Table 9.
Author | Algorithm | Classes | Set. | Sub. | Val. | Accuracy | |
---|---|---|---|---|---|---|---|
<2005 | Picard et al. [12] | kNN | 8 | L | 1 | LOO | 81% |
Haag et al. [77] | NN | contin. | L | 1 | 3-fold split | AR: <96%, VA: <90% | |
Lisetti and Nasoz [70] | kNN, LDA, NN | 6 | L | 14 | LOO | 72%; 75%; 84% | |
2005 | Liu et al. [78] | BN, kNN, RT, SVM | 5 | L | 15 | LOO | 74%; 75%; 84%; 85% |
Wagner et al. [79] | kNN, LDF, NN | 4 | L | 1 | LOO | 81%; 80%; 81% | |
Healey and Picard [63] | LDF | 3 | FC | 24 | LOO | 97% | |
07 | Leon et al. [80] | NN | 3 | L | 8+1 | LOSO | 71% |
2008 | Zhai and Barreto [81] | DT, NB, SVM | Bin. | L | 32 | 20-fold CV | 88%; 79%; 90% |
Kim et al. [82] | LR | Bin. | FC | 53 | 5-fold CV | ∼63% | |
Kim and André [34] | LDA | 4 | L | 3 | LOO | sub. dependent/independent: 95%/70% | |
Katsis et al. [83] | SVM | 4 | L | 10 | 10-fold CV | 79% | |
2009 | Calvo et al. [84] | BN, FT, LR, NB, NN, SVM | 8 | L | 3 | 10-fold CV | one subject: 37–98%, all subjects: 23–71% |
Chanel et al. [85] | LDA, QDA, SVM | 3/Bin. | L | 10 | LOSO | <50%; <47%; <50%, Bin. <70% |
|
Khalili and Moradi [86] | QDA | 3 | L | 5 | LOO | 66.66% | |
10 | Healey et al. [87] | AB,DT, BN, NB | Bin. | F | 19 | 10-fold CV | None 2 |
2011 | Plarre et al. [46] | AB, DT, SVM/ HMM | Bin. | L/F | 21/17 | 10-fold CV | 82%; 88%; 88%/0.71 3 |
Hernandez et al. [88] | SVM | Bin. | F | 9 | LOSO | 73% | |
2012 | Valenza et al. [89] | QDA | 5 | L | 35 | 40-fold CV | >90% |
Hamdi et al. [90] | ANOVA | 6 | L | 16 | - | None 4 | |
Agrafioti et al. [91] | LDA | Bin. | L | 31 | LOO | Active/Pas AR: 78/52% Positive/Neg VA: <62% |
|
Koelstra et al. [35] | NB | Bin. | L | 32 | LOO | AR/VA/LI: 57%/63%/59% | |
Soleymani et al. [31] | SVM | 3 | L | 27 | LOSO | VA: 46%, AR: 46% | |
2013 | Sano and Picard [92] | kNN, SVM | Bin. | F | 18 | 10-fold CV | <88% |
Martinez et al. [93] | CNN | 4 1 | L | 36 | 3-fold CV | learned features: <75%, hand-crafted: <69% |
|
2014 | Valenza et al. [36] | SVM | Bin. | L | 30 | LOO | VA: 79%, AR: 84% |
Adams et al. [94] | GMM | Bin. | F | 7 | - | 74% | |
2015 | Hovsepian et al. [95] | SVM/BN | Bin. | L/F | 26/20 | LOSO | 92%/>40% |
Abadi et al. [37] | NB, SVM | Bin. | L | 30 | LOTO | VA/AR/DO: 50-60% | |
2016 | Rubin et al. [96] | DT, GB, kNN, LR, PA, RF, RR, SVM | Bin. | F | 10 | 10-fold CV | Bin. panic: 73–97% Bin. pre-panic: 71–91% |
Jaques et al. [97] | LR, NN,SVM | Bin. | F | 30 | 5-fold CV | <76%; <86%; <88% | |
Rathod et al. [98] | Rule-based | 6 | L | 6 | - | <87% | |
Zenonos et al. [29] | DT, kNN, RF | 5 | F | 4 | LOSO | 58%; 57%; 62% | |
Zhu et al. [99] | RR | 1 | F | 18 | LOSO | 5 | |
Birjandtalab et al. [76] | GMM | 4 | L | 20 | - | <85% | |
2017 | Gjoreski et al. [13] | AB, BN, DT, kNN, RF, SVM | 3/Bin. | L/F | 21/5 | LOSO | <73%/<90% |
Mozos et al. [45] | AB, kNN, SVM | Bin. | L | 18 | CV | 94%; 93%; 87% | |
Taylor et al. [100] | Single/Multitask LR, NN, SVM | Bin. | F | 104 | Cust. 6 | Mood: <78%, Stress/Health<82% | |
Girardi et al. [101] | DT, NB, SVM | Bin. | L | 19 | LOSO | ||
2018 | Schmidt et al. [64] | AB, DT, kNN, LDA, RF | 3/Bin. | L | 15 | LOSO | <80%/<93% |
Zhao et al. [102] | NB, NN, RF, SVM | 4/Bin. | L | 15 | LOSO | 76% | |
Marín-Morales et al. [103] | SVM | Bin. | L | 60 | LOSO | Val<75%, AR<82% | |
Santamaria- Granados et al. [104] | CNN | Bin. | L | 40 | - | Val: 75%, AR:71% | |
2019 | Heinisch et al. [67] | DT, kNN, RF | 3 | L | 18 | LOSO | <67% |
Hassan et al. [105] | DBN+SVM | 5 | L | 32 | 10-fold CV | 89.53% use DEAP | |
Kanjo et al. [75] | CNN+LSTM | 5 | FC | 34 | User 7 | <95% | |
Di Lascio et al. [66] | LR, RF, SVM | Bin. | L | 34 | LOSO | <81% |
1 Given as pairwise preferences. 2 DT overfit, other classifiers performed worse than random guessing. 3 Correlation between self-reported and output of model. 4 No significant differences could be found between the affective states. 5 Mean absolute error of mood angle in circumplex model. 6 80/20% split of the entire data+5-fold CV. 7 User specific models. Trained random on 70/30% splits with non-overlapping windows.