understand how resistant malaria may be spreading
within the DRC, using samples from nation-wide population-representative surveys.

Methods: We selected 552 children with PCR-detectable Plasmodium falciparum infection and identified known
variants in the pfdhps and pfcrt genes associated with resistance. We compared the proportion of mutant parasites
in 2013 to those previously reported from adults in 2007, and identified risk factors for carrying a resistant allele
using multivariate mixed-effects modeling. Finally, we fit a spatial-temporal model to the observed data, providing
smooth allele frequency estimates over space and time.

Results: The proportion of co-occurring pfdhps K540E/A581G mutations increased by 16% between 2007 and 2013.
The spatial-temporal model suggests that the spatial range of the pfdhps double mutants expanded over time,
while the prevalence and range of pfcrt mutations remained steady.

Conclusions: This study uses population-representative samples to describe the changing landscape of SP
resistance within the DRC, and the persistence of chloroquine resistance. Vigilant molecular surveillance is critical for
controlling the spread of resistance.
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Background
With 17 million confirmed cases in 2016, the burden of
malaria in the Democratic Republic of the Congo is one
of the highest in the world [1]. Understanding malaria
dynamics in DRC is critical in eliminating malaria from
sub-Saharan Africa. Previous studies of P. falciparum
genetic diversity within the DRC have shown a mixture
of both West and East African strains, indicating that
the DRC serves as a nexus of regional transmission, in-
corporating parasites from both sides of the continent
[2–4]. Insights from genetic P. falciparum studies within

the DRC therefore have important implications for redu-
cing disease burden within the country and for Central
and sub-Saharan Africa.
Efforts to halt transmission in the DRC, and across

Africa, are being threatened by growing resistance to com-
monly used antimalarial drugs [5, 6]. Molecular markers
can be used to identify resistant infections to monitor the
spread of resistance [7, 8]. These markers include muta-
tions in the dihydropteroate synthase (pfdhps) gene, which,
along with mutations of the dihydrofolate reductase
(pfdhfr) gene, confer resistance to sulfadoxine [7–9]. Spe-
cifically, the pfdhps A437G, K540E, and A581G mutations
are associated with sulfadoxine/pyrimethamine (SP) treat-
ment failure [8, 9]. Co-occurrence of the K540E and
A581G mutations has been associated with failure of SP
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for intermittent preventive therapy during pregnancy
(IPTp), a program recommended for all pregnant women
in the DRC [10, 11]. Additionally, mutations of the chloro-
quine resistance transporter (pfcrt) gene, specifically muta-
tions in amino acids 72–76 (wild type CVMNK), confer
chloroquine resistance [12, 13]. Past work has demon-
strated that the K76 T mutation alone increases the risk of
chloroquine treatment failure, though a K76 T-containing
CVIET triple mutant haplotype has emerged in many
African countries, including the DRC [5, 7, 14]. Studies
have demonstrated that this haplotype is also associated
with amodiaquine treatment failure; amodiaquine is used
as part of the first line therapy for malaria in the DRC
[10, 15–17]. Additionally, another pfcrt haplotype,
SVMNT, is also associated with resistance to amodia-
quine [12, 17, 18]. Monitoring these molecular markers
is critical for halting the spread of resistance.
Studies conducted in the DRC have demonstrated

spatial structure of parasites resistant to SP and chloro-
quine [5, 6, 19]. Amongst adult respondents to the 2007
Demographic and Health Survey (DHS), those infected
with parasites with a single pfdhps A437G mutation
were spread throughout the country, though mostly lo-
cated in the western part of the DRC [6]. Co-occurring
K540E and A581G mutants were rarer, but showed geo-
graphic clustering in the northeast region of the country
[6]. Past studies from the DRC have demonstrated that
the pfdhfr mutations are nearly fixed within the popula-
tion [20]. There was no apparent clustering of the pfcrt
CVIET haplotype [21]. More recent work demonstrated
similar patterns for pfdhps mutations amongst children
sampled in 2013 [19]. However, the pfcrt CVIET haplo-
type displayed a pattern of concentrated cases on the
eastern and western borders, with fewer mutations ob-
served in the center of the DRC [19]. These findings
highlight hotspots of resistance within the DRC.
Previous geospatial studies of drug resistance in the

