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ABSTRACT Respiration is a fundamental process that has to optimally respond to
metabolic demand and environmental changes. We previously showed that nitrate
respiration, crucial for gut colonization by enterobacteria, is controlled by polar clus-
tering of the nitrate reductase increasing the electron flux through the complex.
Here, we show that the formate dehydrogenase electron-donating complex, FAnGHI,
also clusters at the cell poles under nitrate-respiring conditions. Its proximity to the
nitrate reductase complex was confirmed by its identification in the interactome of
the latter, which appears to be specific to the nitrate-respiring condition. Interest-
ingly, we have identified a multiprotein complex dedicated to handle nitric oxide re-
sulting from the enhanced activity of the electron transport chain terminated by ni-
trate reductase. We demonstrated that the cytoplasmic NADH-dependent nitrite
reductase NirBD and the hybrid cluster protein Hcp are key contributors to regula-
tion of the nitric oxide level during nitrate respiration. Thus, gathering of actors in-
volved in respiration and NO homeostasis seems to be critical to balancing maximi-
zation of electron flux and the resulting toxicity.

IMPORTANCE Most bacteria rely on the redox activity of respiratory complexes em-
bedded in the cytoplasmic membrane to gain energy in the form of ATP and of an
electrochemical gradient established across the membrane. Nevertheless, production
of harmful and toxic nitric oxide by actively growing bacteria as either an intermedi-
ate or side-product of nitrate respiration challenges how homeostasis control is ex-
erted. Here, we show that components of the nitrate electron transport chain are
clustered, likely influencing the kinetics of the process. Nitric oxide production from
this respiratory chain is controlled and handled through a multiprotein complex, in-
cluding detoxifying systems. These findings point to an essential role of compart-
mentalization of respiratory components in bacterial cell growth.

KEYWORDS cellular respiration, fluorescence microscopy, metalloprotein, nitric oxide

ellular respiration is a fundamental process undergone within energy-transducing

membranes through the redox activity of multimeric protein assembilies, so-called
“respiratory complexes.” In most cases, electron transport is ensured by lipophilic
molecules, quinones, serving as electron shuttles. This redox activity is coupled to the
net translocation of ions such as protons across the membrane thereby establishing an
electrochemical gradient, the proton motive force (PMF). Such a gradient powers the
transport of molecules (such as proteins, ions, or antibiotics) and ATP synthesis but also
participates in protein localization in prokaryotes (1-4).

Importantly, energy-transducing membranes show a high level of organization with
heterogeneous distribution of respiratory complexes as observed across several bac-
terial lineages (5-9). Although electron transport in energy-transducing membranes is
considered to be a kinetic process coupled to the diffusion of all reactants and in
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particular quinones (10), it is not clear to which extent subcellular distribution of
respiratory complexes can have an influence on the overall kinetics. We previously
evidenced polar clustering of nitrate reductase, NarGHI, an anaerobic respiratory com-
plex in the gut bacterium Escherichia coli (9). Such spatial organization was shown to
directly impact the electron flux of the associated respiratory chain. While dynamic
localization of this complex plays an important role in controlling respiration, the
mechanism by which it impacts the electron flux is not fully understood (11). Further-
more, optimizing electron flux through clustering of nitrate reductase likely leads to
nitrite accumulation and nitric oxide (NO) production. Indeed, functioning of this
electron transport chain in enteric bacteria such as E. coli and Salmonella enterica
serovar Typhimurium is associated with NO production mainly resulting from the
reduction of nitrite by nitrate reductase (12-15). As a consequence, both E. coli and S.
Typhimurium produce a multitude of enzymes controlling NO homeostasis, the primary
source of nitrosative stress (see for review, reference 16). Protein S-nitrosylation is a
ubiquitous NO-dependent posttranslational modification of cysteine that regulates
protein structure and function (see for review, reference 17). Recently, Seth et al.
demonstrated that, in the absence of oxygen, NO oxidation is mainly catalyzed by the
hybrid cluster protein Hcp, allowing its further reaction with thiols of a broad spectrum
of proteins (18). Among Hcp-dependent S-nitrosylated targets are the nitrate reductase
complex, multiple metabolic enzymes, and the OxyR transcription factor whose
S-nitrosylation entails a distinct nitrosative stress regulon (19). In this context, we
questioned not only how efficiency of the nitrate respiratory chain is attained through
polar clustering of the nitrate reductase complex but also how NO homeostasis control
is exerted.

