Skip to main content
. 2019 Apr 1;50(2):1948–1971. doi: 10.1111/ejn.14373

Table 6.

Systems for behavior recognition reporting classification performance

Publication/System Species Behaviours Classifier Accuracy Recall Precision
Crispim‐Junior et al. (2017) Rat 4 locomotion, immobility, rearing, grooming Multilayer Perceptron Networks AUC of ROC: 83.6%–97.6%
van den Boom et al. (2017) Mouse 1 self‐grooming Additive logistic regression 83.3%
Farah et al. (2016)

Rat

Mouse

3 exploring, rearing, static SVM (multiple) Success rate: 87% Mean recognition rate: 57%–100%
Belic et al. (2015) Rat 2 awake resting, actively behaving SVM 87%–91% 85%–93%
Wang et al. (2015) Rat 5 SVM 89%
Chanchanachitkul et al. (2013) Rat 2 walking, other behaviour Neural Networks 73%
van Dam et al., 2013; Rat 11 Quadratic classifier 65%–80% 0–86%
Kabra et al. (2013) Mouse 2 follow (social), walking Additive logistic regression 95.6%
CleverSys (Jhuang et al., 2010) Mouse 8 60.9% 64%
Burgos‐Artizzu, X. P., Dollar, P., Lin, D., Anderson, D. J., & Perona, P. (2012) Mouse 13 Decision trees Average recognition rate: 66%
Zarringhalam et al. (2012) Mouse 8 HMM 76% 45%–95% 55%–100%
Jhuang et al. (2010) Mouse 8 HMM SVM 77.3% 76.4%
HomeCageScan (Steele et al., 2007) Mouse 17 50%–100%
Dollar et al. (2005) Mouse 5 One nearest neighbour 72% 32%–89%
Our classification based on Noldus tracking Rat 2 active, inactive Logistic regression 70.9% 74%–76% 91%–100%