DRC often do not use population based samples and are
therefore not necessarily nationally representative [22].
Better estimates of the burden and distribution of these
mutations can be obtained using nationally representa-
tive surveys [19, 23]. This is the first study, to our know-
ledge, that uses data from a nationally representative
database to evaluate risk factors for carrying a resistant
infection and to study longitudinal changes in resistance.
Here, we describe the changing spatial patterns of SP

and chloroquine resistance over time in the DRC by
comparing samples from the 2013–2014 DHS to pre-
viously published data drawn from the 2007 DHS. We
begin by describing the proportion of single and co-
occurring mutations in both 2007 and in 2013. Next,
we present an epidemiologic risk factor analysis to
identify covariates associated with increased prevalence
of resistant infections. The findings from this analysis

will help identify individuals and communities that
may be of higher risk for resistant infections. Finally,
we use Markov chain Monte Carlo to fit a spatial-
temporal model to the observed data to explore
whether the geographic range of drug resistant muta-
tions has shifted between 2007 and 2013. This model
allows us to directly compare allele frequencies across
space and time.

Methods
Study population
Samples were drawn from the DHS survey, conducted in
the DRC in 2013–2014 [24, 25]. The DHS Program con-
ducts cross-sectional, nationally representative popula-
tion health surveys in over 90 countries. In the DRC, the
DHS survey uses a randomized cluster sampling method
[26]. For the 2013–2014 survey, 536 geographic clusters
across the DRC were randomly selected. Next, house-
holds were randomly selected from these clusters for
inclusion in the DHS. The 2013–2014 survey included
adolescents and adults ages 15–59 and children under
age 5. DHS survey conductors visited selected house-
holds and obtained informed consent from each individ-
ual age 18 or older, or from a parent or legal guardian
for children and adolescents under age 18. Survey con-
ductors administered an extensive questionnaire cover-
ing topics such as socioeconomic status, education, and
health history. Each individual was administered a
malaria rapid diagnostic test and blood samples were
collected on filter paper and shipped to the University of
North Carolina for molecular diagnostic testing. All
DHS questionnaires and procedures have been approved
by the ICF Institutional Review Board and comply with
the United States Department of Health and Human
Services regulations for the protection of human sub-
jects. This study was approved by the Internal Review
Board at The University of North Carolina, Chapel Hill
and at the Kinshasa School of Public Health.
A previous DHS survey was conducted in the DRC in

2007 [24]. Similar to 2013–2014, a two-stage random
cluster sampling scheme was used to select households
for inclusion, though only adults were asked to partici-
pate. The 2007 survey used 300 sampling clusters (fewer
than in 2013–2014) and the clusters were not the same
between years.

DNA amplification and genotyping
Findings from the 2007 DHS have been previously pub-
lished [3–6, 27]. As described, 220 samples were
previously genotyped at the pfdhps and pfcrt loci [6, 28].
Molecular diagnostic testing for malaria parasites was

completed for all individuals included in the 2013–2014
DHS [23, 29]. Unlike children included in previous stud-
ies, these children participated in the DHS and thus have
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extensive individual demographic data [19]. DNA was
extracted from filter paper using a Chelex-100 Kit (Bio-
Rad, Richmond, CA). Samples were tested in duplicate
using a real-time PCR assay to target the P.f. lactate de-
hydrogenase gene; human beta-tubulin was used as a
positive control. Primer sequences for both genes have
been previously published [18, 30]. Samples in which
both replicates amplified parasite DNA were considered
positive. If one replicate failed to amplify but the other
amplified with a PCR cycle threshold (CT) value below
38 that sample was also considered positive [23].
A total of 552 children with PCR-confirmed P.falcip-

