Skip to main content
. 2019 Sep 24;19(19):4139. doi: 10.3390/s19194139

Table 2.

A comparison of rank-one (R1), rank-five (R5), and area under cumulative match characteristic (AUC) for the different VGG-based models on the AMI, its cropped version AMIC, and WPUT ear datasets. The results are given in percentages and the top three metrics for each learning method on each dataset are highlighted in bold. The reported results from our ensembles on the AMI and WPUT datasets indicate significant improvements of recognition rates over recent studies in the literature.

Methods Model AMI AMIC WPUT
R1 R5 AUC R1 R5 AUC R1 R5 AUC
Scratch Training VGG-11 83.21 97.14 98.57 69.28 87.14 96.61 47.83 71.68 96.40
VGG-13 84.28 96.07 98.51 70.35 87.86 96.70 46.56 69.26 96.24
VGG-16 86.07 96.79 98.54 70.35 84.29 96.34 46.17 68.75 96.20
VGG-19 84.28 95.00 98.45 68.92 83.21 95.65 44.13 66.07 95.96
Feature Extraction VGG-11 76.07 93.92 98.24 80.35 93.21 97.96 59.44 81.12 98.19
VGG-13 81.78 97.50 98.61 71.78 89.64 97.01 51.53 76.15 97.56
VGG-16 83.21 93.92 98.22 74.64 88.21 96.46 50.13 73.72 97.54
VGG-19 68.92 91.42 97.53 62.85 81.79 95.76 44.26 69.52 97.10
Fine-Tuning VGG-11 94.29 98.93 98.83 89.64 95.36 98.28 71.05 86.61 98.56
VGG-13 94.64 98.57 98.86 90.36 96.79 98.67 73.98 88.78 98.71
VGG-16 96.07 99.29 98.87 89.29 97.50 98.42 73.98 89.16 98.70
VGG-19 96.78 99.29 98.92 92.14 97.86 98.60 74.36 88.65 98.69
Our Ensembles VGG-13-16 97.14 99.64 98.91 92.85 96.42 98.57 76.40 90.69 98.87
VGG-13-16-19 97.50 99.64 98.41 92.85 97.85 98.67 78.19 91.07 98.89
VGG-11-13-16-19 97.14 99.64 98.91 93.21 96.78 98.63 79.08 90.43 98.92
Previous Work Chowdhury et al. [69] 67.26 - - - - - 65.15 - -
63.53 - - - - - 67.00 - -
Hassaballah et al. [9] 72.86 - - - - - 38.76 - -
73.71 - - - - - 37.13 - -
Alshazly et al. [10] 70.20 - - - - - - - -
Raghavendra et al. [70] 86.36 - - - - - - - -
Sultana et al. [71] - - - - - - 73.00 86.00 -