Ha et al. BMC Bioinformatics (2019) 20:508
https://doi.org/10.1186/s12859-019-3094-9

BMC Bioinformatics

SOFTWARE Open Access

PlantSimLab - a modeling and simulation
web tool for plant biologists

Check for
updates

S. Ha', E. Dimitrova®, S. Hoops®, D. Altarawy”, M. Ansariola®, D. Deb® J. Glazebrook’, R. Hillmer®, H. Shahin?,
F. Katagiri’, J. McDowell?, M. Megraw'®, J. Setubal'""'?, B. M. Tyler'® and R. Laubenbacher'*"

Abstract

intuitive for experimentalists.

expertise.

software

Background: At the molecular level, nonlinear networks of heterogeneous molecules control many biological
processes, so that systems biology provides a valuable approach in this field, building on the integration of
experimental biology with mathematical modeling. One of the biggest challenges to making this integration a
reality is that many life scientists do not possess the mathematical expertise needed to build and manipulate
mathematical models well enough to use them as tools for hypothesis generation. Available modeling software
packages often assume some modeling expertise. There is a need for software tools that are easy to use and

Results: This paper introduces PlantSimLab, a web-based application developed to allow plant biologists to
construct dynamic mathematical models of molecular networks, interrogate them in a manner similar to what is
done in the laboratory, and use them as a tool for biological hypothesis generation. It is designed to be used by
experimentalists, without direct assistance from mathematical modelers.

Conclusions: Mathematical modeling techniques are a useful tool for analyzing complex biological systems,
and there is a need for accessible, efficient analysis tools within the biological community. PlantSimlLab
enables users to build, validate, and use intuitive qualitative dynamic computer models, with a graphical user
interface that does not require mathematical modeling expertise. It makes analysis of complex models
accessible to a larger community, as it is platform-independent and does not require extensive mathematical

Keywords: Mathematical model, Biological network, Dynamic network model, Plant biology, Modeling

Background

Motivation

“Like most mathematicians, he takes the hopeful biolo-
gist to the edge of a pond, points out that a good
swim will help his work, and then pushes him in and
leaves him to drown.” (C. Elton, in a 1935 review of
work by A. Lotka) [1]. The modern biologist might
well have the same reaction when confronted with
many of today’s mathematical models and software
tools. The ideal approach to (plant) systems biology
that avoids this problem might be interdisciplinary
research teams integrating biology and computation,

* Correspondence: laubenbacher@uchc.edu

“Center for Quantitative Medicine, School of Medicine, University of
Connecticut, Hartford, USA

Full list of author information is available at the end of the article

K BMC

with significant overlap in skill sets. This is unfortu-
nately not the every-day reality in the short or
medium term. A widespread adoption of tools that
bring computation and systems “thinking” to the
study of dynamic molecular pathways requires that a
biologist use them without access to a modeler and
without acquisition of advanced mathematical skills.
PlantSimLab, the software package described in this
paper, represents an attempt to address this reality.
We aimed to build an intuitive tool with a shallow
learning curve and some basic utilities, a “flip phone”
of modeling tools for the uninitiated, rather than a
“smart phone.”

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-019-3094-9&domain=pdf
http://orcid.org/0000-0002-9143-9451
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:laubenbacher@uchc.edu

Ha et al. BMC Bioinformatics (2019) 20:508

Systems biology is a useful approach to plant biol-
ogy, and biology in general, at several different scales
(see, e.g., [2]). Focusing on systems-level dynamic
phenomena naturally relies on extensive use of math-
ematical models. If the interest is in elucidating net-
work topology, then typically tools from graph theory
are used to study connectivity features. If the interest
is in studying dynamic effects, then one needs to
build and analyze dynamic computer models of net-
works. In both cases, two approaches are used: the
so-called “bottom-up” approach, which builds a model
of the network from available information about its
components, and the “top-down” approach, which ex-
tracts network links from experimental, typically high-
dimensional, data. Ideally, both approaches are used
in combination. The software tool described here in
its current form is entirely bottom-up. It provides a
graphical user interface that allows the construction
of dynamic models of networks, their simulation, and
the basic experimental capability of knocking out a
node. The fundamental hypothesis underlying Plant-
SimLab is that, with the right type of modeling para-
digm and the right interface, biologists can
themselves construct and manipulate useful mathem-
atical models for hypothesis generation, without hav-
ing expert knowledge or a Dbackground in
mathematics or modeling. The goal is to provide biol-
ogists with an easily usable, virtual laboratory tool to
integrate available information and data for the pur-
pose of hypothesis generation. These constraints re-
quire a mathematically simple way of constructing
models and interpreting model output, making model-
ing frameworks such as differential equations less
well-suited. We have chosen the modeling paradigm
of time- and state-discrete dynamical systems, which
are essentially generalized Boolean networks. They
have been used successfully to capture a wide range
of molecular networks in recent years; see, e.g., [3—6].

Existing software packages

There are a number of excellent software platforms
available for modeling using Boolean networks and
their generalizations. The Cell Collective [7] is an
interactive web tool built with a special emphasis on
the collaboration of distributed teams to build large
Boolean models of molecular networks; it has many
features and an extensive library of models. The
popular web tool GinSim [8] provides a graphical
user interface to build and analyze so-called logical
models, which can be viewed as generalized Boolean
networks with additional features. The R package
BoolNet [9] is a very convenient approach to build-
ing and simulating stochastic Boolean models, with
randomly varying update schemes for the variables.

Page 2 of 11

Several other more recent platforms have been devel-
oped; see, e.g., [6, 10-13] for a partial list. Some of
these can deal only with Boolean networks, such as
BoolNet, while others can handle multi-state models,
such as GinSim. They have in common, to a greater
or lesser extent, the assumption that the user has
some modeling experience or is willing to undertake
a relatively steep learning curve. All of them have a
wide variety of features, whether it is the accommo-
dation of different modeling frameworks, the ability
to infer dynamic models from data, or features that
allow sharing and distributed model construction.