arum infections from 536 clusters were selected from
the 2013–2014 DHS for inclusion in this study. Overall,
7137 children included in the DHS had complete data;
malaria prevalence by PCR was 38.6% [23]. Children
with CT values under 30 were chosen for this analysis to
ensure sufficient sequencing coverage. Children were
selected from throughout the DRC, providing ample
geographic representation. Samples from the selected
children were amplified using molecular inversion
probes (MIPs), a multistep protocol that allows for
highly multiplexed deep sequencing [19]. MIPs were de-
signed to flank the pfdhps and pfcrt targets. Each sample
was individually barcoded in order to de-multiplex
sequences and yield individual level data. Sequencing
data was processed using the MIPWrangler software, as
previously described [19]. Paired-end reads were stitched
and filtered by base quality scores, expected length, a
minimum unique molecular index (UMI) count of 3 and
minimum relative abundance of 0.5% within sample.
SNP calls were further filtered to have a minimum Phred
quality score of 20. Mixed infections were identified as
those with heterozygous SNP calls at any of the geno-
typed loci.

Comparison of allele frequencies
Proportions of each SNP were calculated for each year
and compared using the UpSet package in the R statis-
tical language [31, 32]. Mixed infections with both refer-
ent and mutant genotype calls were considered mutant.
The UpSet package does not accommodate missing data;
therefore, this analysis only included observations with
SNP calls at all sites. Frequencies were statistically com-
pared between years using chi-squared tests. For these
tests, individuals missing a genotype call at any given site
were not included in the analysis for that site only. COI
estimates were determined using THE REAL McCOIL
software [33].

Epidemiologic risk factor analysis
Risk factor data was drawn from all surveyed individuals
within a cluster. Potential cluster and individual level
demographic risk factors were based on biological

plausibility and by consulting relevant literature [27, 34].
Both cluster-level and individual-level risk factors were
evaluated as several studies of malaria conducted in the
DRC have demonstrated the role of community level
factors on individual infection risk [27, 34, 35]. Selected
cluster-level covariates included: malaria prevalence by
PCR, percentage of individuals in the lowest wealth
category, percentage of individuals without education,
percentage of pregnant women who took SP, percentage
of children who took chloroquine for a fever or cough,
cluster size, and urban vs rural status. Individual cova-
riates included wealth index and biological sex. Age
could not be included as the DHS does not collect data
from individuals aged 5–15, thus there is a gap in the
age distribution.
Multivariate mixed-effect Poisson models were used

to identify associations between selected covariates and
the probability of having a drug resistant infection.
Using a Poisson distribution and estimating a robust
variance is an alternative to fitting log-risk models
(that use a binomial distribution), which often do not
converge [36, 37]. Full specification of the model is
available in Additional file 1: Text S1. We used back-
wards selection to identify significant associations, ini-
tially fitting a full model with all previously mentioned
potential risk factors. Covariates were subsequently re-
moved one at a time based on the highest p-value until
only covariates with p-values less than or equal to 0.05
were left. Secondary analyses were conducted using
univariate models for each potential risk factor to de-
termine if the marginal associations from the univa-
riate models matched those of the multivariate model.
To account for dependency between individuals living
in the same province, all models fit random effects for
DHS province; DHS cluster could not be used as there
were too few observations per cluster to estimate
random effects. All analyses were conducted in the R
statistical language using the lme4 package [38].

