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Abstract: Point cloud is a widely used 3D data form, which can be produced by depth sensors,
such as Light Detection and Ranging (LIDAR) and RGB-D cameras. Being unordered and irregular,
many researchers focused on the feature engineering of the point cloud. Being able to learn
complex hierarchical structures, deep learning has achieved great success with images from cameras.
Recently, many researchers have adapted it into the applications of the point cloud. In this paper,
the recent existing point cloud feature learning methods are classified as point-based and tree-based.
The former directly takes the raw point cloud as the input for deep learning. The latter first employs
a k-dimensional tree (Kd-tree) structure to represent the point cloud with a regular representation and
then feeds these representations into deep learning models. Their advantages and disadvantages are
analyzed. The applications related to point cloud feature learning, including 3D object classification,
semantic segmentation, and 3D object detection, are introduced, and the datasets and evaluation
metrics are also collected. Finally, the future research trend is predicted.
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1. Introduction

Providing detailed information for objects and environments, the point cloud is widely used
in various applications such as digital preservation, reverse engineering, surveying, architecture, 3D
gaming, robotics, and virtual reality. Some detailed examples are given here. In the digital preservation
area, visually aesthetic and detailed 3D models of buildings and historical cities are generated by laser
scanning and digital photogrammetry [1,2]. In the robotics area, point clouds are used to recognize the
identity, pose, and location of the target object and obstacles for robot movement and manipulation [3,4].

Point clouds are generally produced by 3D scanners, Light Detection and Ranging (LIDAR),
structure-from-motion (SFM) techniques, and recently available 3D sensors, such as Kinect and Xtion.
SFM- and photogrammetry-generated point clouds usually have a low and sparse point density,
while 3D scanners, LIDAR, and depth sensors can generate point clouds with more points. However,
compared to the continuous surface of a 3D scene, sensed point clouds are still quite sparse. For this
reason, as a pre-processing step, some techniques have been developed for densifying these point
clouds, such as dense image matching. Another strategy is to use complementary data obtained
from other techniques; an example is to complement data generated from structure-from-motion
techniques with laser scanning. In some point clouds occlusions often occur, which request to use
additional techniques for making up gaps. A common strategy in studies related to digital preservation
is combining laser scanner with photogrammetry. Regarding the point density of generated point
clouds, it is affected by the laser device mechanism and the object reflectivity. As an example, a typical
LIDAR model, such as the HDL-64E [5], can generate a point cloud of up to ~2.2 million points
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per second with a range of up to 120 m. Usually, a specific device offers a user-selectable parameter
range, such as rotation rate for the LIDAR sensor, to determine the density of data points. Moreover,
the range accuracy of produced points can be up to ±2 cm. Point cloud consists of points with 3D
unstructured vectors. Each point can be expressed by a vector, indicating its 3D coordinate and some
extra feature channels, such as the intensity of reflection, color, and normals. There are three core
properties for the point cloud [6], including being unordered, interaction among points, and invariance
under transformations. Traditional approaches for dealing with point clouds are highly dependent on
handcrafted features and well-designed optimization approaches. Features on point clouds describing
their statistical properties can be divided into intrinsic or extrinsic which are invariant to several
transformations [7,8]. Optimization methods are usually designed for a given application. Therefore,
they have poor generalization [9,10].

Being automatically learning discriminative features, deep learning has achieved great success
in object classification, semantic segmentation, object detection, etc. with optical images [11–13].
Recently, inspired by dense convolution, which can acquire translation invariance, feature learning
approaches have been adapted to address point clouds in recent years [14–17]. These methods transform
the sparse point clouds into dense tensors, including volumetric forms [18–21] and 2D images [20,22,23],
or extract feature descriptors from the point clouds [24], and give these as input to deep neural networks
(ConvNets). These methods usually missed much information, and the accuracy of proxy of original
points became worse since they require quantization of point clouds with certain resolutions or extract
descriptors from the 3D data before feeding information to ConvNets. [25] summarized the related
literature and provided several directions. Different from [25], this paper focuses on methods which
consume point clouds directly or convert them lossless before feature learning.

Since point clouds are important, and works of point cloud with deep learning have not been
summarized yet, this paper provides an overview of the state-of-the-art progress on point clouds based
on deep learning. The existing point cloud feature learning methods are classified and summarized,
and their advantages and disadvantages are analyzed in this paper. Applications related to point
cloud feature learning are introduced, and the related data sets and evaluation indexes are introduced.
The contribution of this review has two aspects:

1. Recent advances on point clouds with deep learning are surveyed. The architectures can be
classified into two categories, i.e., raw point-based and tree-based architectures. Additionally,
their differences from unstructured and disordered point clouds are highlighted.

2. Applications of point clouds with deep learning are compared, and the future direction is given.

The organization of this review is as follows. The most related work of this survey is shown
in Section 2. Feature learning with point clouds is introduced in Section 3, including raw point-based
and tree-based types. Following this, the applications of point clouds, containing 3D object classification,
semantic segmentation, and 3D object detection are described in Section 4. The performance discussion
and future direction are given in Section 5. Finally, the conclusion is given in Section 6.

2. Related Works

Due to the availability of 3D point clouds from 3D scanners, they are widely used. Traditional
methods depend on discriminative feature extractors [9,15,26]. Since deep learning has achieved great
success in object classification [11,27–29], semantic segmentation [30–32], object detection [33–39], etc.,
it has been applied to address the corresponding tasks with point clouds [16,25]. The main contents of
the related works are shown in Table 1.
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Table 1. Related works on surveys of point clouds and their application.

Reference Main Contents

Nygren et al. 2016 [26] The traditional algorithms for 3D point cloud segmentation and classification

Nguyen et al. 2013 [15] The segmentation methods for the 3D point cloud.

Ahmed et al. 2018 [16] The 3D data from Euclidean and the non-Euclidean geometry and
a discussion on how to apply deep learning to the 3D dataset.