Our contribution

The modeling platform described here differs from
these platforms primarily through its relative simpli-
city, and ubiquitous default settings that significantly
shorten the path to a working model. The user can
choose any (finite) number of states for any of the
nodes, with state labels chosen from a predetermined
menu (with the option to customize). The user then
chooses edges between nodes from a set of default
choices (e.g., activate, inhibit, custom). For activating
or inhibiting edges, an autofilled transition table ap-
pears (which can be customized, if desired) that spe-
cifies the action of the edge, taking into account the
respective numbers of states for source and target
nodes and their labels. We have chosen to use basic
transition tables to describe the logical rules for the
way each node takes up and integrates its different
regulatory inputs. The advantage is that, in essence,
each row in a transition table represents a biological
statement, such as “when A is high, B is low, and C
is low at time ¢, then C (which is regulated by both)
transitions to being medium at time ¢+1,” correspond-
ing to the row [high low low | medium], which, for
mathematical purposes gets translated into [2 0 0 |
1]. Thus, model construction is simplified as much as
possible. Model analysis in the current version is lim-
ited essentially to computing the different steady
states the model is capable of, corresponding to the
different phenotypes exhibited by the system to be
modeled. Basic “experiments” that can be performed
with the model include “knock-out” of one or more
nodes and the edges connected to the knocked-out
node(s), and the ability to observe the resulting
changes in system behavior. In our experience, this
“bare-bones” approach is effective in providing quick
model construction and a check on the consistency of
the assumptions underlying the model. This is the
first step in using the model for hypothesis discovery.
The other existing modeling platforms described
above may then serve as an “upgrade” for biologists
with more extensive modeling expertise.

Ha et al. BMC Bioinformatics (2019) 20:508

Implementation

The purpose of the software is to let the user construct
a dynamic model of a molecular (or other) network
from biological knowledge, and allow a basic explor-
ation of model dynamics as well as the effect of certain
perturbations. In order to simplify model construction,
a number of default settings are used that can subse-
quently be customized by the user, prioritizing simpli-
city and speed. The user first constructs a network in
the form of a directed graph using a simple user inter-
face, which indicates the causal dependencies of the
network nodes. Our modeling framework of choice is
that of dynamic models that are time-discrete, i.e., var-
iables are updated in discrete time steps, and state-
discrete, i.e., each variable can take on a finite number
of possible states (currently up to five), and this num-
ber can vary across variables. The result is a finite (but
conceivably large) space of possible system states
(given in the form of a directed graph, with directed
edges indicating state transitions). Each network node
has attached to it a function that takes as input the
states of all of the nodes from which there is an incom-
ing arrow, and provides as output the “next” state of
the node. As a special case, each node could take on
exactly two values, resulting in a Boolean network.
Such a function can be specified in a number of ways,
for instance through a Boolean function in the case of
binary inputs. We have chosen the most simple and in-
tuitive description, through the specification of a tran-
sition table that specifies the output for each possible
input vector of states. Such a table is automatically
generated by default, integrating the different inputs in
an additive fashion. The table can subsequently be cus-
tomized, for instance, to use synergistic action instead
of additive. Each row of such a table can be interpreted
as a biological statement, e.g., “If A is high, B is low,
and C is high at time ¢, then C will become low at the
next time step,” representing the row [1 0 1 | 0] in the
Boolean case. Thus, there is no need to learn any
mathematical formalism to specify functions. The user
is able to carry out basic computational “experiments,”
namely to knock out network nodes and the arrows/in-
teractions connected to those nodes. Finally, the user
can analyze the model by computing all steady states,
typically corresponding to different cellular phenotypes
and attractor basins, corresponding to the relative like-
lihood of that phenotype.

The fundamental algorithm underlying all these calcu-
lations exhaustively enumerates all possible state transi-
tions from the transition table. This is done as follows,
using the binary case as an illustration. For a model with
n nodes, the 2" possible network states are arranged
alphabetically. The algorithm takes the first state, x = (0,
0, ..., 0) as input and computes the “next” state, y, using

Page 3 of 11

the transition table. The new state now becomes the in-
put to the algorithm, which first checks whether x =y. If
yes, it picks the next state in the transition table that has
not be used yet. If no, then it computes the next state z,
using the row of the transition table corresponding to y.
It then checks whether z has appeared earlier in the
process. If so, a cycle has been found and the algorithm
moves on to the next state not yet used as input. The
algorithm ends when all 2" states have been used as
input. Several other possible algorithms could be used
for the same purpose.

User Interface
The graphical user interface (GUI) guides the user inter-
actively through the modeling and analysis steps. Four
arrow-shaped tabs are displayed along the top of the
canvas rectangle in the natural order of constructing a
model, setting up and carrying out computational exper-
iments, and analyzing the results. The transitions be-
tween the different modes can be done automatically
according to the functional process of modeling activ-
ities or manually by clicking any arrow tab to open a
functionality. The currently open mode is always indi-
cated by a green color highlight on its tab, so the user
knows which mode is currently selected. We now de-
scribe these four modes in more detail. We will use the
following small generic model as a running example,
which can also be found on the PlantSimLab website:

A—C<B

where A has two states (0, 1), B has three states (0,
1, 2), and C has four states (0, 1, 2, 3). Here, A has
an activating influence on C, and B has an inhibiting
influence.