Here, the electron-donating respiratory complex of formate dehydrogenase,
FdnGHI, was shown to cluster at the poles under nitrate-respiring conditions. The
interactome of the nitrate reductase complex confirmed the proximity and was eval-
uated under distinct metabolic conditions reported to impact its subcellular organiza-
tion. All the identified partners were exclusively found when cells were grown under
nitrate respiration. The proximity of two respiratory complexes provides a mechanistic
explanation of the importance of subcellular organization upon quinone pool turnover.
Noteworthy is the identification of a multiprotein complex dedicated to handle NO
resulting from the enhanced activity of the electron transport chain terminated by
nitrate reductase.

RESULTS

The electron-donating formate dehydrogenase clusters at the poles under
nitrate-respiring conditions. As indicated above, polar clustering of the quinol-
oxidizing nitrate reductase will only be beneficial to the electron flux if accompanied by
quinone-reducing dehydrogenases. The electron-donating respiratory complex, for-
mate dehydrogenase encoded by the fdnGHI operon, is a good candidate owing to its
similar transcriptional regulation (20). Importantly, FdnGHI and NarGHI form a paradig-
matic proton motive redox loop as originally postulated by Peter Mitchell in the
chemiosmotic theory (21). Quinone reduction and quinol oxidation take place at
different faces of the membrane and on different protein complexes, allowing net
translocation of 2 protons per transferred electron (22). The E. coli formate dehydro-
genase complex is composed of three subunits and organized into a physiological
trimer, (FAnGHI);, with a cardiolipin molecule positioned at the trimer interface (23).
The C terminus of the di-heme b-type cytochrome subunit, Fdnl, protruding from the
complex in the cytoplasm was fused to superfolder green fluorescent protein (sfGFP).
The genetic construct was placed at the original locus and under the control of the
native promoter (see Materials and Methods). This ensures that the tagged complex is
expressed in context and at physiological levels. The corresponding fusion is functional
as evaluated by enzymatic activity measurements (see Fig. S1A in the supplemental
material). Immunoblotting analysis using an antiserum directed against GFP demon-
strated that sfGFP was fused to Fdnl at the expected size with no sign of degradation
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FIG 1 The sfGFP-labeled formate dehydrogenase complex concentrates at the cell poles under nitrate-respiring
conditions. (A) Fluorescence images (top) and overlays of fluorescence and phase-contrast images (bottom) are
shown for nitrate-respiring cells. (B) The histogram of the fluorescent cluster distribution across the transversal axis
of nitrate-respiring LCB4215 cells is shown. Dashed lines delimit pole zones. Sixty-five percent of the clusters
localize at the cell poles, and 99% of the cells exhibit polar clusters. The analysis was performed on 702 cells issued
from three independent experiments. The fluorescence heat maps of the cells from each experiment are shown in
Fig. S2.

(Fig. S1B). To study the spatial organization of the formate dehydrogenase complex, we
visualized sfGFP distribution in live E. coli cells from exponentially growing cultures
under nitrate-respiring conditions using epifluorescence microscopy. As illustrated in
Fig. 1A, large patches of fluorescence are seen at cell poles. Statistical analysis of the
fluorescent cluster distribution together with deduced heat maps from three indepen-
dent biological replicates confirms the polar enrichment of the fusion (Fig. 1B; see
Fig. S2 in the supplemental material). Therefore, formate dehydrogenase and nitrate
reductase complexes tend to organize into large polar clusters.

