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ABSTRACT

The purpose of the study was to compare a 3D convolutional neural network (CNN) with the conventional
machine learning method for predicting intensity-modulated radiation therapy (IMRT) dose distribution using
only contours in prostate cancer. In this study, which included 95 IMRT-treated prostate cancer patients with
available dose distributions and contours for planning target volume (PTVs) and organs at risk (OARs), a
supervised-learning approach was used for training, where the dose for a voxel set in the dataset was defined as
the label. The adaptive moment estimation algorithm was employed for optimizing a 3D U-net similar network.
Eighty cases were used for the training and validation set in 5-fold cross-validation, and the remaining 15 cases
were used as the test set. The predicted dose distributions were compared with the clinical dose distributions,
and the model performance was evaluated by comparison with RapidPlan™ Dose-volume histogram (DVH)
parameters were calculated for each contour as evaluation indexes. The mean absolute errors (MAE) with one
standard deviation (1SD) between the clinical and CNN-predicted doses were 1.10% =+ 0.64%, 2.50% + 1.17%,
2.04% + 1.40%, and 2.08% =+ 1.99% for D,, Dgg in PTV-1 and Vs in rectum and Vs in bladder, respectively,
whereas the MAEs with 1SD between the clinical and the RapidPlan™-generated doses were 1.01% =+ 0.66%,
2.15% =+ 1.25%, 5.34% =+ 2.13% and 3.04% =+ 1.79%, respectively. Our CNN model could predict dose distribu-
tions that were superior or comparable with that generated by RapidPlan™, suggesting the potential of CNN in
dose distribution prediction.

Keywords: deep learning; convolutional neural network; radiation therapy; intensity-modulated radiation ther-
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INTRODUCTION
In recent decades, the quality of radiotherapy, such as intensity-
modulated radiation therapy (IMRT) and volumetric-modulated arc
therapy, has been greatly improved by inverse planning; these high-
quality radiotherapy treatment techniques can prescribe a suffi-
ciently high dose to the target while sparing normal tissues [1-5].
However, these planning techniques have several disadvantages.
First, the plan optimization process is time-consuming [6, 7]: the

planner optimizes each plan through a repeated trial-and-error pro-
cess to meet the target and organs-at-risk (OAR) dose criteria.
Second, in each patient, the achievable dose-volume histogram
(DVH) is unknown at the time of optimization, and the dose con-
straints commonly use recommended values from previous studies,
such as the quantitative analyses of normal tissue effects in the clinic
(QUANTEC) guidelines [8], in which tolerance doses were defined
by population data. Thus, plan quality and planning times
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determined by inverse planning depend on the skills and experience
of planners and institutions [9-11].

RapidPlan™ (Varian Medical Systems, Palo Alto, CA) is an arti-
ficial intelligence-based commercial software that was developed to
improve plan consistency and planning efficiency; it is an atlas-
based machine learning model in which a group of representative
plans is used as a base model. The model is built by regression ana-
lysis, and the DVH objectives are derived; the model correlates the
geometric and dosimetric relationships defined by human knowl-
edge between the target and the OAR with the DVH of a clinical
dataset. For each new patient, the model estimates the achievable
OAR-DVH ranges, and the provided DVH objectives are used to
perform the inverse planning optimization process. Several studies

reported that the performance of RapidPlan™

was comparable
with that of manually optimized plans for different treatment techni-
ques and that the sites and sub-potential manual plans could be
improved with RapidPlan™ [12-16]. However, some studies also
reported that this algorithm could not be applied to automation for
all treatment plans [17, 18] and that it was still limited by the inher-
ent information present in the hand-crafted features. In addition,
the feature quantity could only capture low-level features, and this
algorithm was not sufficiently accurate for prediction [19].

To reduce dependence on hand-crafted features, we investigated a
convolutional neural network (CNN) approach that specializes in
image processing based on deep learning. Deep learning can automat-
ically abstract and extract low-, mid-, and high-level features directly
from the dataset to combine from end-to-end. Thus, by inheriting
these functions, CNN can utilize spatial and structural information
effectively for 2D or 3D image data with no human intervention
[20]. In other words, CNN can automatically abstract and extract
good features without a considerable amount of engineering skill or
domain expertise, a key advantage of CNN. Because of this important
feature, CNN may be able to make full use of imaging information.