Model editor

This tab provides a canvas drawing area and a suite of
graphical model-editing tools for the user to draw a
network model that is a graph-theoretic representation
of the molecular network of interest. The user can
create a node by clicking on the node icon in the tool-
bar and then clicking the location to place the node on
the canvas. Then the user chooses the number of states
for the node with state labels chosen from a predeter-
mined menu or customized. Internally, the states get
converted into numerical values, beginning with “0”
for the first state in the table, up to “n-1,” where n is
the number of states (currently limited to five).

To create an edge, the user can click on an edge icon
(with choices including “activate,” “inhibit”, or “un-
specified”) in the toolbar, and then click the input and
the target node successively. For an “activate” edge, a
state transition table is created that captures the effect
of states of the input node on the states of the output

Ha et al. BMC Bioinformatics (2019) 20:508

node. This table can then be modified by the user,
similar to the table for an edge whose nature is un-
specified. If a node has several input edges, their effects
are combined into a comprehensive transition table
called “Big State Transition Table” (BSTT), where the
different inputs are integrated using an “additive” rule
by default. That is, if a node receives two or more in-
puts, then the input values are added (e.g., if the edges
are activating), respectively subtracted (e.g., if one or
more nodes are inhibiting), depending on the edge ta-
bles at each time step. We use the arithmetic conven-
tion that the resulting number cannot be lower than 0
or larger than n-1. Again, the user can customize this
default choice. Several editing features simplify the
management and editing of large tables.

Calculation of state transitions

To show how PlantSimLab calculates the predeter-
mined state transitions for a node, we created a very
simple network model having only three nodes named
“A” (2 states), “B” (2 states), and “C” (3 states), where
node A activates node C, and node B inhibits node C
(Fig. 1a)). The table in Fig. 1b is the big state transition
table (BSTT) for node C. It displays all possible

Page 4 of 11

combinations of the input node states in the current
time cycle and their corresponding target node states in
the next time cycle. Based on additive rules, PlantSim-
Lab calculates the state of the target node C; (C at time
t) in the next time cycle, represented as C;, 4, for any
possible combinations of the input nodes A, B, and C at
time ¢ as follows. The table entries in Fig. 1b for which
B is equal to 0 give the effect of A alone on C. Likewise,
the entries for which A is equal to 0 give the effect of B
alone. The cumulative effect is assumed to be additive,
in the sense that the right-hand column of the table is
obtained as follows:

Ciy1 =A-B, + Cy,

subject to the constraint that the value is equal to 0, if
ApB;+ C; < 0 (integer arithmetic), and equal to 2 if A,-
B, +C;>2.

Currently, PlantSimLab allows up to 5 states for a
node, rendered as O, 1, ..., 4. The exhaustive enumer-
ation of all state transitions is calculated using the same
additive rule with adjustment for the lowest and the
highest possible state values in this way. The BSTT

Row Input (t) Output (t+dt)
Index A[B]J]C Cc
1 0 0 0 0
2 0 0 1 1
Ao @& Qe © =« 4« 0 - X 0 3 0 0 2 2
[4 0 1 0 0
5 0 1 1 0
(i}
—m R
/
A 8 110 1 2
9 1 0 2 2
10 1 1 0 0
11 1 1 1 1
12 1 1 2 2
(a) (b)
] Big State Transition Table «f
B s pre-defina updatig nses
B o @ a e ° DB » e = = Customize updating rules
i T)
[)| oputty Outputiva
o I [
low low med med :J
A low low high high gl
[
low |nigh [high T L
high low low v med b
high low med 2
high low. high high
high high low low :J
high high med med Bl
high 7Mgw high | high B
[save | cancel | meset riter]
© ()] ©
Fig. 1 The wiring diagram of a simple network model containing three nodes (a). A table to show the calculation of all possible state transitions
for a target node C in the network model (b). Double clicking on a node on the Model Editor canvas highlights the node in the back and opens
up the Big State Transition Table (BSTT) for the node (c). The user can use the predetermined choice (d), or change it by selecting a desired state
from the dropdown box in the row (e)

Ha et al. BMC Bioinformatics (2019) 20:508

opens automatically when the node is double-clicked
(Fig. 1c). The user can use the default choice (Fig. 1d),
which completes the right-hand column in Fig. 1b using
the tables for the arrows from A and B. Or the user can
change it by selecting a desired state from the dropdown
box in the appropriate row of the BSTT (Fig. 1e).

A PlantSimLab network model can be thought of as
a wiring diagram, with metadata attached, and the
content of the canvas can be saved as an image file
on the user’s local machine for inclusion in publica-
tions or presentations. When a network model is cre-
ated in Model Editor, the user can explore the
network dynamics of the unchanged model by run-
ning the Dynamical Network Analysis algorithm with
a click on a short-cut button “go” provided in the
Model Editor toolbox. In particular, the user can ob-
serve select time courses of model states beginning
with initial states of interest, as explained below.

Experimental setup

This tab provides a canvas drawing space and a menu
of experiments, which currently consists of the possi-
bility to simulate the knock-out of one or more
nodes.

The default setting for a knocked-out node is con-
stant equal to the node state corresponding to “0” for
all simulation time steps. This can be done for several
nodes simultaneously. The user can customize this
feature and set the state of a “perturbed” node con-
stant equal to any chosen state. In this way, one can
also simulate knock-down and overexpression of one
node or a combination of these for more nodes sim-
ultaneously. Knocking out a node or reversing a
knockout can be done on a single node using a

Page 5 of 11

context menu popped up at the right-click on a node
to knock out or undo (Fig. 2a), or on multiple nodes
at once using the Experimental Setup Table (Fig. 2b),
which provides a knockout button for each node so
the user can select the multiple nodes to knock out
or undo the knockout all at once.