The nitrate reductase complex has a specific interactome under nitrate-
respiring conditions. Since the membrane-embedded nitrate reductase complex is
clustered at the poles under nitrate respiration while being evenly redistributed along
the cytoplasmic membrane upon aeration or anaerobic fermentation (9), we reasoned
that resolving its interactome under these conditions may provide insights into the
proximity with FAnGHI. To identify NarGHI partners in living cells, immunoprecipitation
of NarG-eGFP (enhanced green fluorescent protein) coupled with mass spectrometry-
based quantitative proteomics was performed. Importantly, chemical cross-linking has
been performed to preserve transient interactions. A Student’s t test compares the
intensities of all proteins identified in replicates of the bait (i.e, GFP-tagged NarG
subunit) with the intensities of all proteins identified in the control (i.e., untagged NarG
subunit) (see Materials and Methods). When such analysis was performed on extracts
issued from cells grown under nitrate respiration, many interactors were identified (see
Fig. S3A and Table S1 in the supplemental material). Conversely, upon aeration of the
culture, the main interactors were nitrate reductase structural subunits and the dedi-
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FIG 2 The membrane-associated nitrate reductase NarGHI has a specific interactome under nitrate-respiring conditions. (A) Volcano plot of proteins
immunoprecipitated with NarG,4, in nitrate- versus oxygen-respiring conditions using nanobodies directed against GFP. Volcano plot was constructed using
log, fold change and absolute log,, of the P values, enabling visualization of the relationship between fold change and statistical significance, respectively. The
curves show the significance threshold established from the permutation-based FDR calculations (g value) (see Materials and Methods). The greater the
difference between the group means (i.e., the enrichment) and the greater the absolute value of P (i.e., the reproducibility), the more the interactors move to
the top right corner of the plot. Black dots located outside the curves represent proteins differentially found between the two conditions with g values below
1%, while gray squares between the two curves represent proteins that do not differ between conditions. Gray dots located outside the curves represent
proteins that were identified to not be specific partners of the nitrate reductase (Table S1 and Table S2). Volcano plots showing NarG_.q»-specific interacting
partners under each condition are presented in Fig. S3. (B) Heat map focusing on formate dehydrogenase (FdnGHI), nitrate/nitrite antiporter (NarK), cytoplasmic
nitrite reductase (NirBD), NO reductase/transnitrosylase (Hcp) and its redox partner (Hcr), and NO reductase (Hmp). The normalized LFQ intensities using a
Z-score (means centering the variable at zero and standardizing the variance) obtained for each biological replicate under oxygen (left)- or nitrate
(right)-respiring conditions are shown according to the color gradient displayed on the right. Gray represents missing values (not identified proteins).

cated chaperone NarJ (Fig. S3B and Table S1). Robust statistical analysis of the data
allowed the identification of interactors (g value under 1%) for eGFP-tagged NarG
under nitrate-respiring conditions as shown in the volcano plot in Fig. 2A (see Table S2
in the supplemental material). The interactors can be grouped into two functional
categories: involved in nitrate respiration or in NO homeostasis. In the first group are
identified all three subunits of the electron-donating formate dehydrogenase FdnGHI
(23) and the nitrate/nitrite membrane antiporter NarK (24). In the second group, the
highest hits are Hcp and its associated NADH-dependent reductase Hcr (25, 26), the
cytoplasmic NADH-dependent nitrite reductase complex NirBD (27, 28) and the flavo-
hemoglobin Hmp (29). All the above-mentioned interactors were repeatedly identified
in the biological replicates under nitrate-respiring conditions (Fig. 2B) as well as in the
absence of formaldehyde used to capture transient interactions (see Fig. S4 in the
supplemental material). Since expression of all of these interactors is upregulated by
the oxygen-responsive transcriptional regulator Fnr, we conducted immunoprecipita-
tion experiments under anaerobic conditions but without nitrate. While being detected
in replicates of the bait and of the control, none of the previously identified interactors
were found associated with nitrate reductase (see Fig. S3C and Table S3 in the
supplemental material). Such observation makes sense as nitrite and NO are absent and
entails that proximity of NirBD, Hcp, Hcr, and Hmp is linked to nitrate reduction.
Interestingly, FAnGHI and NarK were also not found to be interacting with nitrate
reductase complex under this condition.

Nitrate respiration being associated with NO production and as such prone to
Hcp-dependent S-nitrosylation of most of the identified partners of NarG subunit, we
questioned whether such posttranslational modification can influence protein-protein
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FIG 3 Interactome of the nitrate reductase in the hcp-deficient strain. (A) Volcano plot of proteins immunoprecipitated with NarG,.» versus untagged version
of NarG under nitrate-respiring conditions. The volcano plot was constructed and displayed as described in the legend to Fig. 2. Black dots located outside the
curves represent proteins differentially found between the two conditions with g values below 1% (Table S4). Proteins more enriched using the hcp strain are
circled in red. (B) The two NO reductases, Hmp and NorV with its redox partner NorW, and YtfE (RIC) protein were found more abundantly associated with the
nitrate reductase in the hcp strain. The heat map shows the Z-scored LFQ intensities obtained for each biological replicate in the wild-type strain (left) and in

the hcp strain (right) grown under nitrate-respiring conditions according to the color gradient below.