Several studies demonstrated that the performance of CNN was
comparable with those of the state-of-the-art methods and human
performance for radiotherapy such as automatic segmentation [21-
23], deformable registration [24], quality assurance [25], synthetic
computed tomography (CT) generation [26, 27], response-to-
treatment [28], and toxicity prediction [29] among others.
However, there is not enough evidence that CNN can be used as a
method to predict dose distribution [30]. Therefore, in this study,
we evaluated CNN for its utility and efficacy as a method for pre-
dicting dose distribution and compared with the machine learning
approach implemented in commercially available software [31-33].
Specifically, we evaluated the 3D CNN approach in prediction of
IMRT dose distribution using only contours in the planning CT for
prostate cancer by comparing with RapidPlan™" [31-33], a conven-

tional machine learning method.

MATERIALS AND METHODS

Patients and treatment planning
A total of 95 patients with prostate cancer who were treated with
IMRT and selective urethral dose reduction between 2011 and
2018 were elected from the database of our institution. We studied

all patients meeting the following inclusion criteria: the urethral

catheter was inserted; the prescribed dose was 78 Gy or 80 Gy;
there was all required data (e.g, contours’ data) for analysis. The
prescriptions were 78 Gy in 39 fractions (n = 38) and 80 Gy in 40
fractions (n = 57). In the study cohort, 80 and 1S patients were
elected for training/validation and testing, respectively. All patients
had clinical stage T1-3NOMO prostate cancer and were classified as
high risk according to the National Comprehensive Cancer
Network definitions (www.nccn.com). The patients were all manu-
ally planned and treated with eight-field IMRT; the photon energy
was 15 MV, and the gantry angles were 35°, 60°, 100°, 165°, 195°,
260°, 300°, and 325°. All of the treatments were planned by using
the Eclipse treatment planning system with the Anisotropic
Analytical Algorithm (AAA) or Acuros XB Algorithm (AXB) to
deliver 78 or 80 Gy over 39 or 40 fractions. All plans were opti-
mized by sparing of the rectum, bladder, urethra, and femoral heads
according to our department prostate radiotherapy treatment proto-
col, which is essentially based on QUANTEC data [8]. Clinical tar-
get volume (CTV) included the prostate and seminal vesicles, and
planning target volume (PTV) was obtained by expanding CTV in
three dimensions with a 0.5-cm margin. The prescribed dose was
used to cover 95% of PTV-1, excluding rectum and urethra from
PTV. The maximum allowable dose heterogeneity in PTV-1 was
10%. Each treatment plan was optimized to ensure the following
constraints: no more than 65% of the rectal and urinary bladder
wall received >35S Gy (V35 < 65%); no more than 45% of the rectal
and urinary bladder wall received >55 Gy (Vss < 45%); no more
than 25% of the rectal and urinary bladder wall received >75 Gy
(V75 < 25%); and the urethral, rectal, and bladder walls received no
more than 80 Gy [34]. For PTV-2 and PTV-3, overlapping regions
between the PTV and the critical organs, the constraint was set to
90% of the prescription dose. For each plan, contours of the PTV
and the OARs were determined by experienced radiation oncolo-
gists, and dose distribution was optimized and confirmed by experi-
enced medical physicists. To avoid severe late urinary toxicity
following high-dose IMRT [35], a urethral catheter was used to
contour and identify the urethra with planning CT image acquisi-
tion [34]. The study datasets included some cases with overlap
between the PTV and a part of the large or small intestines.
However, in most cases, only a few slices had overlapping regions.
The training dataset included 10% (8/80) of the cohort, and the
test dataset included 13% of the cohort (2/15), which had >1%
and <5% overlapping regions between the PTV-1 and part of both
bowels.