Spatial prediction models
Spatial prediction maps were generated by fitting a
spatial-temporal model to the data. This model assumed
a smooth surface based on the logistic Gaussian process
[39] to describe the underlying frequency of resistant al-
leles as a function of space, time, and a number of covar-
iates. Observed counts of resistant alleles were modelled
as binomial draws from the underlying frequency distri-
bution. The complete model specification can be found
in Additional file 1: Text S1. Covariates used in the
model included accessibility, night time lights (a meas-
ure of population density), and proportion urban/rural
[40–42]. Every covariate was given a weighting param-
eter allowing it to have a greater or lesser effect on the
data, and these parameters were given suitable priors.
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To facilitate model fitting and to ensure our method
scaled well with the number of dimensions and DHS
clusters, the full model was approximated using 250 ran-
dom Fourier features (Additional file 1: Text S1) [43].
Model fitting was conducted via Hamiltonian Monte
Carlo (HMC) using the GRETA package [44] in the R
statistical language. In each analysis the HMC was run
for 10,000 burn-in iterations and 1 million sampling iter-
ations, thinning to every 100th sample to remove auto-
correlation. Posterior parameter values were sampled at
random to generate 1000 maps for each of the pfdhps
mutations A437G, K540E, A581G, and the pfcrt CVIET
haplotype, and these 1000 maps were summarized in the
form of a mean prediction map and standard deviation
(error) map.

Results
MIP analyses of 2013–2014 samples
Following MIPWrangler processing, a 250 bp paired end
MiSeq run following a single MIP capture yielded 9 mil-
lion paired end reads and 4 million UMIs. Sequencing
was successful for 514/552 children. The geolocation
data indicates that these 514 children live throughout
the DRC (Fig. 1). Complete pfcrt SNP data was available
for 513 children, and 307 had data available across all
pfcrt and pfdhps loci of interest.
The results of THE REAL McCOIL analysis estimated

an average complexity of infection (COI) of 2 (range =
1–17). Of children with complete genotyping data, 108
(35% of the total) had polyclonal infections, compared

with 20% of infections that were polyclonal in 2007
(X2 = 7.28, df = 1, p < 0.01). However, this is likely an
underestimate of the true number of polyclonal infec-
tions as we are only looking at three loci.

Frequency of pfdhps and pfcrt variants over time
The overall proportion of pfdhps mutations remained
relatively steady from 2007 to 2013, (80% [95% CI =
72–86%] vs 86% [95% CI = 83–89%], Fig. 2). However,
the proportions of K540E mutations increased signifi-
cantly from 17% (95% CI = 11–24%) in 2007 to 41%
(95% CI = 36–47%) in 2013 (X2 = 25.57, df = 1,
p < 0.01). A581G mutations also increased signifi-
cantly between years, from 3% (95% CI = 1–8%) in
2007 to 18% (95% CI = 14–23%) in 2013 (X2 = 15.27,
df = 1, p < 0.01). Only one individual in 2007 had a sin-
gle A581G mutation, in all other cases, in both years,
A581G was only found in the presence of a K540E mu-
tation. Thus, the proportion of double K540E/A581G
mutants also increased significantly across years, from
2% (95% CI = 1–7%) in 2007 to 18% (95% CI = 14–23%)
in 2013 (X2 = 19.27, df = 1, p < 0.001).
Amongst monoclonal infections, there were similar

patterns of allele frequencies over time. The proportions
of infections carrying any of the three pfdhps SNPs in-
creased slightly; 62% (95% CI = 51–73%) in 2007 versus
73% (95% CI = 66–79%) in 2013 (X2 = 2.71, df = 1, p =
0.10). However, the proportion of double K540E and
A581G mutant parasites increased from 4% (95% CI =

Fig. 1 DHS cluster locations of the children included in the analysis. Clusters are from 2007 (a) and 2013 (b). The 26 DRC municipal province
borders are outlined in black
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1–8%) in 2007 to 12% (95% CI = 7–17%) in 2013 (X2 =
3.03, df = 1, p = 0.08).
The proportion of pfcrt CVIET haplotypes did not

change significantly from 2007 (58% [95% CI = 50–65%]
to 2013 (54% [95% CI = 49–58%]; X2 = 0.80, df = 1, p =
0.37). No parasites harbored the SVMNT haplotype.
Among monoclonal infections, the proportion of pfcrt
CVIET haplotypes also remained steady; 55% (95% CI =
46–63%) in 2007 and 56% (95% CI = 51–61%) in 2013
(X2 = 0.012, df = 1, p = 0.91).