Hana et al. 2018 [9] The feature descriptors of point clouds with three classes, i.e., local-based,
global-based, and hybrid-based.

Garcia et al. 2017 [40] The semantic segmentation methods based on deep learning.

Bronstein et al. 2017 [41] The problems of geometric deep learning, extending grid-like deep learning
methods to non-Euclidean structures.

Griffiths et al. 2019 [42] The classification models for processing 3D unstructured Euclidean data.

The methods in these surveys address point clouds without raw input, missing information,
or inducing heavy computing. With the emergence of PointNet, there are deep learning models taking
the raw point cloud as input. Since these methods have not been surveyed yet, we will survey the
recent papers in this paper.

3. Feature Learning on Point Cloud

At present, feature learning has been widely used with point clouds. The methods can be
classified into two categories, (1) raw point-based methods, which directly consume unstructured and
unordered point clouds for deep learning models and (2) k-dimensional tree (Kd-tree) based methods,
which represent the point cloud regularly before feeding information into the models. Currently,
there are state-of-the-art deep learning models directly addressing point clouds [6,43–47], and the main
18 methods are shown in Figure 1. We will first introduce the raw point-based deep learning and then
the tree-based deep learning method.
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3.1. Raw Point-Based Deep Learning

Currently, there are several models directly consuming a raw point cloud without losing
information [6,43,48–58]. Based on the basic module of these models, they are divided into five
categories, i.e., PointNet-based, deep convolutional neural networks (ConvNets)-based, recurrent
neural networks (RNN)-based, autoencoder (AE)-based, and others as shown in Figure 1.

3.1.1. PointNet-Based Deep Learning

There are two main architectures, including PointNet [6] and PointNet++ [43] in this section.
The representative work proposed by Stanford University researchers is PointNet, which is used to
directly process point clouds. Since PointNet cannot capture the local features of the point clouds,
PointNet++ was then proposed. PointNet was first introduced and PointNet++ followed.

PointNet is the pioneering work with raw point clouds as input for deep learning. It has been
used for 3D object detection and semantic segmentation. It was proposed to address unstructured
point cloud data considering the invariance of the input point cloud arrangement. Specifically,
it has two core building blocks, i.e., the transformation networks (T-Net) and the symmetric function.
The former is used to align the model with the input and aggregate information from each point. It uses
a spatial transformation network (STN) [59] to solve the rotation problem. STN in the computer vision
community was proposed to deal with spatial invariance of objects. STN learns the rotation matrix that
is most conducive to network classification or segmentation by learning the attitude information of the
point cloud itself. Moreover, it employs STN twice. The first input conversion is to adjust the point
cloud in the space. Intuitively, the PointNet rotates out of an angle that is more conducive to sorting or
segmentation, such as turning the object to the front. The second feature transformation is to align
the extracted 64-dimensional features by converting the point cloud at the feature level. Max pooling
is adopted as the symmetric function for processing the point cloud. Specifically, it aggregates the
high-dimensional local features of each point, which is learned from multi-layer perception (MLP) [60].
It has the capability to tackle the disorder problem and the invariance under transformations. This is
because the global features of the entire point clouds can be extracted through max-pooling [12].

Since the MLP only learns the local features of each point and ignores the connections between
points, PointNet fails to represent the local features of neighboring points, thus limiting its performance
in complicated scenes. Based on the above analysis, PointNet cannot adequately handle local
feature extraction, to address this, PointNet++ was proposed by constructing a class pyramid feature
aggregation scheme. It is also used for point classification and semantic segmentation. Specifically,
there are two aspects for PointNet++ to encode the local features: (1) how to divide the point cloud
locally and (2) how to extract local features from the point cloud. For the first aspect, hierarchical
feature learning for the point cloud is proposed. It consists of three components: the sampling layer,
the grouping layer, and the PointNet layer. The sampling layer selects a series of points in the input
point cloud to define the center of the local area. The sampling algorithm uses iterative farthest point
sampling (FPS). Especially, FPS randomly selects a point and chooses the point furthest from the
point as the starting point and then continues iteration until the desired number is selected. As for
the second, PointNet++ employs PointNet to extract local features after grouping the point clouds.
Therefore, the original PointNet network became a subnet in the PointNet++ network, extracting
features in hierarchical iterations. Even though PointNet++ can encode the local features of the point
clouds, it fails to utilize the spatial distribution of the input point cloud. This is because hierarchical
feature learning fails to encode the spatial distribution in the division of the point clouds.

3.1.2. ConvNets-Based Deep Learning

ConvNets is a type of feed-forward neural networks and short for deep convolutional neural
networks [12,61]. Inspired by biological processes, the architecture of ConvNets is similar to the
organization of the visual cortex in animals. Especially, each cortical neuron only responds to the
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stimuli in the receptive field. To respond to the whole field, there is overlapping area among the
receptive fields in various neurons. It is always stacked with a convolution layer, rectified linear
units, and pooling layers to distill features from low-level to high-level features [12,13]. ConvNets
has the benefits of shared-weights, translation invariance, and feature extraction without human
interference [12]. Currently, there are seven models, including Dynamic Graph convolutional neural
networks (CNN) [49], PointCNN [48], regularized graph CNN (RGCNN) [50], Pointwise CNN [62],
PointConv [63], Geo-CNN [64], and SpiderCNN [65], addressing the raw point cloud. These methods
bring regular representation into the network before ConvNets.

Dynamic Graph CNN is a new network for classifying and dividing point cloud data and is
a modification inspired by PointNet and PointNet++. PointNet only processes each point independently
to achieve permutation invariance, but it ignores local features between points. To obtain the local
features, Dynamic Graph CNN includes an EdgeConv layer, which solves the local feature processing
problem that PointNet does not have. PointNet++ can be compared with Dynamic Graph CNN.
Different from PointNet, Dynamic Graph CNN employs EdgeConv to extract features. Specifically,
the EdgeConv layer is proposed to obtain local features with the tensor of N × F (N and F are the
number and the dimension of the input clouds, respectively) as the input and then be applied to each
given layer

{
a1,a2, . . . an

}
in the MLP along the length of the output tensor to calculate the peripheral

features. Finally, the merge operation is performed along adjacent peripheral features to generate
a new tensor. The input includes nearby raw data Xi and nearby K points. Specifically, each point of
the original data and the attached K point will be first to generate K N ×M features (M is the number
of the labeled classes). Then, the N ×M function will output through the pool operation.