interactions. Indeed, S-nitrosylation of Hcp was shown to promote conformational
changes responsible for protein interaction with its targets among which nitrate
reductase, formate dehydrogenase, and NirBD complexes (18). To evaluate such a
possibility, we conducted interactome studies in an hcp strain under nitrate-respiring
conditions. We confirmed that polar clustering of eGFP-tagged nitrate reductase was
not affected by the absence of Hcp (see Fig. S5 in the supplemental material). The
interactome comprised all previously identified partners (Fig. 3A; see Table S4 in the
supplemental material). Notably, it includes three additional proteins involved in NO
homeostasis, the flavorubredoxin NorV and its NADH-dependent reductase, NorW (30,
31), as well as the diiron protein YtfE (32, 33). Thus, Hcp-dependent S-nitrosylation of
targets is not responsible for the identified interactome of the nitrate reductase
complex comprising stable components such as formate dehydrogenase, NarK or
NirBD, and others, the nature of which depends on the level of nitrosative stress
(Fig. 3B). Indeed, it is anticipated that the absence of Hcp entails higher nitrosative
stress since the norV/W genes are only expressed under conditions of high NO concen-
tration (34, 35).

Hcp and NirBD play nonredundant major roles during nitrate respiration.
Clustering of quinone-reducing and quinol-oxidizing respiratory complexes is expected
to maximize turnover of the quinone pool and nitrite accumulation further reduced
into NO by NarGHI. It is thus important to question the relative contribution of the
identified nitrate reductase partners to NO homeostasis. While proximity of NirBD and
NarK would minimize the availability of nitrite, two distinct protective roles have been
associated with Hcp during nitrosative stress, NO reduction and S-nitrosylation. Thanks
to the use of a strain that lacks both nitrite reductases (NirB and NrfA) and other known
NO reductases, NorVW and Hmp, Wang et al. demonstrated that Hcp is a high-affinity
NO reductase (26). Only in this background strain, was a clear growth defect phenotype
associated with hcp deletion during nitrate respiration. However, Seth et al. reported
that single deletion of hcp greatly suppresses S-nitrosylation (18). llvD, the dihydroxy-
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FIG 4 Inactivation of nirB and hcp induces a growth defect under nitrate-respiring conditions caused by elevated
nitrosative stress. Generation times of strains JCB4011 (WT), LCB4136 (hcp), LCB4121 (nirB), LCB4137 (nirB hcp) grown under
anaerobiosis in defined medium with glycerol as sole carbon source and nitrate as the sole electron acceptor without
Casamino Acids (A) or supplemented with BCAA (B) are shown. Eight (A) and four (B) independent assays are, respectively,
shown. Medians are represented by a horizontal line and averages by a red square. Statistical significance between the
different strains was calculated using the Mann-Whitney nonparametric test: ***, P < 0.001; **, 0.001 < P < 0.01; ns, not

significant (P > 0.05).

acid dehydratase required for branched-chain amino acid (BCAA) biosynthesis, is a
major target for S-nitrosylation associated with enzyme inactivation in E. coli (36, 37).
NO exposure induces transient BCAA auxotrophy thanks to the combined action of
detoxifying and repair systems. To ascertain the relative contribution of Hcp and NirBD
to NO homeostasis during nitrate respiration, growth of the individual mutant strains
was performed in minimal medium in the absence of amino acids. A severe growth
defect was observed upon nirB deletion and to a lesser extent with hcp (Fig. 4A).
Notably, the double mutant strain shows an even more pronounced impact indicating
that both systems play nonredundant roles. We additionally observed that simultane-
ous deletion of nrf, hmp, and norV has no impact on growth. Upon BCAA addition, all
mutant strains behave similarly to the wild type (Fig. 4B). Taken together, our findings
demonstrate unequivocally that NirBD and Hcp are key contributors to regulation of
the NO level during nitrate respiration.

DISCUSSION

Respiration is a central feature for most prokaryotes to harvest energy. However, it
is unclear how components of a respiratory chain are organized to achieve high
electron transport kinetics while minimizing production of harmful and toxic reactive
oxygen or nitrogen species. Here, we describe the spatial clustering of two distinct
respiratory complexes at the cell poles surmising an impact on the electron flux of the
electron transport chain. Moreover, a multiprotein complex is functionally associated
with control of NO production resulting from the activity of this clustered electron
transport chain.