Model analysis

From a given initial state, the network can evolve to a
steady state or a collection of states through which the
network cycles, exhibiting oscillatory behavior. A given
network might be capable of several different such be-
haviors, depending on the chosen initial state. The soft-
ware computes all such steady states and collections of
oscillatory nodes, collectively referred to as attractors.
The terminology refers to the feature that once the net-
work reaches either a steady state or a collection of
states that is oscillatory, it remains there. The basin of
attraction for a given attractor simply refers to the col-
lection of states for which the network evolves to that
attractor. The size of the basin of attraction, that is, the
number of states in it, gives an indication of how likely
the attractor is to occur. Thus, model analysis provides a
comprehensive view of the dynamic range the network
is capable of. In many cases, interest is focused on a par-
ticular initial state or small collection of initial states.
The user can then simply focus on the time evolution of
the network from these states and ignore all other
information.

Results viewer

This tab is designed to display the network analysis
results using various HTML forms, styles, and devices
to deliver the output information in an intuitive and

e
A{ \

@

-
> o B ereimenarsauy
E I % O
[Model="simple_model", Exp [Model="simple_model", E:
Experiment Setup Table x
Node Name Initial State Knockout
A low s (™) o

(9]
<
g

Knockdown high
Fig. 2 For an experiment, the user can perturb a model by knocking out nodes and the associated edges. The user can do this on a single node

using a context menu popping up after right-clicking on a node to knock out or undo (a), or using the Experimental Setup Table. The initial state
of the node can be set to the desired state in this tab using Experiment Setup Table (b). A knocked-out node has a X mark in red through it (c)

= w— K

(b) ©

Ha et al. BMC Bioinformatics (2019) 20:508

easy to understand format. The summary Table (ST)
shows all attractors of the dynamic network and their
basins of attraction. The magnitudes of the node
states in the attractor are presented by their numer-
ical values as well as in a heat-map-style color
scheme to enable a quick grasp of the information
about the attractor. The relative contribution of each
attractor basin to the entire state space is given as a
percentage. A pie-chart combining all components
into a compact view also enables a quick visual gauge
of the relative contribution of each attractor. Clicking
on a particular row in the ST or a pie segment from
the pie-chart opens up a separate window and dis-
plays the detailed information about the selected sub-
set of the state space, including the state space graph
of the subset. To create a more intuitive and easy to
understand space state graph, we used HTML style
bar size and color coding for presenting the state of a
node. A cell for a low state node in the graph is filled
with a small bar in yellow, for a high state node with
a full size bar in purple, and for a medium state node
with a half size bar in gray (Fig. 3d). For better visi-
bility, the user can control the direction of the state
space graph display horizontally or vertically using
toggle buttons. The user will notice that the state
transition of any knock-out node remains constant
equal to the state corresponding to 0. The ST can be
conveniently saved into an Excel file on the user’s
local machine.

Known issues/limitations

Due to space and computation time limitations, Plant-
SimLab does not draw the state space graph if the size
of the state space exceeds 2600 nodes. Furthermore, the
current algorithm used for dynamical network analysis
was not built to handle models with knocked-out nodes;
rather, it automatically enumerates all possible state
transitions of all nodes by default. This limits the func-
tionality of the network perturbation feature. To partially
resolve the issue, PlantSimLab currently excludes the
output display of those steady states or limit cycles
where the knocked-out nodes are not in their lowest
state. As a result, for a perturbed network only some of
the steady states and none of the limit cycles are gener-
ated. The user is notified about this through a warning
message whenever a perturbed network analysis is per-
formed. The message advises the user to instead simu-
late a node knockout by setting the node state to low/off
in the BSTT if complete information on the steady states
is desired.

YouTube tutorials
We created three YouTube tutorial videos to provide in-
structions on how to create, perturb, and analyze a

Page 6 of 11

network model, and view the network analysis results in
PlantSimLab for hypothesis generation. Tutorial #1
shows how to create nodes and edges, and configure
them interactively using special tables for building a
graphical network model in the Model Editor tab. Tutor-
ial #2 shows how to perturb a model by knocking out
nodes in the Experimental Setup tab. Tutorial #3 ex-
plains how to visually inspect the dynamical network
analysis results in many different forms in the Results
Viewer tab. All instructions in these tutorials are easy to
follow and it takes only 5 to 11 min for each video. The
three PlantSimLab YouTube videos are available through
the following links:

PlantSimLab Tutorial #1 - Model Building [14].

PlantSimLab Tutorial #2 — Experimental Setup [15].

PlantSimLab Tutorial #3 — Network Analysis Results
Viewer [16].

Development
Software components
We developed PlantSimLab as a client-server-based
web application running on Apache2 on a dedicated
server and supporting most modern web browsers on
any platform. The user interface on the client was de-
veloped using HTML with significant components of
JavaScript and AJAX to enhance the user experience.
On the server side we used PHP scripting and an
open source MySQL database for model repository
management. The use of Google sign-in authentica-
tion for the user login promotes user convenience
and reduces the burden of user profile management
for the software.

To create an intuitive, well-designed, and frustration-
free user interface, we applied design principles similar to
Shneiderman’s ‘eight golden rules of interface design’ [17].

A use case

To demonstrate the use of PlantSimLab, we imple-
mented and analyzed the model from Espinosa-Soto
et al. [18]. This paper follows several other investigations
into the gene networks driving cell fate determination in
the model organism Arabidopsis thaliana. The authors
focus on the question of robustness of morphological
pattern development, in particular floral organ cell fate
determination. Experimental studies led to the develop-
ment of the ABC combinatorial model of gene expres-
sion states that predicts the identity of floral organ
primordia, which has guided many experimental studies.
The model presented in [18] is based on a more
complete understanding of the genetic components and
interactions involved, resulting in model steady states
that are coherent with experimental data. The main
finding in [18] is that all possible initial conditions con-
verge to a few steady states that match experimental

Ha et al. BMC Bioinformatics (2019) 20:508

Page 7 of 11
-
o . o v [— m——
rents Summary ¥ gm—
Network Analysis Results: [Model="simple_model", Experiment="exp_3"]
Network Analysis Results: [Model="simple_model", Experiment="Unmodified"]
Summary of Trajectory Data [T
Legend: [Tow Tlow-med [med [med-high [T
* CAUTION: For this knockout experiment, there may be more steady states and limit cycles than shown
'
SIZE OF STATE SPACE| 2 below!