Risk factor analysis
Complete pfdhps and DHS covariate data were available
for 492 individuals from both the 2007 and 2013–2014
studies; complete pfcrt and DHS covariate data was
available for 675 individuals. Reported antimalarial use
was low, with a cluster average of only 12% of pregnant
women receiving SP in 2007 and 24% in 2013. In 2007,
an average of only 4% of children per cluster reporting a

cough or fever received amodiaquine, and only about 1%
in 2013. A summary of the cluster and individual level
characteristics by pfdhps and pfcrt genotype is available
in Table 1.
The mixed-effects model identified several risk factors

for pfdhps mutations and the pfcrt CVIET haplotype
(Table 2). Increasing cluster-level use of SP was a risk
factor for carrying a K540E mutation (PR = 1.14, 95%
CI = 1.09–1.20, p < 0.01) as was increasing cluster preva-
lence of P. falciparum infections (PR = 1.11, 95% CI =
1.06–1.17, p = 0.02). The results from the pfcrt model in-
dicated an inverse relationship between the prevalence
of mutations and the proportion of uneducated individ-
uals (PR = 0.92, 95% CI = 0.90–0.95, p < 0.01). Education
may be a proxy for access to medications.
Increasing cluster level SP use amongst pregnant

women and malaria prevalence were both identified as
risk factors for carrying the K540E mutation (including
those with the A581G mutation also), while education

Fig. 2 Frequencies of pfdhps and pfcrt mutations in 2007 and 2013. Wild-type genotypes are highlighted in red. Chi-squared tests were
performed to statistically compare proportions; asterisks indicate a statistically significant difference in proportion between years

Deutsch-Feldman et al. BMC Infectious Diseases          (2019) 19:872 Page 5 of 10



was the only risk factor identified for carrying the
CVIET haplotype.
Results from the secondary univariate models matched

those from the multivariate models (Additional file 1:
Table S2). Like the multivariate model, the univariate
models did not identify any risk factors for carrying any
pfdhps mutation. The univariate models of K540E identi-
fied both increasing SP use and increasing cluster P.f.
prevalence as risk factors, though the p-value for preva-
lence was not significant at the 5% level. Like the multi-
variate model, the univariate models of pfcrt identified
only increasing cluster level education as a risk factor for
the CVIET haplotype. Similarly, increasing cluster level
proportion of poor individuals showed a protective effect
against the CVIET haplotype, though the association
had a p-value that was not significant at the 5% level.
Full results for the univariate models are available in
Additional file 1: Table S1.

Spatial-temporal prediction maps
The prediction maps generated from the logistic Gauss-
ian model indicate that the allele frequency distribution
of the A437G mutation shifted range slightly between

2007 and 2013, decreasing in the east and west of the
country but increasing in the south (Fig. 3). The results
also demonstrate the geographic spread of both the
K540E and A581G mutations from east to west, showing
both an increase in the frequency of each mutation and
a geographic expansion, indicated by the shift in the 10%
contour lines (marked in black). Pfcrt results demon-
strate that there has been no significant change in the
spatial distribution of the CVIET haplotype between
2007 and 2013; the prevalence of the haplotype is high-
est across the central part of DRC. The wide 95% cred-
ible intervals on posterior parameter weights indicate
that there is large uncertainty as to which components
are driving the signal (Additional file 1: Figure S1). Simi-
larly, the posterior error maps show that there is large un-
certainty in the predicted allele frequency at most points in
space (Additional file 1: Figure S2). Hence, it is important
to recognize that the maps in Fig. 3 show only the average
prediction, and there are alternative maps that are plausible
under the posterior distribution. However the general pat-
terns described above, such as the east-west expansion of
K540E and A581G mutations, remain consistent over the
majority of posterior draws, and therefore are well-
supported in spite of uncertainty in any specific prediction.