Model training and validation
In this study, a 3D CNN expanded with the similar 2D U-net [36]
was employed to achieve 3D contours for 3D dose distribution
mapping; the network structure is shown in Fig. 1. The architecture
of the model includes three modules, encode, decode, and skip-
connection modules, which are integrated into a simple network.
The motivation for applying U-net was based on the following. The
encode module extracts global abstraction features while reducing
spatial dimension, the encode module reconstructs spatial data from
features extracted by the encode module, and the skip-connection
module integrates the global abstraction features and spatial features
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of the same size. The encode module comprises four repeated
blocks of two 3 X 3 X 3 convolution layers, each followed by a
batch normalization (BN) layer [37], a rectified linear unit (ReLU),
and a 2 X 2 X 2 max pooling layer for the down-sampling process.
The decode module also comprises four repeated blocks of two
3 X 3 X 3 convolution layers, each followed by a BN layer, a ReLU,
and a 2 X 2 X 2 deconvolution layer for the up-sampling process. In
the skip-connection module, we integrated the resolution informa-
tion of the encoding and decoding block outputs. After the final
skip-connection, the data were processed by the block comprising
3 X 3 X 3 convolution layers followed by a BN layer, a ReLU, and
three 3 X 3 X 3 convolution layers followed by a ReLU, and a 1 X
1 X 1 convolution layer followed by a ReLU. All parameters of the
model were globally optimized in the training stage. The input
started with four channels of 64 X 64 X 64-pixel images in which we
assigned the four contour binary masks to each channel, whereas
the output ended with one channel of 64 X 64 X 64 dose distribu-
tion. The model was implemented with the Chainer which is part of
Python’s toolbox. The contours (PTV, bladder, rectum, and
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urethra) and the dose distributions were obtained from the clinical
radiotherapy plan. To regard the prediction accuracy of the doses
for PTV and OARs that partly overlapped with PTV as important
and to avoid GPU memory overflow, we selected the abovemen-
tioned four structures and reduced the volume dimensions with
resolutions of 3.5 X 3.5 X 3.5 mm; we also cropped the volume data
to 64 X 64 X 64. For the training process, all patient dose distribu-
tions were normalized to the mean dose of the target that was equal
to 1. In the training stage, we chose the adaptive moment estima-
tion (Adam) algorithm optimizer (@ = 0.001, f; = 0.9, B, = 0.999,
e=10"%) [38] used as training parameters, the loss function that is
the difference between the predicted values and the actual values
was chosen as the mean squared error between the predicted dose
distribution and the clinical dose distribution, and the mini-batch
size was set to four. In addition, to prevent the model from overfit-
ting, we applied dropout layers [39] in which we tuned each rate
based on the maximum rate of 0.125 to train the model successfully.
To assess the abovementioned architecture and hyper-parameters,
we used 5-fold cross-validation, in which 80 patients for the model
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Fig. 1. Schematic diagram of the convolutional neural network architecture used for intensity-modulated radiation therapy

dose distribution prediction for input contours from planning computed tomography images.
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Fig. 3. An example of a training and validation loss curve from one of the folds. Blue and red curves indicate training and
validation loss, respectively.
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training were randomly subdivided into a training set of 64 patients
and a validation set of 16 patients; the validation method is shown
in Fig. 2. Through this 5-fold cross-validation, the five trained mod-
els were produced. The training for the proposed model ran for 250
epochs, which took approximately 1 hour for each cross-validation
step on GeForce GTX 1080 Ti 11GB GPU. The network training
normally converges after about 150 epochs; we added 100 add-
itional epochs for robustness. A curve of validation loss was used to
determine that overfitting was not occurring, a well-known method
to prevent overfitting [40].

Model performance
As shown in Fig. 2, to test the model performance and reduce gen-
eralization error, we applied 15 additional patients to each trained
model and averaged the test prediction results from the five trained
models to acquire the mean test result. To evaluate the model per-
formance for dose prediction, we calculated DVH parameter errors
for each structure, where we compared the predicted dose distribu-
tions against the clinical dose distributions. As DVH parameters, we
calculated three PTVs Dy (X =2, 98), and Vax (XX = 35, 50, 65)
for the rectum and bladder, which represented the percentage dose

covering X% of the volume and percentage volume covering XX Gy
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of the dose, respectively, where all dose distributions were normal-
ized so that Dgs of PTV-1 was equal to the prescription dose.

Comparison with RapidPlan
The CNN model performance was evaluated by comparing the
errors against the clinical dose distributions and the dose distribu-
tions generated by RapidPlan™. To train and test the RapidPlan™"
performance, the same 80-patient training and validation set and the
1S-patient testing set were used for training and test, respectively.
The RapidPlan™ model was evaluated, and some possible outliers
that were identified in the regression of the principal components
were analyzed according to Cook’s distance (a measure of the influ-
ence of individual training set cases on regression coefficients; a
score >4 indicates an influential datum that might be a geometric
or dosimetric outlier) or to the Studentized residual (a score >3
could indicate a dosimetric outlier) [41]. After this process, the
number of cases in the training sets was decreased from 80 to 68
patients. The model was trained on this training set from which the
geometric and dosimetric outliers were removed. For each patient,
plans were optimized using the generated RapidPlan™" constraints
provided by the model. To compare without any human interven-
tion, a single automatic optimization process was performed with
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AAA as the dose calculation algorithm. Based on the prostate IMRT
template of our department, we used manual optimization objectives
for PTVs and a separate objective named ‘line objective’ for OARs.
To evaluate the model performance of dose prediction, we calculated
DVH parameter errors against the clinical dose for each structure,
where all dose distributions were normalized with the abovemen-
tioned method, and we used the Wilcoxon test to determine signifi-
cant differences between the CNN-clinical and RapidPlan™-clinical
errors using JMP statistical software (SAS Institute, Cary, N.C.).