* HELP: To simulate a knockout experiment, set the output of the Big State Transition Table of the node you wish to knock out to
off/Low!

COMPONENT Each Node state in Steady State| NETWORK

Component
Component 2
Component 3

4
Each Node state in
COMPONENT | az) | B2IX | C@) SIZE
Component 1 Steady State -
Eompoum 2 0 Steady State -

:m%ﬂ3 0 | | 1 ::.odym -
(a) (b)

Network Simulation _ Optimal Network Control Reverse Engineering

QO & — ‘ Components Summary ¥

Component 4
Component 5

Component &
Component 7

Network Analysis Results: [Model="simple_model", Experiment="Unmodified"]

State Space Graph
Legend: low low-med med | med-high [T

[Node [A(2)[B(2)[c(3)]

LD Ll LN [ChE ELL] EEL D Wik #EED

l '
(2 L

l l
(MO WD

(©)

Network Analysis Results: [Model="simple_model", Experiment="Unmodified"]

Pie-chart of Components
Component 1

Legend: low low-med med

"Left mouse click on any Component will display the corresponding Component’s detail data!”|

* Consists of 3 state space nodes (25.% of entire state space) ® Com ;
* Contains 1 steady state ponent

@ Component 2
Node [A(2)[B(2)] c(3) :mw::::i
low | high [low .mzmms

Steady State

@ Component 6

8.3% @ Component 7
...................................... e @ Component 8
8.3%

(d) ()

Fig. 3 The summary Table (ST) displays all attractors and the attractor basin in the system for the running example model with three nodes
introduced above. The HTML table uses a heat-map style color scheme to display the steady states of nodes. The ST on the left is generated for
an unchanged model (a) and the ST on the right is for a perturbed model (b). For all perturbed models, PlantSimLab displays a CAUTION
message to inform of the potential existence of other steady states or limit cycles than the displayed (b) (see below for an explanation). The
entire state space graph is drawn using different colors and box sizes to make the state space graph more visually intuitive and informative (c). A
subset of the state space (d) can be also drawn for further study of the simulation of a network component selected with a click on a row

corresponding to a particular component row in the ST, on a component piece in the pie-chart (e), or on a component entry from the
Component Summary drop-down box provided in the Results Viewer toolbox

Ha et al. BMC Bioinformatics (2019) 20:508

Page 8 of 11

Tane St 35~

A Simdion stecatry o Pt Bty
LT
Model

Options Help

Experiment

A Simulation Laboratory for Plant Biology v.1.0

Welcome, elena.dimitrovas@gmail.com

Logout

4] Model Name: Arabidopsis-Fioral
! KO-2p2
Urmodiies ARG (]lallew @ = [0« X [@

[Mocel = Arabidopsis-Floral loaded successfully.

Fig. 4 The software components (a) and the software workflow (b) of PlantSimLab, highlighting the steps for modeling, analysis, and use.
PlantSimLab communicates with the model database repository to load and save user models. To perform network analysis, PlantSimLab runs a
Dynamical Network Analysis algorithm, a locally installed application on the server (b)

observations. Thus, the network provides a dynamic
explanation of the ABC model and shows that precise
signaling pathways are not required to restrain cell
types to those found in Arabidopsis, but these are ra-
ther determined by the overall gene network dynam-
ics. The cell types recovered depend on the network
architecture rather than on specific interaction param-
eters. Finally, these results support the hypothesis that

such a network constitutes a developmental module,
and hence provide a possible explanation for the
overall conservation of the ABC model and overall
floral plan among angiosperms. We now illustrate
how this model can be built and analyzed in Plant-
SimLab. Once the logical rules are extracted from the
paper, the model can be built in the software within
a matter of hours.

Software Components of PlantSimLab

Remote Files & Libraries
JQuery, KineticJS, AJAX, JSON,
$QL, Google A%, Google Auth

| Dynamical Network Analysis | |

t !

Graphviz) |

(a)

€SS & LESS — l Pa l
. . . a Lk R
Style Detitions for |+ / Client-side Scripts \—0 Dulogs s
S Cooen HTMLS, JAVASCRIPT [Teems | |3
1 v
Resources f 08 _scripts 31
Wmages, lons, | = Server-side Scripts b oo ,5
| Logos, Asimatiens | PHP Maragement o
T 4
Includes Back-end Pipeline User_data
Corfiguratom, |+ PHP F=> | Users Modeh &
Intalratons \\f / | tsperimenes

Workflow of PlantSimLab
7 ™\

|

1. Model Bullder 2 Experimental Setup 3. Analysis 4. Results Viewer
m::::'uc ...l Perturb 3 Model k. Run Math ‘\::;“.m;
15 IT It
\ | oynamical Network Analysis | Graphwiz | y

Model Repository

(b)

Fig. 5 Wiring diagram of the network, identical to Fig. 4 in [18]

Ha et al. BMC Bioinformatics (2019) 20:508

Page 9 of 11

-
8/13/2018

SIZE OF

Component 1
Component 2
Component 3
Component 4
Component 5
Component 6
Component 7
Component 8
Component 9
Component 10
Component 11
Component 12
Component 13
Component 14
Component 15
Component 16
Component 17
Component 18
Component 19
Component 20