The impacts of compartmentalization on metabolic pathways have been the subject
of intense studies during several decades, bolstered by the recognition that spatial
heterogeneity is a hallmark of living organisms (see for review, references 38 to 42).
Clustering of multiple consecutive enzymes in a metabolic pathway proved to accel-
erate processing of intermediates (43-45). Similarly, energy-transducing membranes
are considered a compartmentalized fluid with both lipid and protein nanodomains
(46-48). Supramolecular assemblies of distinct respiratory complexes have been re-
ported in all branches of life (49), suggesting that they confer a kinetic advantage by
trapping or channeling quinone and/or cytochrome ¢, which serve as electron shuttles
(50, 51). However, kinetic experiments argued against such pool behavior, whereby
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electron shuttles can be compartmentalized within supercomplexes (52, 53). Hetero-
geneous organization of respiratory complexes in the form of supercomplexes might in
turn facilitate diffusion of quinones as deduced by Monte Carlo simulations (54). Here,
we provide evidence that formate dehydrogenase and nitrate reductase complexes
concentrate at the cell poles under nitrate-respiring conditions and may even be in
close proximity, as revealed by immunoprecipitation experiments. Notably, among the
other electron-donating dehydrogenases produced under this condition, FdnGHI is the
unique complex identified in the interactome. In support of this apparent selectivity,
several reports have indicated their copurification over a wide range of solubilization
conditions (55, 56). According to the metabolite microdomain hypothesis (43-45), the
probability of quinones being processed in such domains at the poles is expected to be
higher than a random-distribution condition. The same might hold true within segre-
gated clusters of respiratory complexes composed of several tens of the same complex
and involved in aerobic respiratory chains (8). As such, the tendency of respiratory
complexes to cluster might have the effect of organizing the membrane into dynamic
compartments within which distinct accessibility to the quinone pool is questioned.
Quinone diffusion between respiratory complexes is considered to be the rate-limiting
step for the mitochondrial and bacterial electron transport chains (57, 58). So far,
diffusion of fluorescently labeled quinones was shown to be homogeneous in live
bacterial cells as assessed by FRAP (fluorescence recovery after photobleaching) mon-
itoring the dynamics of an ensemble of molecules, a method weakly sensitive to
separate subpopulations with different diffusion characteristics (8). More interesting is
that proximity of formate dehydrogenase and nitrate reductase seems to be modulated
by cellular cues, as deduced from the lack of interaction under specific metabolic
conditions. It is worth mentioning the anionic lipids, among which cardiolipin accu-
mulates at the poles and septa of the rod-shaped bacterium (59, 60) and was shown to
interact with both complexes (23, 61). Due to the dynamic localization profile of NarGHI,
cardiolipin can be discarded as a cue for polar clustering of this complex. However, its
importance for FAnGHI oligomerization and/or localization as evidenced for the osmo-
sensing transporter ProP (62) remains open and awaits further studies. One immediate
consequence of clustering both respiratory complexes is very likely an increase of the
electron flux and the accumulation of nitrite further reduced to NO by NarGHI.
During nitrate respiration, a set of potent interactors have been identified, all of
which are associated with nitrate utilization. The activities of NirBD and NarK within this
multiprotein complex would limit the availability of toxic nitrite and thus its further
reduction to NO by NarG. However, it has long been reported that nitrite accumulation
under this growth condition leads to nitrosative stress, as confirmed here with the
detection of a set of NO-detoxifying enzymes. In addition, the severe growth defect
observed in the nirBD strain is fully reverted upon BCAA addition indicative of the
inactivation of the Fe-S cluster-dependent llvD enzyme, known as the crucial target for
NO-induced bacteriostasis (36, 37). Thus, our findings provide the first direct evidence
for a role in NO detoxification by Nir. BCAA supplementation has also been reported to
confer resistance to NO without increasing NO consumption in both E. coli and S.
Typhimurium (36, 63). It is well established that under aerobic or microaerobic condi-
tions, NO has a relatively short half-life primarily due to auto-oxidation by O, and
dioxygenation by Hmp, being the dominant detoxification system at O, concentrations
as low as 35 uM (64). Under our experimental conditions, it is unlikely that Hmp, one
of the interactors, provides adequate protection in the absence of oxygen (29). Con-
versely, Hcp has recently been recognized as being responsible for S-nitrosylation of
multiple targets, among which are OxyR and the nitrate reductase complex (18).
Furthermore, while Hcp-dependent S-nitrosylation was reported to inhibit NarGHI (18),
this complex is likely not the main target affected by NO stress, as evidenced by
complete growth recovery of mutant strains displaying NO stress upon BCAA addition.
Hcp protein is present in most bacteria performing nitrate ammonification, such as
enterobacteria, but absent from denitrifiers. While Hcp is responsible for S-nitrosylation,
Wang et al. reported an NO-detoxifying activity thanks to its ability to reduce NO to N,O
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(26). Interestingly, both activities critically depend on the interaction with the NADH-
dependent Hcp reductase, Her (25), and the NAD+/NADH ratio. Under a high-metabolic
regimen associated with a high NAD*/NADH ratio, SNO synthase activity of Hcp will be
favored. On the contrary, a low NAD*/NADH ratio will facilitate NADH-dependent
reduction of NO by the Hcp-Hcr complex. Thus, our finding is consistent with a distinct
role for Hcp according to the metabolic regime. We validated the importance of Hcp by
observing a growth defect associated with the hcp strain while being reversed upon
BCAA addition.