PointCNN uses hierarchical convolution and x-Conv operators to capture local information.
The benefit of x-Conv is that it considers the shapes of points without focusing on the input order
of the data. It has been used in 3D object classification and semantic segmentation. Similar to the
space transformation network (STN) [66], K points are taken from the data of the previous layer to
predict an x-transformation matrix of K ×K size (x-transformation). The features in the previous layer
of the x matrix are transformed, and then the transformed features are convoluted. The convolution
layer in image CNN is different from the x-Conv layer in PointCNN in only two aspects, i.e., K ×K
region in image CNN and K adjacent points around PointCNN representing points. In addition,
the deep network assembled with the x-Conv layer is not very different from the convolution layer
in the Dynamic Graph CNN. It turned out that the learning ability of the model is very strong, but the
generalization is not the most advanced.

RGCNN directly consumes the point clouds with irregularity and is evaluated on point cloud
segmentation. It is also accessed on point clouds with high noise. It has been used for object
classification and semantic segmentation in the 3D point cloud. There are two main features of RGCNN.
The first feature is that RGCNN takes the features of the points as a node on the graph based on
the spectral graph theory to overcome the irregularity of the point cloud. The other feature is that it
introduces the convolutional operation by Chebyshev polynomial approximation for localized filtering.
As for the former method, it first collects the raw features of a point, such as color and coordinates
and represents each point cloud as a vector pi and then feeds n points to the graph convolutional
operation defined on the graph. As for the latter, it filters the nodes in the spectral domain and
leverages Chebyshev approximation to dramatically decrease the computational complexity.

The new pointwise convolutional operation is proposed and then used to construct the architecture
in Pointwise CNN. It is used to explore semantic segmentation and object classification in the point
clouds. A pointwise convolution is introduced at each point. To implement segmentation and
recognition, two pointwise convolutions are designed. The architecture of Pointwise CNN can be
effective for learning local features because of the benefits of convolution operation, which uses a small
kernel, such as the 3 × 3 kernel, to extract features. Unlike the traditional convolutional operation
in 2D images, there is only pointwise convolution in Pointwise CNN without down-sampling or
up-sampling the point clouds.
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PointConv [63] is a novel convolutional operation and can be used to construct the architecture of
deep convolutional neural networks addressing the irregular and unordered point clouds. It takes
the coordinates of the point clouds as inputs. Especially, it is extended by the dynamic filter with
non-uniform sampling. The weights in the convolution are learned by MLP, and density functions
are acquired by the kernel density estimation to satisfy non-uniform sampling. This network has the
scalability to deal with translation-invariant and permutation-invariant point clouds.

Inspired by the benefits of local features in the point clouds, Geo-CNN [64] aims to encode the
geometric structure for a point and its corresponding neighboring point clouds through a convolutional
operation. Firstly, edge features are extracted by GeoConv to encode the geometric structure with
a vector and decomposed into three orthorhombic orientations. Secondly, features distilled from these
directions are combined to represent the geometric structure of the point clouds with the vector and
the three bases to acquire the local features.

Similar to Geo-CNN, to distill geometric features from the irregular point clouds, SpiderCNN [65]
defines a novel convolutional operation. The proposed convolution is extended from the regular grids
to the irregular point sets. The filter in the convolution is the product of step functions to encode
the local geometric information of the point clouds. The Taylor polynomial is used to ensure the
expressiveness of the SpiderCNN.

3.1.3. RNN-Based Deep Learning

A recurrent neural network (RNN) is a class of artificial neural network (ANN) where connections
between nodes form a directed graph along a temporal sequence, encoding the temporal data [67].
The architecture of RNN is expressed in Figure 2, where Xi (i = 0, 1, 2, . . . , t) encodes the temporal data
at the time i, and ai (i = 0, 1, 2, . . . , t) are the inputs for the next time steps, while hi (i = 0, 1, 2, . . . , t)
is the output of the current time step. It is obvious that the connections between the points are
a directed graph. Unlike ConvNets, RNN employs the internal states, i.e., ai (i = 0, 1, 2, . . . , t), to
process sequential inputs, thus making it possible to deal with the sequential tasks, such as speech
recognition. It has many variations, such as Long Short-Term Memory (LSTM) [68] and bidirectional
RNN [68]. Being able to capture the context, bidirectional RNN has been applied to pointwise
pyramid pooling RNN (3P-RNN) [51] and recurrent slice networks (RSNets) [69] to better deal with
the point clouds.
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Considering the benefits of RNN, 3P-RNN is proposed to address the semantic segmentation
with raw point clouds as input. There are two main components in 3P-RNN, i.e., a pyramid pooling
module and a bidirectional RNN. The former is used to extract the local spatial information, and the
latter is used to acquire the global context information. 3P-RNN is inspired by PointNet as shown
in Section 3.1.1. Unlike pooling in PointNet++, pointwise pyramid pooling is used to acquire the local
features in 3P-RNN, which has faster speed.

RSNets is proposed to capture local structures in point clouds. The core component of the RSNets
is a lightweight local dependency module. This part is the combination of the designed slice pooling
layer, RNN layer, and slice unpooling layer. Specifically, the slice pooling layer is used to transform the
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project features of the disorder point clouds to the ordered sequence with feature vectors to be fed to
the RNN layer.