IOOOOOOOOOOOOOOOOOOOO

Component 21 0 0 0 0 2o 0
Component22 [0 © 0 0 2 o 0
Component 23 [0 © 0 0 2 o 0
Component 24 -0 0 0 0 -0 0
Component 25 [0 © 0 0 o 0
Component 26 -0 0 0 0 -0 0
Component 27 [0 © 0 0 2o 0
Component 28 [0 © 0 0 o 0
Component29 [0 © 0 0 2 o 0
Component 30 [0 © 0 0 2 o 0
Component 31 -0 0 0 0 -0 0
Component 32 [0 © 0 0 2o 0
Component 33 [0 © 0 0 2o 0

file:///Users/edimit/D lena/PlantSim/A 20model/WT-steady-states.html

WT-steady-states.html

STATE SPACE 559872

NUMBER OF 40

CYCLES

COMPONENT Each Node state in Steady State NETWORK COMPONENT

EMF1(2) FT(2) LFY(3) AP1(3) FUL(3) TFL1(3) AP2(2) SEP(2) AG(3) AP3(3) UFO(2) PI(3) WUS(2) LUG(2) CLF(2) DYNAMICS

NN A N N (N . 0 o0
A (N N AN O o 0

S O 00O Cc oo oo o ooco

Fig. 6 The list of steady states and component sizes from the wild-type network simulation

SIZE
63072(11.26%)
63072(11.26%)
62892(11.23%)
62838(11.22%)

Steady State
-- Steady State
- 0 Steady State
0 - Steady State

0 0 Steady State 60028(10.72%)
[I steady State 60028(10.72%)

o Steady State 59848(10.68%)

0 I steady State 59794(10.67%)

0 I steady State 4878(0.87%)

o Steady State 4824(0.86%)

0 0 Steady State 4644(0.82%)

[steady State 4644(0.82%)

0 [steady State 4194(0.74%)

- 0 Steady State 4140(0.73%)

0 Steady State 3960(0.70%)

-- Steady State 3960(0.70%)

0 Steady State 3044(0.54%)

0 I steady State 3044(0.54%)

o Steady State 3044(0.54%)

-- Steady State 3044(0.54%)

0 0 0 0 0 Steady State 1332(0.23%)
0 0 0 0 0 I steady State 1332(0.23%)
0 0 0 0 o Steady State 1332(0.23%)
0 0 0 0 -- Steady State 1332(0.23%)
0 o o 0 Steady State 1332(0.23%)
0 o o 0 [steady State 1332(0.23%)
0 o o o Steady State 1332(0.23%)
0 o o [N steady State 1332(0.23%)
0 0 o [No 0 Steady State 936(0.16%)
0 0 o o I steady State 936(0.16%)
0 0 0 [ENN [o Steady State 936(0.16%)
0 0 o [N N I steady State 936(0.16%)
0 o o 0 Steady State 936(0.16%)

1/2

The model consists of 15 nodes, eight of which can as-
sume two states, e.g. ON/OFF (FT, EMF1, SEP, AP2,
WUS, UFO, CLF, and Lug) and seven can assume three
states, e.g. LOW/MEDUIM/HIGH (LFY, AP1, FUL,
TFL1, AG, AP3, and PI). The wiring diagram of the
model generated by PlantSimLab is presented in Fig. 4,
and is identical to Fig. 5 in [18]. In [18], the logical rules
for each node are provided in table form for each node,
very similar to PlantSimLab’s transition tables. We im-
plemented in PlantSimLab the proposed wild-type net-
work and the loss-of-function ap2 mutant. The
simulation of the wild-type network generated a total of
40 steady states and no other cycles (Fig. 6). Among
them were the 10 steady states recovered in [18], based
on the 139,968 initial conditions considered there (the
total number of possible initial conditions is 559,872).
The simulation of the ap2 mutant network returned 28
steady states and no other cycles (Fig. 7), with the seven
steady states simulated in [18] present among them. We
note that both simulations considered all possible initial

conditions and, as a result, were able to generate all net-
work steady states, with some of the additional ones hav-
ing relatively large basins of attraction (up to 22% of all
states). It took PlantSimLab only seconds to complete
the simulations, and the additional steady states that
were discovered may provide valuable additional infor-
mation about other possible phenotypes of the cells
considered.

While this software package was developed with ap-
plications to plant biology in mind, the tool is in fact
quite generic and can be applied in a variety of set-
tings. To illustrate this and to provide the user with
further examples to explore the software, we have in-
cluded three additional models in the model library.
One is a model of the lac operon, one of the earliest
examples of a gene regulatory network, taken from
[19]. The other two models capture some key features
of the immune response to vascular injury, published
in [20]. One of the models captures signaling events
in a macrophage recruited to the injured tissue from

Ha et al. BMC Bioinformatics (2019) 20:508

Page 10 of 11

-

Component 7

o
(=Rl M R < M e M M = M = M)