Altogether, our findings demonstrate that during nitrate respiration, (i) formate
dehydrogenase coclusters with nitrate reductase at the cell poles, (ii) a multiprotein
complex is formed and dedicated to handle NO production resulting from the en-
hanced activity of nitrate reductase, and (iii) NirBD and Hcp are the major nonredun-
dant actors to control an endogenous NO source. Our study opens the possibility to
investigate the effects of microcompartmentalization of respiratory complexes on
quinone pool turnover, such as through the use of mathematical modeling approaches
but also by questioning the respective roles of FdnGHI and NarGHI in their polar
clustering.

MATERIALS AND METHODS

Bacterial strains and growth conditions. The E. coli strains and plasmids used in this study are
described in Table S5 in the supplemental material (9, 65, 66). E. coli strains were grown in LB medium
or on LB agar plates for genetic construction, transformation, and storage. For the various assays, bacteria
were grown aerobically at 37°C in a defined medium supplemented with 140 mM glycerol used as the
main carbon source and 100 mM nitrate. Anaerobic growth of bacteria is performed in gas-tight Hungate
tubes under Ar atmosphere. For anoxic fermentative growth, glycerol was replaced by 40 mM glucose
and nitrate was omitted. The defined medium is composed of potassium phosphate buffer (100 mM)
adjusted to pH 7.4, ammonium sulfate (6 mM), NaCl (9 mM), magnesium sulfate (2 mM), sodium molyb-
date (5 uM), sodium selenite (1 wM), Mohr’s salt (10 uM), calcium chloride (100 uM), Casamino Acids
(0.5%), and thiamine (0.01%). Antibiotic was added when required. When specified, Casamino Acids were
replaced by isoleucine (400 uM), leucine (800 uM), and valine (600 M), or not added.

P1 transduction was used to transfer the hcp:kn, nirB::kn, norV:kn, hmp:kn, nrfA:kn, and fdoG:kn
mutations from corresponding Keio collection strains (67) into the JCB4011 strain (68). The transductants
were purified twice on LB plates supplemented with kanamycin (30 mg/liter). The kanamycin cartridge
was eliminated using pCP20 plasmid (69). Mutant genotypes were verified by PCR amplification using
primers flanking the hcp, nirB, norV, hmp, nrfA, and fdoG genes [nirB(fwd)/nirB(rev), hcp(fwd)/hcp(rev),
norV(fwd)/norV(rev), hmp(fwd)/hmp(rev), nrfA(fwd)/nrfA(rev) and fdoG(fwd)/fdoG(rev)].

The fdoG-deficient strain LCB4200 was used as recipient for integration of the translational fdnl-sfgfp
fusion at the natural chromosomal locus using A-red mediated recombination method as described in
reference 70. sfgfp was amplified from plasmid pSWU19 sfgfp-linker-frzX (kindly provided by T. Mignot's
lab, Laboratoire de Chimie Bactérienne, France) using primers sfgfp(fwd) and sfgfp(rev). The kanamycin
resistance gene (kn) was amplified from genomic DNA purified from a Keio collection strain using primers
kn(fwd) and kn(rev). The 'fdnl-sfgfp:kn fragment used for the recombination was amplified from the
above-described sfgfp and the kn fragments using primers 'fdnl-sfgfp(fwd) and kn(rev), which imparted
flanking homologous regions to the chromosomal fdnGHI operon. The kanamycin-resistant recombinant
LCB4215 was purified twice on LB plates supplemented with kanamycin (30 mg/liter) and characterized
by PCR using primers fdnl(fwd) and fdnl(rev) and sequencing. The oligonucleotides used in this study are
described in Table S5 (9, 65, 66).