Table 1 Individual and cluster level characteristics of all study participants, stratified by Pfdhps and Pfcrt genotype

Pfdhps Pfcrt

Wildtype
(N = 81)

Any pfdhps mutation
(N = 434)

P-value*** Wildtype
(N = 306)

CVIET haplotype
(N = 369)

P-value***

Malaria prevalence (SD) 59.3 (20.4) 58.9 (21.8) 0.872 60.04 (21.74) 57.42 (22.24) 0.125

Anti-malarial use during pregnancya (SD) 16.7 (16.6) 22.2 (18.1) 0.011 2.0 (6.2) 1.9 (6.0) 0.955

Anti-malarial use amongst children (SD)b 3.0 (6.4) 2.0 (5.6) 0.126 1.7 (4.4) 1.6 (4.0) 0.745

Mean DHS Cluster size (SD) 17.9 (18.0) 19.3 (18.8) 0.652 17.8 (19.07) 20.0 (22.14) 0.266

% without education (SD) 32.7 (23.48) 23.1 (21.5) < 0.001 28.8 (24.41) 22.0 (20.16) < 0.001

% in lowest wealth category (SD) 30.2 (23.0) 21.4 (22.5) 0.001 27.2 (22.5) 20.5 (22.5) < 0.001

Number living in urban area (%) 28 (34.6) 154 (35.4) 0.975 90 (29.4) 135 (36.6) 0.059

Individual covariates:

Number female (%) 41 (50.6) 228 (52.5) 0.845 153 (50.0) 192 (52.0) 0.654

Median Individual Wealth Index (IQR) 2 (1–3) 3 (1–4) 0.015 2 (1–3) 3 (2–4) < 0.001

*** p-values for tests conducted for comparisons between wildtype and mutant groups (Chi-squared tests for categorical data and t-tests for continuous data)
a Percentage of pregnant women reporting drug use; SP use is described by pfdhps status and chloroquine use by pfcrt status
b Percentage of children with a cough or fever that received SP or chloroquine; SP use is described by pfdhps status and chloroquine use by pfcrt status

Table 2 Risk factors identified from final backwards selection multivariate risk factor model

Covariate Prevalence Ratio (95% CI) P-value

Pfdhps K540E

10% increase in malaria prevalence 1.11 (1.06–1.17) 0.024

10% increase in cluster SP usea 1.14 (1.09–1.20) < 0.01

Pfcrt CVIET

10% increase in lowest education category 0.92 (0.90–0.95) < 0.01
a reported SP use amongst pregnant women
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Fig. 3 Spatial prediction maps comparing prevalence and spatial distribution of pfdhps and pfcrt mutations. Predictions were generated for 2007
(left panels) and 2013 (right panels). Clusters with at least one mutation are marked with a white “x”, clusters with no mutations are marked in
grey circles. Horizontal black lines represent a 10% increase in prevalence
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Discussion
Monitoring the changing spatial distribution of drug
resistance markers is necessary for developing efficient
interventions to halt the spread of resistance and elimin-
ate malaria. Here, we leverage geolocated samples from
the DHS to measure resistance mutations across the
DRC and map changes that occurred between 2007 and
2013 [6, 19, 21]. Studies using nationally representative
samples like the DHS are less susceptible to selection
bias; however, longitudinal comparisons of DHS surveys
have been impeded by the fact that the individual survey
clusters change between surveys. Here, we use a spatial
prediction model that overcomes this by assuming a
continuous surface of underlying allele frequencies,
allowing us to integrate information at different points
in space and time.
This study found that the 540 and 581 pfdhps muta-