3.1.4. Autoencoder-Based Deep Learning

Autoencoders (AEs) can be used to learn the representation of given data in an unsupervised
manner [70] as shown in Figure 3. It is obvious that there are three stages in an autoencoder, i.e., encoder,
internal representation, and decoder. Currently, it has become widely used for generative models to
represent the data. It has the capability to encode the irregularity of point clouds and address the
sparsity at the up-sampling stage. Researchers are beginning to employ AEs to represent them [52,54,55].
There are seven main models as shown in Figure 1, including FoldingNet, Point Pair Feature Network
(PPFNet), PPF-FoldNet, NeuralSampler [55], GeoNet [71], 3D Adversarial Autoencoder (3dAAE) [72],
and 3D Point-Capsule Networks.
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FoldingNet is proposed to represent the point cloud from 2D to 3D with small reconstruction
errors. Firstly, a graph-based encoder, combining MLP and a graph-based pooling layer, is used to
acquire the local features. Secondly, a folding-based decoder is used to reconstruct the 3D point cloud
from 2D images. As for the reconstruction error, the chamfer distance is used [73]. When it is used for
classification, it achieves the best accuracy in the ModelNet40 dataset detailed in Section 4.1, Table 2.

The point pair feature network (PPFNet) is designed to learn globally 3D local features to discover
the correspondences in unordered and sparse point clouds [53]. A novel N-tuple loss is employed
to increase the intra-class difference and decrease the intra-class variations. Global information is
injected into local descriptors. Integrating point pair features with normals, their corresponding 3D
representations are calculated. It is designed to represent the local features of the raw point sets,
which is sensitive to the global context. Inspired by PointNet, it also takes the permutation invariant
network into consideration.

PPF-FoldNet was proposed to tackle the problem that PPFNet is sensitive to the rotation of the
point clouds and was also used for unsupervised 3D local descriptors learning on the raw point clouds.
Based on the well-known point-to-feature folding-based automatic coding, PPF-FoldNet has many
desirable features: it does not require supervision or a sensitive local reference frame and can acquire
rotation invariant descriptors.

NeuralSampler [55] addresses 3D point clouds of various sizes and has been used for object
classification. It learns the feature representation by decoupling shape generation from surface
sampling with a convolutional auto-encoder. The encoder is used to address the irregularity of the
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point cloud and the decoder to deal with the sparsity. Especially, a latent vector representation is
calculated to encode given points, such as a surface or bounding cube.

GeoNet [71] was proposed to encode the connectivity information in the point clouds. It takes
surface topology and object geometry into consideration for representing the point clouds. GeoNet
employs the learned topological features for a geodesic-aware point cloud analysis. There are
two components in this architecture, i.e., an autoencoder to extract a feature vector for each point
and a geodesic matching (GM) layer that acts as a learned kernel function for estimating geodesic
neighborhoods using the latent features.

3dAAE [72] obtains the representations of 3D shapes. It has the ability of end-to-end learning the
representation of 3D point clouds. This model firstly learns a latent space for 3D shapes, and then
adversarial training is used to generate the output. The authors of 3dAAE extended the autoencoder
to 3D, which takes the 3D data as input and generates the corresponding 3D output.

3D Point-Capsule Networks [74] were proposed to address the sparse 3D point clouds without
changing spatial arrangements. Especially, an AE is designed to do this task. This network was
extended from 2D capsule networks to 3D to tackle the sparsity of the point clouds. PointNet-like
input layers are employed to encode the sparsity of point clouds, and then latent capsules are used to
capture information not spatially but semantically across the shape.

3.1.5. Others

As stated in Section 1, there are three characteristics: unorder structure, interaction among points,
and invariance under transformations. Many researchers have designed deep learning models with
the raw point cloud as input. Except for the above four kinds, researchers employ special strategies
to tackle the raw point dataset. For example, Self-Organizing Network (SO-Net) [57], Pointwise [58],
and Pu-Net [75] use unsupervised approaches to learn the representation. SO-Net will be briefly
introduced, followed by unsupervised approaches representing the point cloud.

SO-Net is a permutation-invariant network structure dealing with unordered point clouds.
It utilizes the spatial distribution of the point cloud by designing a network with a constant arrangement
and simulates the spatial distribution by constructing a self-organizing map (SOM) [57]. Especially,
SOMs are used to acquire the hierarchical features in SO-Net. After the construction of the SOM,
a feature vector is used to represent the point cloud. The point cloud automatic encoder is proposed to
improve the network performance at different tasks. To maintain the order of the input point cloud,
there are two core factors behind this, i.e., special network architecture and alternative SOM training.
SOM does not change the topology of the input point clouds. Little information is missing before
the processed point clouds feed to the network and transform the point cloud into a feature matrix,
speeding up the procedure, which has tremendous advantages. There are many applications of SO-Net,
including object classification, semantic segmentation, shape retrieval, etc. Due to the parallelism and
simplicity of the proposed architecture, the training speed is much faster than the existing point cloud
recognition network.

To calculate the hierarchical and spatial features of the point cloud, a sparse and efficient mesh filter
in a lattice with high number of dimensions is proposed in Sparse Lattice Networks (SPLATNet) [56].
Similar to the architectures of ConvNets, SPLATNet makes filter neighborhoods easy to be regulated
and uses hash tables to pass on only the location of the data convolved to effectively handle the sparse
point cloud. It makes converting 2D points to 3D space easy and vice versa. SPLATNet uses the
permutohedral lattice convolution in the Bilateral Convolution Layer, which is a generalization of
bilateral filtering fusing a sparse filter into neural networks [56] to place the organization of the point
cloud in each convolution operation.

To learn the point-wise description of the point cloud, [58] uses an embedding for the cloud
point through neural networks. First, an embedding space is clustered in the latent space with local
structures to encode the geometric information of the point cloud. Second, the semantic point analogies
are derived by computing Euclidean distance. Finally, point-correspondence is obtained by retrieving
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nearest-neighbors. There are two kinds of loss used in this framework, i.e., patch reconstruction loss
and triplet loss. The former considers the context of the point cloud, and the latter considers that the
point clouds have similar representations at the near distance and different ones at a far distance.