Immunoprecipitation of the nitrate reductase. Immunoprecipitation was done with ChromoTek
GFP-Trap on membrane extracts issued from the nitrate reductase-deficient strain JCB4023 (or the
LCB4174 strain deficient for hcp) harboring the pVA70GFP plasmid carrying the narG,,.,HJI operon under
the control of its native promoter. The plasmid pVA70 containing the untagged version of the operon
was used as a negative control. Each strain was grown overnight in 5 ml of defined medium containing
either glycerol and nitrate (aerobic and nitrate-respiring conditions) or glucose (fermentative conditions)
in 50-ml conical flasks and subcultured the next day into 30 ml of identical medium in 500-ml conical
flasks at 37°C under 180 rpm. At mid-exponential phase (optical density at 600 nm [ODg,] of 0.9), the
cultures corresponding to nitrate-respiring and fermentative conditions were transferred in gas-tight
bottles, gassed with argon, and incubated during an additional hour at 37°C. This procedure ensures
optimal polar localization of the nitrate reductase under nitrate-respiring conditions while resulting in an
even distribution of the complex under anoxic fermentative ones (9). To preserve potential transient
interactions, polar clustering being oxygen sensitive, experiments were performed in the presence of 1%
formaldehyde added to the cell culture when stated. After 30 min of incubation at room temperature,
the cross-linking reaction was stopped by adding 125 mM glycine and the reaction mixture was
incubated for a further 15 min at room temperature before proceeding to three washing steps in a buffer
containing 150 mM Tris-HCl (pH 7) and 1 mM MgCl,. The cultures corresponding to aerobic conditions
were stopped at an ODg,, of 1.2 and subjected to the same treatment. Membrane fractions were
prepared from each culture and solubilized overnight at 4°C with a combination of 1% Triton X-100 and
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1% n-dodecyl B-p-maltoside (DDM). The immunoprecipitation was done by following the supplier’s
recommendations (ChromoTek). The immunoprecipitate samples were controlled on silver nitrate-
stained 10% SDS-polyacrylamide gel prior to analysis by mass spectrometry.

Mass spectrometry and data analysis. Each condition was injected in 3 biological replicates and 2
technical replicates in liquid chromatography (Ultimate 3000 RSLCnhano chromatography system
[Thermo Fisher Scientific]) coupled with an Orbitrap Fusion Lumos Tribrid mass spectrometer (Thermo
Fisher Scientific). First, peptides were concentrated and purified on a precolumn from Dionex (C,q
PepMap100, 2-cm by 100-um inside diameter [i.d.], 100-A pore size, 5-um particle size) in solvent A (0.1%
formic acid in 2% acetonitrile). In the second step, peptides were separated on a reverse-phase LC
EASY-Spray C,, column from Dionex (PepMap RSLC C,q 50 cm by 75-um id. 100-A pore size, 2-um
particle size) at a flow rate of 300 nl/min and 40°C. After column equilibration using 4% of solvent B (20%
water, 80% acetonitrile, 0.1% formic acid), peptides were eluted from the analytical column by a two-step
linear gradient (4 to 20% acetonitrile-H,0-0.1% formic acid for 220 min and 20 to 45% acetonitrile-
H,0-0.1% formic acid for 20 min). For peptide ionization in the EASY-Spray nanosource, the spray
voltage was set at 2.2kV and the capillary temperature was set at 275°C. The mass spectrometer was
used in the data-dependent mode to switch consistently between mass spectrometry (MS) and tandem
MS (MS/MS). The time between master scans was set to 3 s. MS spectra were acquired with the Orbitrap
in the m/z range of 375 to 1,500 at a full width at half maximum (FWHM) resolution of 60,000 measured
at m/z 200. The AGC target was set at 4.0 X 10° with a 50-ms maximum injection time. The more
abundant precursor ions were selected, and collision-induced dissociation fragmentation at 35% was
performed and analyzed in the ion trap using the “Inject lons for All Available Parallelizable time” option
with a maximum injection time of 105 ms and an AGC target of 1.0 X 105. Charge state screening was
enabled to include precursors with 2 and 7 charge states. Dynamic exclusion was enabled with a repeat
count of 1 and a duration of 60 s. These chromatographic conditions were previously optimized with a
protein pool from all the samples.