IOOOOOOOOOOOO
f=1

Component 8 0 -
Component 9 -0 -
Component 10 -0 -
Component 11 0 -
Component 12 -0 -
Component 13 0 0 0 -0 0
Component 14 [0 0 0 0 E 0 0
Component 15 [0 0 0 0 E 0 0
Component 16 [0 0 0 0 2 0 0
Component 17 -0 0 0 0 -0 0
Component 18 [0 0 0 0 E 0 0
Component 19 [N0 © 0 0 Bl 0 0
Component 20 [0 © 0 0 I 0 0
Component 21 [0 © 0 0 I 0 0
Component 22 [0 0 0 0 E 0 0
Component 23 [0 0 0 0 E 0 0
Component 24 -0 0 0 0 -0 0
Component 25 [O 0 0 0 E 0 0
Component 26 [O 0 0 0 E 0 0
Component 27 [0 0 0 0 [0
Component 28 [0 © 0 0 I 0 0

file:///U imit/D

Elena/PlantSim/A 20model/ap2-KO-steady-states. html

8/13/2018 ap2-KO-steady-states.html

SIZE OF
STATE SPACE 559872
NUMBER OF 28
CYCLES

Each Node state in Steady State NETWORK COMPONENT
COMPONENT p\iF1(2) FT(2) LFY(3) AP1(3) FULG3) TFL1(3) AP2(2) SEP(2) AG(3) AP3(3) UFO(2) PI(3) WUS(2) LUG(2) CLF(2) DYNAMICS SIZE
Component 1 0 0 0 0 Steady State 67716(12.09%)
Component 2 0 0 I steady State 67716(12.09%)
Component 3 0 o Steady State 67716(12.09%)
Component 4 B 0 I I steady State 67716(12.09%)
Component 5 0 0 0 Steady State 64068(11.44%)
Component 6 I 0 0 I Steady State 64068(11.44%)

OOOOOOOOOOOOOOOOI

Fig. 7 The list of steady states and component sizes from the ap2 knock-out network simulation

o Steady State 64068(11.44%)
0 [I steady State 64068(11.44%)
B o 0 0 Steady State 3648(0.65%)
B o 0 B steady State 3648(0.65%)
B o o Steady State 3648(0.65%)
B o Bl o I I stcady State 3648(0.65%)
0 0 0 0 0 0 Steady State 1332(0.23%)
0 0 0 0 0 [Steady State 1332(0.23%)
0 0 0 0 o Steady State 1332(0.23%)
0 0 0 0 [N steady State 1332(0.23%)
0 o o 0 0 Steady State 1332(0.23%)
0 o o 0 B steady State 1332(0.23%)
0 o o o Steady State 1332(0.23%)
0 o o I I steady State 1332(0.23%)
0 0 o o 0 Steady State 936(0.16%)
0 0 o o [N steady State 936(0.16%)
0 0 0 [o Steady State 936(0.16%)
0 0 o [N N I steady State 936(0.16%)
0 o 0 0 Steady State 936(0.16%)
0 o o [steady State 936(0.16%)
0 o o Steady State 936(0.16%)
0 IO 1 N I steady State 936(0.16%)

171

the circulation, the other models tissue-level events of
a population of macrophages. The three models to-
gether show the versatility of PlantSimLab for pur-
poses other than plant biology.

Conclusions

In this work, we present the web-application tool Plant-
SimLab, a simple, intuitive software tool for creating dy-
namic network models, performing experimental
simulations, and visualizing network analysis results
using a variety of formats and dynamic layouts. It pro-
vides a computational laboratory for biological scientists
to generate novel experimental hypotheses. It is designed
to be usable after completing a brief online interactive
tutorial that explains the basic input, output, and func-
tionalities of the software. It was our goal to make all
features of PlantSimLab’s interface as intuitive and self-
explanatory as possible for life science researchers. Fu-
ture development of the software tool includes a simple
natural language parser that allows users to provide
English language sentences with prescribed syntax, such

as “A [interacts with] B,” which are then automatically
translated into network components. The YouTube tu-
torials will be extended to cover more advanced tech-
nical topics.

We add some miscellaneous comments here. One of
the features available in other modeling software tools,
such as GinSim, mentioned earlier, is the capability of
model checking [21-23]. Among other features, this al-
lows the user to specify constraints the model is re-
quired to satisfy, which are then automatically verified.
While this feature is very useful for model building, we
have opted not to include it in this initial version of the
software, which, as explained in the introduction, is fo-
cused on implementing the most intuitive and simple
functionalities for model building. We plan to include it
in future releases, however. As a second comment, we
want to emphasize that the software allows the user to
specify very general regulatory functions, in addition to
the additive mechanisms used for the default settings.
The user can specify as much or as little of the transition
table for a given edge or node as desired, with the

Ha et al. BMC Bioinformatics (2019) 20:508

remainder completed as a default setting. In particular,
the user can specify the entire transition table without
constraints, so that arbitrary functions can be used.

Availability and requirements
Project Name: PlantSimLab.
Project home page: http://app.plantsimlab.org
Operating System(s): Platform independent (Linux,
Windows, MacOS).
Programming languages: HTML5, JavaScript, PHP,
CCS/LESS, SQL.
Any restriction to use by non-academics: None.
Licenses: None.
Other requirements: A Google email account to sign in.

Abbreviations

AJAX: Asynchronous Java Script and XML; BSTT: Big State Transition Table;
GUI: Graphical User Interface; HTML: Hypertext Markup Language;

MySQL: Open source relational database management system;

PHP: Hypertext Processor; ST: Summary Table

Acknowledgements
None.

Authors’ contributions

SH served as the software development lead of the project, carried out most of
the software development, and wrote part of the manuscript. ED tested the
software and developed the use case model presented here. She wrote part of
the manuscript. SH co-supervised the software development and algorithm
implementations. SH, JG, FK, JM, JS, BT, and RL developed the initial concept
and served as co-Pls on the project. RL provided the overall project lead, served
as Pl for the project, and prepared the final version of the manuscript. DA, MA,
DD, RH, and H.S developed portions of the software and tested software com-
ponents. MM. contributed to implementation and testing of software
components. All authors read and approved the manuscript.

Funding

National Science Foundation Award DBI-1146819. The funding agency played
no role in the design of the study, software development, and collection,
analysis, and interpretation of any data and in writing the manuscript.