tions have increased in the DRC since 2007, both in
numbers and in geographic spread. This agrees with re-
cent findings of an increase in pfdhps mutations between
2014 and 2015 amongst individuals living in southwest
DRC [45]. Evidence of geographic expansion from the
eastern part of DRC is also supported by previous
research that demonstrated higher prevalence of both
mutations in East Africa compared to West Africa [9,
46]. This expansion is particularly concerning as these
mutations are associated with SP failure during IPTp
[11, 19, 46]. The risk factor analysis indicates that
these increases may be in part driven by SP use, which
was associated with increased prevalence of pfdhps
mutations. Further, this study indicates that increasing
community level drug use, not necessarily individual
use, is associated with increases in resistance. This is
consistent with previous work that demonstrated asso-
ciations between community level interventions and
malaria risk [34, 35].
Chloroquine resistance has remained relatively steady

since 2007; the proportion of CVIET parasites is un-
changed and the spatial distribution remains similar.
These findings are troubling as the DRC halted chloro-
quine use as a first line treatment in 2001 due to con-
cerns about growing resistance [47, 48]. This sustained
resistance may be in part driven by demographic factors;
the risk factor models results indicate that cluster-level
education and wealth are associated with chloroquine
resistance. There may also be unregulated chloroquine
use, as has been reported in other sub-Saharan African
countries [49]. Additionally, there is evidence that the
CVIET haplotype is associated with amodiaquine resist-
ance [15, 16, 50]. Since amodiaquine is used as part of
the first line treatment ASAQ in the DRC, this asso-
ciation may explain why the prevalence of CVIET has
remained steady over time [16, 48, 50]. Reported ASAQ
use was too low in this study for us to evaluate this

relationship statistically. However, we did not detect the
SVMNT haplotype, also found to be associated with
ASAQ resistance, in this population [17, 18].
The findings from this study have direct implications

for malaria control programs in the DRC. As mentioned,
SP is still used in the DRC as the primary drug for IPTp
[47, 48]. Increasing SP resistance may threaten these
preventive efforts. Additionally, though chloroquine is
no longer a recommended treatment for malaria, reports
from other sub-Saharan African countries show a steep
drop in the proportion of resistant parasites after ending
chloroquine use [48, 51, 52]. The sustained prevalence
of chloroquine resistance seen in this study is alarming
and warrants further investigation.
Effective monitoring of drug resistance requires sensi-

tive molecular tools that can accommodate a large num-
ber of samples. Using MIPs to amplify resistance loci
allows for highly multiplexed and efficient deep sequen-
cing of Plasmodia. This study demonstrates the utility of
MIPs for drug resistance surveillance, and the ability to
answer critical epidemiological questions. This novel
method can also be used to investigate questions of
parasite population structure, gene flow, and selective
sweeps, amongst others. The spatial-temporal approach
used here also represents a step forward compared with
previous mapping efforts [19]. The random Fourier fea-
tures (RFF) method allows us to explore complex models
in a computationally efficient way, thereby reducing the
time and resources required to perform this kind of
advanced spatial analysis and opening the door to much
larger datasets in the future.
There are several limitations to this study. First, we

only have access to a relatively small number of samples
distributed over a wide geographic area, and this is
reflected in the large credible intervals around our
spatial-temporal predictions. We can therefore only
draw large-scale conclusions about changes that have
occurred over the study time period, based on patterns
that are consistent over the majority of posterior draws.
Second, this study compared genotype data generated
using different approaches: data from 2013 to 2014 was
obtained using MIPs and Illumina sequencing, while
data from 2007 was obtained with standard PCR amplifi-
cation and alternate sequencing methods. However, the
sequencing coverage is approximately the same across
studies, providing assurance that the methods are com-
parable. Additionally, the MIPs did not amplify across all
of pfdhps in a single sequence but rather used multiple
MIP probes to target the regions of interest. Therefore,
we could not create true haplotypes across pfdhps.

Conclusion
The findings from this study indicate that the prevalence
and geographic spread of SP resistance increased between
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2007 and 2013. In contrast, the proportion and pattern of
chloroquine resistance stayed the same, potentially a result
of ASAQ use or informal chloroquine use. These findings
indicate a need to continue monitoring these resistant
mutations to prevent additional spread, and to further
investigate the factors driving these patterns.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
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