Quantitative proteomics processing. For data processing, we used the free suite MaxQuant version
1.6.1.0 (71). The relative intensities based on label-free quantification (LFQ) were calculated using the
MaxLFQ algorithm (72). The liquid chromatography (LC)-MS raw acquisitions were processed by the
Andromeda search engine integrated into MaxQuant (71). The identification of the precursor ions
present in the mass spectra was performed by comparison with the protein database of E. coli (organism
ID 83333) extracted from UniProt on 20 November 2017 and containing 4,306 entries. This database was
supplemented with a set of 245 proteins that are commonly found as contaminants. The following
parameters were used for this search: (i) trypsin cleavage authorization before prolines, (i) authorization
of two failed cleavages, (iii) fixed modification of cysteines by carbamidomethylation (+57.02146 Da) and
variable modification of methionine by oxidation (+15.99491) and N-terminal proteins by acetylation
(+42.0116), (iv) authorization of 5 modifications per peptide, and (v) a minimum peptide length of 7
amino acids and a maximum mass of 4,600 Da. Spectral alignment was performed in two dimensions: the
elution time of the precursor ions (min) and the mass over charge (m/z [amul). The “Match between runs”
option has been enabled to allow the transfer of identifications between LC-MS/MS based on the mass
and the retention time using the default settings. The false-positive rate on identification was set at 1%
at the peptide and protein levels to define the list of identified proteins. The statistical analysis was
carried out with the Perseus program (version 1.6.1.2) in the MaxQuant environment. The normalized
intensity LFQ was transformed by a base logarithm of 2 to obtain a normal distribution. Differential
protein expressions were evidenced by the application of a Student's t test associated with a
permutation-based false-discovery rate (pFDR [q value]) at 1% using 250 permutations. The differential
proteomics analysis was carried out on identified proteins after removal of proteins only identified with
modified peptides and proteins from the contaminant database. Peptides shared with other proteins
were not included to calculate the LFQ intensities to avoid biased protein quantification. Finally, to
improve quantification of correctly identified proteins, only proteins that were represented at 70% under
at least one condition were kept.

Cell extract preparation. Bacterial cells grown under nitrate-respiring conditions were harvested at
mid-exponential phase, washed, and resuspended in a buffer containing 40 mM Tris-HCl (pH 7.4) and
1mM MgCl,. Bacterial cells were broken by one passage through a French press. After an initial
centrifugation at 28,000 X g, supernatants consisting of a clear whole-cell extract were collected and
further submitted to an ultracentrifugation at 380,000 X g allowing the isolation of membrane vesicles.

Enzyme activity and protein quantification. Formate dehydrogenase activity was measured by
2,6-dichlorophenolindophenol (DCPIP) reduction mediated by phenazine methosulfate (PMS) as de-
scribed previously (73). The cuvette was filled with 3.5 ml of 25 mM phosphate buffer (pH 6.5) gassed
with argon, 0.137 mM DCPIP, 0.28 uM freshly dissolved PMS, and 17 to 70 ug of membrane proteins. The
endogenous rate of reduction of PMS was measured at 600 nm during 1 to 2 min before the reaction was
initiated by the addition of 177 mM formate. Upon subtraction of the endogenous rate, the enzymatic
activity was calculated using an extinction coefficient of 20 MM~ cm~'. The total protein concentration
was measured using bovine serum albumin (Sigma) as the standard as described in reference 74.

Western blot assay. Immunoblotting was performed using antibodies raised against GFP
(ChromoTek) on whole-cell extracts run on 10% SDS-polyacrylamide gel and transferred on nitrocellu-
lose membrane.

Fluorescence microscopy. Bacterial cells were grown at 37°C under nitrate-respiring conditions up
to the mid-exponential phase. Two microliters of the suspension was mounted on microscope slides
covered by a thick fresh agar pad and imaged as described in reference 9. Imaging was performed using
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a Nikon Eclipse TiE PFS inverted epifluorescence microscope (100X oil objective, NA 1.3) and a
Hamamatsu Orca Flash LT 4.0 sCMOS camera.
Image and statistical analysis. All image analysis and statistical representations of fluorescence
were performed with FlJI and Microbe) softwares (75, 76). The distribution of fluorescent clusters was
obtained by a local maxima detection algorithm and reported to the relative longitudinal axis position;
the signal was prefiltered by band-pass fast Fourier transform (FFT). The average distribution heat maps
of Fdnl-sfGFP were obtained by the projection of the raw fluorescence of all cells in a group. Each cell
shape and the associated fluorescence signal were previously morphed to the group mean shape using
MicrobeJ v5.13k.
Data availability. The mass spectrometry proteomics data, including search result, have been
deposited in the ProteomeXchange Consortium (www.proteomexchange.org) via the PRIDE partner
repository with data set identifier PXD012320.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio
.01832-19.
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