Availability of data and materials

No data have been used in this project. The models used to illustrate
PlantSimlLab were built based only on information available in the
publications cited in the text.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details

'Department of Computer and Information Sciences, Virginia Military
Institute, Lexington, VA, USA. 2School of Mathematical and Statistical
Sciences, Clemson University, Clemson, SC, USA. *Biocomplexity Institute of
Virginia Tech, Blacksburg, VA, USA. 4Virgmia Tech, Blacksburg, VA, USA.
5Celgene, San Francisco, CA, USA. 6Departmem of Natural Sciences, Mercy
College, Dobbs Ferry, NY, USA. “College of Biological Sciences, University of
Minnesota, St. Paul, MN, USA. 8Mendel Biological Solutions, San Franciso, CA,
USA. “Department of Plant Pathology, Physiology, and Weed Science, Virginia
Tech, Blacksburg, VA, USA.]ODepartmem of Botany and Plant Pathology,
Oregon State University, Corvallis, OR, USA. ”Biochemistry Department,
University of Sao Paolo, Sao Paolo, Brazil. '*The Jackson Laboratory for

Page 11 of 11

Genomic Medicine, Farmington, CT, USA. "*Center for Genome Research and
Biocomputing, Oregon State University, Corvallis, OR, USA. "“Center for
Quantitative Medicine, School of Medicine, University of Connecticut,
Hartford, USA.

Received: 3 December 2018 Accepted: 10 September 2019
Published online: 21 October 2019

References

1. Elton C. Eppur si mouve. J Animal Ecology. 1935;4(1):1480150.

2. Lucas M, Laplaze L, Bennett MJ. Plant systems biology: network matters.
Plant Cell Environ. 2011;34(4):535-53.

3. Dinh JL, Farcot E, Hodgman C. The logic of the floral transition: reverse-
engineering the switch controlling the identity of lateral organs. PLoS
Comput Biol. 2017;13(9):e1005744.

4. Garcia-Gomez ML, Azpeitia E, Alvarez-Buylla ER. A dynamic genetic-
hormonal regulatory network model explains multiple cellular behaviors of
the root apical meristem of Arabidopsis thaliana. PLoS Comput Biol. 2017;
13(4):21005488.

5. OlesV, Panchenko A, Smertenko A. Modeling hormonal control of cambium
proliferation. PLoS One. 2017;12(2):e0171927.

6. Velderrain JD, Martinez-Garcia JC, Alvarez-Buylla ER. Boolean dynamic
Modeling approaches to study plant gene regulatory networks: integration,
validation, and prediction. Methods Mol Biol. 2017;1629:297-315.

7. Helikar T, et al. The cell collective: toward an open and collaborative
approach to systems biology. BMC Syst Biol. 2012;6:96.

8. Chaouiya C, Naldi A, Thieffry D. Logical modelling of gene regulatory
networks with GINsim. Methods Mol Biol. 2012;804:463-79.

9. Mussel C, Hopfensitz M, Kestler HA. BoolNet—an R package for generation,
reconstruction and analysis of Boolean networks. Bioinformatics. 2010,26(10):
1378-80.

10. Dussaut JS, et al. GeRNet: a gene regulatory network tool. Biosystems. 2017;
162:1-11.

11. Forbes AG, et al. Dynamic influence networks for rule-based models. IEEE
Trans Vis Comput Graph. 2018,24(1):184-94.

12. Livigni A, et al. A graphical and computational modeling platform for
biological pathways. Nat Protoc. 2018;13(4):705-22.

13. Wu H, et al. MUFINS: multi-formalism interaction network simulator. NPJ
Syst Biol Appl. 2016;2:16032.

14. PlantSimLab. PlantSimlab Tutorial #1: Model building. 2017; available from:
https.//www.youtube.com/watch?v=97qa7rWYelU.

15. PlantSimLab, PlantSimLab Tutorial #2: Experimental Setup. 2017; available
from https//www.youtube.com/watch?v=3sFwsxmJ-Qg.

16. PlantSimLab, PlantSimLab Tutorial #3: Network analysis results viewer. 2017;
available from https://www.youtube.com/watch?v=al96BQF 1eC8.

17. Shneiderman B, Plaisant C. Designing the user interface; Strategies for effective
human-computer interaction. 2010. Boston: Addison-Wesley.

18. Espinosa-Soto C, Padilla-Longaria P, Alvarez-Buylla ER. A gene regulatory
network model for cell-fate determination during Arabidopsis thaliana
flower development that is robust and recovers experimental gene
expression profiles. Plant Cell. 2004;16:2923-39.

19. Veliz-Cuba A, Stigler B. Boolean models can explain bistability in the lac
operon. J Comput Biol. 2011;18(6):783-94.

20. Dimitrova E, et al. The innate immune response to ischemic injury: a
multiscale modeling perspective. BMC Syst Biol. 2018;12(1):50.

21, Klarner H, Streck A, Siebert H. PyBoolNet: a python package for the
generation, analysis and visualization of boolean networks. Bioinformatics.
2017;33(5):770-2.

22, Tran QN. Algebraic model checking for Boolean gene regulatory networks.
Adv Exp Med Biol. 2011;696:113-22.

23. Traynard P, et al. Logical model specification aided by model-checking
techniques: application to the mammalian cell cycle regulation.
Bioinformatics. 2016;32(17):i772-80.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://www.youtube.com/watch?v=97qa7rWYelU
https://www.youtube.com/watch?v=3sFwsxmJ-Qg
https://www.youtube.com/watch?v=aI96BQF1eC8

	Abstract
	Background
	Results
	Conclusions

	Background
	Motivation
	Existing software packages
	Our contribution

	Implementation
	User Interface
	Model editor

	Calculation of state transitions
	Experimental setup
	Model analysis
	Results viewer
	Known issues/limitations
	YouTube tutorials

	Development
	Software components
	A use case

	Conclusions
	Availability and requirements
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