RESULTS
Model performance
Figure 3 shows an example of training and validation loss curve
from one of the folds. The final average loss + one standard devi-
ation for training and validation between all the folds is 3.14 X
1077 +£811x 107> and 4.90 X 107> + 5.80 X 107>, respectively.
Figures 4 and S show the contours and DVHs of representative
cases for comparisons between the CNN-predicted dose distribu-
tion and the clinical dose distribution. For example, as shown in
Fig. 4, in one case (Case 10), the CNN-predicted dose distribution
was similar to the clinical dose distribution, and DVH curves were

Table 1. Predicted absolute errors for clinical dose (%) for
cases 10 (similar to the clinical dose distribution) and 11
(not similar to the clinical dose distribution)

closely matched by visual inspection as well. Conversely, in another
case (Case 11), as shown in the example in Fig. S, the CNN-
predicted dose distribution was not similar to the clinical dose dis-
tribution. The DVH parameters absolute errors for both of the cases
presented in Figs 4 and S are shown in Table 1. In Table 2, the
mean absolute errors (MAE) with one standard deviation between
the clinical and the predicted dose distributions are summarized.
The MAE were within 3.00 and 5.00% for PTVs and OAR-DVH
parameters, respectively. Additionally, as shown in Fig. 6, the range
of signed errors was within +6.00 and +14.0% for PTVs and OAR-
DVH parameters, respectively.

Comparison with RapidPlan
Table 2 shows the MAE with one standard deviation between the
clinical and dose distributions generated by RapidPlan™™. The MAE
were within 5.00 and 9.00% for the PTV and OAR parameters,
respectively. Additionally, as shown in Fig. 6, the range of errors
was within +8.00 and +18.0% for the PTV and OAR parameters,
respectively. Comparison of the range of errors for CNN and
RapidPlan™ revealed that CNN predicted DVH parameters except

Table 2. Results of the CNN-predicted and RapidPlan™
errors for clinical dose (%)

DVH parameters 15 cases % Error with clinical dose

DVH parameters % Error with clinical dose (Mean + 1SD)
Case 10 Case 11 CNN model  RapidPlan P
PTV-1 PTV-1
D, 0.38 0.87 D, 110 + 0.64 1.01+0.66  0.76
D, 1.92 2.03 D, 250+ 117 215+125 022
PTV-2 PTV-2
D, 0.01 0.74 D, 0914082 119+084 037
D, 1.00 0.93 D, 181+ 136  4.14+1.97 <0.01
PTV-3 PTV-3
D, 227 0.71 D, 117+ 0.68  0.84+0.57  0.19
D, 0.23 5.18 D, 2.24 + 1.33 1.69 + 1.19 0.33
Rectum Rectum
o 2.89 5.89 o 411+£243 8524400 <0.01
o 0.58 8.74 o 3.67+2.67 646+2.67 <001
o 1.73 5.02 o 2.04 £ 140 534+213  <0.01
Bladder Bladder
o 0.72 13.30 o 415324 623+432 018
o 1.24 9.97 o 3.05+£275 4524259 010
1.68 4.62 208+ 199 3.04+179  0.10

65Gy

65Gy




for PTV-1 and PTV-3 more accurately than RapidPlan™™.

Furthermore, our CNN model significantly predicted DVH accur-
ately for Dgg in PTV-2 and V35, Vs, Vs in the rectum. Therefore,
our CNN model’s prediction ability for dose distributions was
superior or comparable with the dose distribution generated by
RapidPlan™,

DISCUSSION
The focus of the current study was to evaluate a 3D CNN approach
for prediction of IMRT dose distribution using only contours in the
planning CT for prostate cancer and comparing its performance
with that of RapidPlan™., This is the first study to compare a CNN
model with a commercial machine-learning based planning software.
Our analyses revealed that our CNN model’s prediction ability for
dose distributions was superior or comparable with the dose

CNN-based dose distribution prediction « 691

distribution generated by RapidPlan™

, showing its potential as an
improved approach for dose distribution prediction.

