Skip to main content
. 2019 Sep 22;19(19):4093. doi: 10.3390/s19194093

Table 1.

3D detection performance: Average precision (AP) (%) for 3D box in the KITTI valuation set.

Method Modality Car Cyclist Pedestrian
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard
MV3D Img. & Lidar 71.09 62.35 55.12 N/A N/A N/A N/A N/A N/A
AVOD Img. & Lidar 81.94 71.88 66.38 64.00 52.18 46.61 50.80 42.81 40.88
F-PointNet Img. & Lidar 81.20 70.39 62.19 71.96 56.77 50.39 51.21 44.89 51.21
VoxelNet Lidar 77.47 65.11 57.73 61.22 48.36 44.37 39.48 33.69 31.50
PointPillars Lidar 86.96 76.35 70.19 77.75 58.55 54.85 67.07 58.74 55.97
PVFE Lidar 87.32 77.12 68.87 81.58 62.41 56.33 58.48 51.74 45.09
SECOND Lidar 85.99 75.51 68.25 80.47 57.02 55.79 56.99 50.22 43.59
3D-GIoU Lidar 87.83 77.91 75.55 83.32 64.69 63.51 67.23 59.58 52.69