Pu-Net [75] is a data-driven model to learn the sparse and irregular point cloud with the raw point
clouds as input. It learns the multi-level features of each point and uses the multi-branch convolution
to acquire the expanded feature, which is then split to reconstruct the point cloud. There are four
parts in Pu-Net, including patch extraction to acquire d point clouds with various sizes, point feature
embedding to obtain the local and global geometric information of the d point clouds, feature expansion
to enlarge the number of features, and coordinate reconstruction to implement the 3D coordinates of
the expanded features.

Point Contextual Attention Network (PCAN) [76] is also used to encode local features. Different
from PointNet++ and other neural networks, PCAN considers the task-relevant features. Especially,
it first uses PointNet to extract local features and then exploits a NetVLAD layer [77] to aggregate global
features. When fusing features into a discriminative global descriptor, the sampling and grouping
layers in PointNet++ are first used to obtain the attention map with multi-scale contextual information,
and then task-relevant features are focused.

3.2. Tree-Based Deep Learning

A Kd-tree is built on an eight-point point cloud. Nodes are numbered from root to leaf in the Kd-tree.
Due to the irregularity of the point cloud, approaches based on a Kd-tree were proposed to explore
the local and global context. Kd-tree based models take point clouds as regular presentations before
feeding information into deep learning models. These methods gradually learn the representation
vector of the point cloud along the tree. Experimental results on challenging datasets have shown
that the Kd-tree provides distinguishing point cloud features. There are three methods, including
the Kd-network [78], 3D contextual network (3DConextNet) [44], and Multiresolution Tree Networks
(MRTNet) [46].

The Kd-network works with an unstructured point cloud and is designed for 3D model recognition
tasks. The architecture performs a multiplication transformation and shares the parameters of
these transformations according to the subdivision of the point cloud to which the Kd-tree applies.
Unlike the main convolution architecture that typically requires rasterization on a uniform two-
or three-dimensional grid, the Kd-network does not rely on such a mesh in any way, thus avoiding poor
scaling behavior. The point layer features are hierarchically calculated at different levels in the feature
learning phase. For a level, each point is processed using a shared multilayer perceptron network
(MLP) as a function h in the equation. After that, a different local area representation is calculated for
the same level of nodes by the corresponding function.

Just like the Kd-network, 3DContextNet was proposed to capture the local and global features of
the point clouds using a Kd-tree structure. Different from the Kd-network defining operation on a Kd
tree, 3DContextNet employs the Kd-tree to represent the 3D point clouds without changing the spatial
relationships and can be used for 3D object classification and semantic segmentation. There are two
main components in this architecture, i.e., feature learning at multi-scale and feature aggregation to
extract global contextual information.

Different from Kd-network and 3DcontextNet, the point clouds are first sorted using the Kd-tree
in MRTNet [46]. The Kd-tree used can represent the point clouds in a hierarchical and locality-preserving
order [46]. Especially, the pooling operation defined in [46] can be used to construct the hierarchical
sorting, and multiresolution scaling of the point clouds is useful for preserving the locality. Since the
Kd-tree partitions the point clouds, the dependence among them is no longer kept. After the point
clouds are sorted, 1D convolution and pooling are used to build the MRTNet. Experimental results on
shape classification reveal the MRTNet has the benefits of small memory cost and fast convergence
speed during training. MRTNet can also be used as an encoder and decoder for shape generation.
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4. Applications of Point Clouds Using Deep Learning

There are numerous applications of the models mentioned in Section 3, which directly take the
raw point cloud as input. Here, we mainly focus on three aspects, 3D object classification, semantic
segmentation, and 3D object detection. First, the datasets used to evaluate the performance of the
models in Section 3 are shown, and then evaluation indicators and performances of the reviewed
methods regarding the three applications in each application are provided.

4.1. Datasets

Datasets can be divided into two categories: indoor datasets by Kinect and outdoor datasets
typically obtained by 3D scanners such as LIDAR. These public datasets make it possible to compare
and access various models and analyze their advantages and disadvantages. The available datasets
and their descriptions and application tasks are shown in Table 2.

Table 2. Available point cloud datasets for classification, segmentation, and object detection.

Datasets Name Descriptions Application Tasks

ModelNet40 [18] It consists of 12,311 CAD models in 40
object classes.

3D object classification [48,50,51,79]
and shape classification [45]

ShapeNet part [80]
There are 16,881 shapes represented by 3D
CAD models in 16 categories with a total of
50 parts annotated.

Part segmentation [44,48,49,56,80],
shapes generation [46],
and representation learning [52]

Stanford 3D semantic parsing [81]
This dataset has 271 rooms in six areas
captured by 3D Matterport scanners captured
by Matterport Camera.

Semantic
Segmentation [8,43,44,46,48,49,78,82]

SHREC15 [18]

There are 1200 shapes in 50 categories by
scanning real human participants and using
3D modeling software [79]. Each class has 24
shapes and most of these shapes are organic
with different postures.

Non-rigid shape classification [43]

SHREC16 [18] It contains about 51,300 3D models
in 55 categories. 3D shape retrieval [8]

ScanNet [83] There are 1513 scanned and reconstructed
indoor scenes.

Virtual scan generation [43],
segmentation [48], and classification [48]

S3DIS [81] It consists of 271 rooms in six areas captured
by 3D Matterport scanners.

3D semantic segmentation [44,48] and
representation

TU-Berlin [84] It has sketches in 250 categories. Each
category has 80 sketches. Classification [48]

ShapeNetCore [85]

It has 51,300 3D shapes in 55 categories,
which is indicated by triangular meshes.
The dataset is labeled manually and a subset
of the ShapeNet dataset.

3D shape retrieval task [78], 3D shape
retrieval task [8], and classification [8]

ModelNet10 [18]

The 10-class of Model-Net (ModelNet10)
benchmarks are used for 3D shape
classification. They contain 4,899 and 12,311
models respectively.