As shown in Fig. 6 and summarized in Table 2, in the CNN
model, the absolute mean errors were within 3% and S for the PTV
and OAR-DVH parameters, respectively, where we used DVH para-
meters for each structure as evaluation indexes. Shiraishi and Moore
evaluated the ability of artificial neural networks to predict 3D dose
distributions for prostate cancer according to hand-crafted features
such as patient-specific geometric and planning parameters includ-
ing PTV, closest distance to PTV, and OARs [42]. They reported
that the prediction error was less than 10% for voxels in —4 < rpry
(distance from the PTV boundary) < 30 mm. Nguyen et al. evalu-
ated a CNN model’s ability to predict the dose distribution for pros-
tate cancer based on PTV and OAR contours [30] and reported
that the prediction absolute mean errors were <5.0% (max and
mean dose). Although it is difficult to compare the current study
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Fig. 6. Schematic diagram of bee swarm plots for DVH parameter errors in planning target volumes (PTVs) and organs at risk
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results with these earlier studies directly because we used different
evaluation parameters and datasets (e.g, with or without urethra dose
reduction), our results were comparable with their results overall.

As shown in Fig. 6 and summarized in Table 2, our CNN model
predicted DVH parameters more accurately than RapidPlan™),
except for PTV-1 and PTV-3. The differences might be due to the
differences in the quality of features such as automatically-extracted
features vs hand-crafted features. The hand-crafted features used by
RapidPlan™ are DVH, geometry-based expected dose, which calcu-
lates the distance between each OAR and the target surface accord-
ing to the amount of dose that each target contributes to the OAR
for the current field geometry, and anatomical features such as over-
lap volume [31]. Thus, RapidPlan™ does not mutually consider
relationships among the OARs and does not reflect tradeoffs
between the OARs. Conversely, features automatically extracted by
CNN can include not only the geometric and anatomical features
such as those used by RapidPlan™ but also the mutual tradeoffs
between the OARSs; therefore, our CNN model might have utilized
important features which are still not applied in RapidPlan™ (e.g,,
anatomical and dosimetric features) for more accurate prediction.
However, while RapidPlan™ can create a clinically deliverable treat-
ment plan including several errors and limitations, such as dose cal-
culation error, dose distribution optimization error, limitations of
leaf movement, our CNN model only predicts the dose distribution.
It is not clear whether the CNN-predicted dose distribution can be
reproduced in a clinical setting. For accurate comparison, we will
investigate whether actual dose distributions can be planned with
CNN and will compare the planned dose distribution with one gen-
erated by RapidPlan™"

Although our results showed the potential of CNN in predicting
dose distribution, this study has several limitations. First, two differ-
ent dose prescriptions (i.e., 78 Gy or 80 Gy) were used in this
study. To reduce the influence on our results, dose distributions
were normalized to mean dose of PTV. However, our results
slightly may include the influence of dose prescription differences.
Second, our datasets included some cases with overlaps between the
PTV-1 and a part of the large and small intestines. While we predict
that the influence of these overlaps was relatively small because the
percentage of overlap between these areas was <5%, consideration
of this factor could have improved the accuracy of the results to a
certain extent. Third, only 95 patients were included in the current
study, whereas a large dataset is typically required for deep-learning
training. We consider that the sample size was not very small
because the pelvic region has a relatively simple anatomical arrange-
ment. However, a greater sample size could improve the accuracy of
our analyses to a certain extent. Finally, the volume dimensions
were reduced, and the volume was cropped in our dataset, leading
to a lower resolution than that found in a clinical situation.
However, we predict the influence of this factor on the analyses was
small because the predicted dose distributions were compared with
the clinical dose distributions using the same resolution. However,
the lower resolution might smooth the steep dose gradient of
IMRT. Thus, there remains the possibility that the predicted dose
distribution might be different from the clinical plan. In future stud-
ies, we will not only predict dose distributions but also directly gen-
erate plan parameters, such as monitor-units and multi-leaf

collimator movement, for plans requiring parameter optimization,
such as IMRT and volumetric-modulated arc therapy. This tech-
nique for direct generation of plan parameters may improve plan
consistency and planning efficiency.

CONCLUSIONS
In this study, we compared a 3D CNN approach with RapidPlan™
for prediction of IMRT dose distribution using only contours in
planning CT for prostate cancer and found that our CNN model’s
ability to predict dose distributions was superior or comparable with
the dose distribution generated by RapidPlan™ illustrating the
potential utility of CNN in dose distribution prediction.
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