Object classification [8]
Shape classification [78]

RueMonge2014 [86]
The images are multi-view in high-resolution
images from a street in Paris and the number
of these images is 428.

3D point cloud labeling [56]

3DMatch Benchmark [87] It contains a total of 62 scenes. Point Cloud representation [54]

KITTI-3D Object Detection [88,89]
There are 16 classes, including 40,000 objects
in 12,000 images captured by a Velodyne
laser scanner.

3D object detection [20,23,24,90]

vKITTI [91]

This dataset includes a sparse point cloud
captured by LiDAR without color
information. It can be used for generalization
verification, but it cannot be used for
supervised training.

Semantic segmentation [51]



Sensors 2019, 19, 4188 12 of 22

Table 2. Cont.

Datasets Name Descriptions Application Tasks

3DRMS [92]

This dataset comes from the challenge of
combining 3D and semantic information
in complex scenarios and was captured by
a robot that drove through a semantically rich
garden with beautiful geometric details.

Semantic segmentation [51]

Cornell RGBD Dataset

It has 52 labeled point cloud indoor scenes
including 24 office scenes and 28 family
scenarios with the Microsoft Kinect sensor.
The data set consists of approximately 550
views with 2495 segments marked with 27
object classes.

Segmentation [14]

VMR-Oakland dataset
It contains point clouds captured by mobile
platforms with Navlab11 around the Carnegie
Mellon University (CMU) campus.

Segmentation [14]

Robot 3D Scanning Repository

The 3D point clouds acquired by Cyberware
3030 MS are provided for both indoor and
outdoor environments. Heat and color
information is included in some datasets.

Segmentation [14]

ATG4D [89]

There are over 1.2 million, 5,969, and 11,969
frames in the training, validation, and test
datasets, respectively. This dataset is captured
by a PrimeSense sensor.

Point object detection [20]

Paris-Lille-3D [60] There are 50 classes in 143.1M point clouds
acquired by Mobile Laser Scanning. Segmentation and classification [60]

Semantic3D [93] There are eight classes in 1660M point clouds
acquired by static LIDAR scanners. Semantic segmentation [93]

Paris-rueMadame [94] There are 17 classes in 20M point clouds
acquired by static LIDAR.

Segmentation, classification,
and detection [94]

IQmulus [61] There are 22 classes in 12M point clouds
acquired by static LIDAR. Classification and detection [61]

MLS 1 - TUM City Campus [95,96] There are more than 16,000 scans captured by
mobile laser scanning (MLS) in this dataset.

3D detection [95,96], city modeling
[95,96], and 3D change detection

4.2. 3D Object Classification

The goal of 3D object classification is to recognize objects from a 3D point cloud [26,97–99],
i.e., to provide a semantic object label to a separated point cloud. It has numerous applications
in robotics, virtual reality, and city planning. Currently, there are several available datasets for 3D object
classification in the point cloud, such as ModelNet40 and TU-Berlin as shown in Table 2. The challenges
of data-related classification have three aspects, including missing data, noise, and rotation invariance.

• Missing data: Scanned models are usually occluded, and some data is lost.
• Noise: All sensors are noisy. There are different types of noise, including point perturbations

and outliers. This means that a point has a certain probability within a certain radius around
the location where it is sampled (disturbance), or it may appear at random locations (outliers)
in space.

• Rotation invariance: Rotation and translation points should not affect classification.

Accuracy is usually used to evaluate a classification model. In general, accuracy refers to
the proportion of the model that predicts the correct outcome. Formally, accuracy is defined as
in Formula (1) [12]. As for the error rate, it is the misclassification rate and equal to one minus accuracy,
as shown in Formula (2).

accuracy =
TP + TN

TP + TN + FP + FN
(1)

Error rate = 1− accuracy (2)
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where TP, TN, FP, and FN are the true positive case, true negative case, false-positive case,
and false-negative case, respectively.

3D object classification is receiving more and more attention and has become a very active
research field. Several methods can be used for classification, such as PointNet, PointNet++, SO-Net,
Dynamic Chart CNN, PointCNN, Kd-Network, 3DContextNet, Multi-Resolution Tree Network,
SPLATNet, FoldingNet, and NeuralSampler. Even though there are many datasets available, the widely
used datasets to access the performance of various models are ModelNet 10 and ModelNet 40.
The classification performance collected from the published literatures on point cloud with these
models is shown in Table 3. Class accuracy and instance accuracy are the accuracies regarding class
and instance, respectively.

Table 3. Classification performance on point cloud with different models.

Methods
ModelNet 10 ModelNet 40

Class Accuracy Instance Accuracy Class Accuracy Instance Accuracy Training

PointNet [6] - - 86.2 89.2 3–6 h
PointNet++ [43] - - - 91.9 20 h
Deepsets [100] - - - 90.0 -

SO-Net [57] 95.5 95.7 90.8 93.4 3 h
Dynamic Graph

CNN [49] - - - 92.2 -

PointCNN [48] - - 91.7 - -
Kd-Net [78] 93.5 94.0 88.5 91.8 120 h

3DContextNet [44] - - - 91.1 -
MRTNet [46] - - - 91.7 -

SPLATNet [56] - - 83.7 86.4 -
FoldingNet [95] - 94.4 - 88.4 -

NeuralSampler [55] - 95.3 - 88.7 -

4.3. Semantic Segmentation

A point cloud is a collection of data points. It can be represented as a group, where each point
can be represented by a vector, including its coordinates and additional feature channels. Once the
point cloud is segmented, each segment (group) of points can be marked with a class, providing some
semantics to the segment. The aim of point cloud semantic segmentation task [14,15,26,40,99] is to
label each point in a point set with its corresponding semantically meaningful category.

The point cloud semantic segmentation algorithm should have three attributes:

• The segmentation algorithm should consider the specific properties of different ground objects.
• The segmentation algorithm should infer the attribute relationships of adjacent partition blocks.
• The segmentation algorithm should be applied to the point clouds acquired by different scanners.

The evaluation indicator is intersection over union (IoU) [12], a measuring accuracy of detecting
corresponding objects, and is defined in Formula (3). The numerator in Formula (3) is the overlapping
area between the predicted bounding box (A) and the ground-truth bounding box (B), and the
denominator is the area encompassed by both A and B.

IoU =
|A∩ B|
|A∩ B|

(3)

The applications of point cloud segmentation include smart vehicles, autonomous mapping,
navigation, etc. There are many methods that can be used for segmentation, such as PointNet,
PointNet++, SO-Net, Dynamic Graph CNN, Kd-Network, 3DContextNet, Multiresolution Tree
Networks, and SPLATNet. Considering the popularity, the ShapeNet part dataset was selected
to evaluate the performance of these models because many approaches exploit it. The evaluation
performance for segmentation of point clouds collected from the published literatures is shown
in Tables 4 and 5 on the ShapeNet part dataset.
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Table 4. Evaluation performance regarding for semantic segmentation on the ShapeNet part dataset
[6,45,46,48,51,58,59,81].

Intersection over Union (IoU)

Mean Air- Place Bag Cap Car Chair Ear- Phone Guitar Knife

PointNet [6] 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9
PointNet++ [43] 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9

SO-Net [57] 84.6 81.9 83.5 84.8 78.1 90.8 72.2 90.1 83.6
Dynamic Graph CNN [49] 85.1 84.2 83.7 84.4 77.1 90.9 78.5 91.5 87.3

Kd-Net [78] 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2
3DContextNet [44] 84.3 83.3 78.0 84.2 77.2 90.1 73.1 91.6 85.9

MRTNet [46] 79.3 81.0 76.7 87.0 73.8 89.1 67.6 90.6 85.4
SPLATNet [56] 83.7 85.4 83.2 84.3 89.1 80.3 90.7 75.5 93.1

Table 5. Evaluation for segmentation for semantic segmentation on point cloud on ShapeNet part
dataset [6,45,46,48,51,58,59,81].

Intersection over Union (IoU)

Mean Lamp Laptop Motor Mug Pistol Rocket Skate Table

PointNet [6] 83.7 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
PointNet++ [43] 85.1 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6

SO-Net [57] 84.6 82.3 95.2 69.3 94.2 80.0 51.6 73.1 82.6
Dynamic Graph CNN [49] 85.1 82.9 96.0 67.8 93.3 82.6 59.7 75.5 82.0

Kd-Net [78] 82.3 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3
3DContextNet [44] 84.3 81.4 95.4 69.1 92.3 81.7 60.8 71.8 81.4

MRTNet [46] 79.3 80.6 95.1 64.4 91.8 79.7 57.0 69.1 80.6
SPLATNet [56] 83.7 83.9 96.3 75.6 95.8 83.8 64.0 75.5 81.8

4.4. 3D Object Detection

Unlike object classification, 3D object detection in point clouds not only assigns the labels to
point sets but also locates the objects of interest with bounding boxes in 3D. It becomes a challenging
problem due to its discrete sampling, noise scanning, occlusion, and cluttered scenes. Compared with
3D object classification and semantic segmentation, 3D object detection with a raw point cloud is still
less explored. The reasons may be the lack of large labeled point dataset. Currently, the dataset used
for object detection is mainly from optical images, such as VOC2007 [101] and COCO [66]. For point
clouds, the widely used dataset is KITTI [102]. Considering that only a few models consume raw point
clouds directly, we provide the related works, i.e., PointRCNN [103], VoxelNet [104], MVX-Net [105],
FVNet [106], F-PointNet [107], and a deep Hough voting model [108].

There are some evaluation indicators that can be used for object detection, such as Precision,
Recall, F1 score, average precision (AP), and mean average precision (mAP) as expressed by Formulas
(4)–(8) [108–114], respectively. Precision represents the proportion of all identified correct instances.
That is to say, the recall represents the proportion of all true positive examples in the sample, and these
examples are correct positive examples.

In theory, the AP should be an area surrounded by a precise recall curve and two axes. This is
the integral of the precision–recall curve. The AP summarizes the shape of the precision–recall curve
and is defined as the mean precision at a set of equally spaced recall levels. AP measures the quality
of the learning model in each category, while mAP measures the quality of the learning model in all
categories. After obtaining the AP, the calculation of the mAP (the average value of all APs) becomes
very simple as shown in Formula (8).

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)
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F1 =
2× Precision×Recall

Precision + Recall
(6)

AP =
1
N

∑
r

Pinterp(Recall′) = max
Recall′>Recall

P(Recall′) (7)

mAP =
1

Ntotal

∑
AP (8)

where N is the total number of equally spaced recall levels in Formula (7), and a value of 11 is usually
used for N in practice. Pinterp is the precision at each recall level Recall′, and is interpolated by taking
the maximum precision measured for a method for which the corresponding recall exceeds Recall′.
Ntotal is the total number of object categories in Formula (8).

Since the dataset KITTI is a publicly available point cloud, it was used to evaluate different models.
mAP is widely used to evaluate the performance of models in 3D object detection and was selected
as the indicator, especially, for the dataset with only the ‘Car’ category. ScanNet and SUN RGB-D
were also used. The experimental results collected from the published literatures are shown in Table 6.
PointRCNN encoding the multi-scale local and rotation invariance achieves the top performance for
the KITTI dataset with only the ‘Car’ category.

Table 6. Point cloud object detection results [93,110]. mAPScanNet, mAPSUN RGB-D, and mAP3D results
on ScanNet, SUN RGB-D, and KITTI datasets with only the ‘Car’ category.

Model Feature Extraction mAPScanNet mAPSUN RGB-D
mAP3D

Easy Moderate Hard

FVNet [110] PointNet - - 65.43 57.34 51.85
VoxelNet [108] - - - 81.97 65.46 62.85

PointRCNN [107] PointNet++,
multi-scale grouping - - 88.88 78.63 77.38

F-PointNet [111] PointNet++ - - 81.20 70.39 62.19
MVX-Net [109] VoxelNet - - 83.20 72.70 65.20

Deep Hough
voting model [112] PointNet++ 46.80 57.70 - - -

5. Discussion and Future Direction

Considering point clouds are unstructured and in disorder, especially non-Euclidean and sparse
data [26], it is necessary to encode their information as completely as possible. PointNet is the first
approach to deal with point clouds based on raw inputs and achieves promising results for 3D object
classification and semantic segmentation. Following this, architectures from deep learning, including
RNN, AE, CNN, RNN, and generative adversarial networks (GAN) [12] are introduced. Furthermore,
the Kd-tree is introduced in the point clouds. Models with the raw input are surveyed, and three
typical applications, including 3D object classification, semantic segmentation, and 3D object detection,
are summarized. Related datasets and evaluation metrics are introduced. In this section, we will first
discuss the performance, strengths, and weaknesses of the reviewed methods, and then propose some
future directions.

5.1. Performance and Characteristics of Reviewed Methods

For 3D object classification, PointNet fails to extract the local features and only uses global features
directly to obtain the probability for each class. From Table 3, we can see that the SO-Net achieves
best classification performance on ModelNet 10 and ModelNet 40. The excellent performance stems
from its powerful network. This may be to the special architecture of SO-Net. So-Net captures local
features, global features, and a topological order of input points. Even in unsupervised learning of the
point clouds, the models being able to extract local features, global features, and geometry of the point
clouds have a better performance as shown in Table 3. Therefore, it is beneficial to incorporate the raw
point clouds into the neural networks and also make full use of them without missing information.
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For semantic segmentation, as shown in Tables 4 and 5, it is obvious that PointNet++ and Dynamic
Graph CNN achieve top performance with the mean IoU. Both PointNet++ and Dynamic Graph
CNN consider the local features, which benefits the segmentation results. SPLATNet achieves about
5% higher scores over several classes, such as Knife, Ear-phone, Car, and Motor, because it employs
the spatial distribution of the point clouds. Based on these analyses, integrating the local and global
features extracted by deep learning models with the spatial representation of the point clouds will be
useful to design a model for semantic segmentation with top performance.

For 3D object detection, as shown in Table 6, we can see that compared with other models
PointRCNN can detect examples in the car class of KITTI with a higher AP. This can be attributed to its
direct representation of the point cloud. It directly generates proposals from the point clouds instead
of projecting them to bird’s eye view or voxels. These models show promising results for dealing with
raw point clouds, encoding the point clouds that are missing little or no information.

5.2. Some Future Directions

From the application aspect, the models considering the spatial distribution, maintaining the
topological order of input points, and extracting both global and local hierarchical features achieve the
top performance. Based on those attributes contributing to a model with top performance, the further
designed model should have representation power, including the spatial distribution of the whole
point cloud, the topological order of input points, the global and local hierarchical features, and sparse
representation. For example, one can encode the point cloud fed into the 3D neural networks.
Despite much work having been done, compared with that of RGB images, the performances of
methods based on point cloud processing networks for 3D object classification, semantic segmentation,
and 3D object detection are still quite low. This difference due to the special inherent characteristics
of the point cloud, i.e., irregular and sparse. Thus, there is still much work to conduct. Some of the
aspects are stated in the following.

A promising solution is to address the raw point clouds with the ConvNets. Since ConvNets
has the advantage of overlapping during convolutional operation [115–117], it may benefit the future
architecture of deep learning models for the point cloud to take the characteristics, i.e., interaction
among points, into consideration. Usually, ConvNets are used to extract multi-scale semantic features.
Then, specific modules are designed for different applications. Taking semantic segmentation as
an example, multi-scale features fused with skipped connections are often employed to obtain high
performance, such as U-Net [31]. Recently, [118] designed a multi-resolution network for multi-scale
point cloud processing and reported a 3.4% increase in IoU.

Another promising direction is to develop the architectures of the deep learning models like those
in RGB images. There are many kinds of well-designed convolutional operations, such as residual
module in ResNet [29] to extend the depth of the neural networks without losing accuracy, inception
in GoogLeNet [27] to enlarge the width of the model with few parameters to be learned, and feature
pyramid networks (FPN) [119] to extract multi-scale features. Various kinds of loss functions are also
developed to train the models, such as focal loss [37] to balance the positive and negative examples
and pay attention to hard examples. Since these ideas boost the application of deep models, it may be
useful to design the models with the inherent characteristics of the raw point clouds in mind, such as
irregular, sparse, and disorderly. For example, one can incorporate the sparse representation into the
loss function to train the deep learning models for the point cloud.

Finally, zero-shot learning [115] is also an exciting topic for deep learning models directly
processing raw point clouds. After obtaining the feature maps, it uses a semantic embedding for
applications such as object detection. Moreover, it has the capability to recognize the unobserved
class in the trained dataset. Since PointNet and EdgeConv extract global and local features of the
point clouds, they can be used as feature extractors in zero-shot learning. It will facilitate learning the
weights with a scarce dataset, especially in point clouds.
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6. Conclusions

The recent existing feature learning approaches with the raw point clouds as input are classified
as point-based and tree-based approaches. This survey of point cloud deep learning has a rich
bibliographical content that can provide valuable insights on this important topic and encourage new
research. Firstly, deep feature learning methods for raw point clouds are classified and reviewed,
and the pros and cons of these methods are also analyzed. Secondly, the datasets and models with top
performance regarding the applications in 3D object classification, semantic segmentation, and 3D
object detection were investigated. Finally, some future directions, including model design based on
ConvNets, incorporation of the inherent characteristics of point clouds with the networks, and zero-shot
learning models after feature extraction by PointNet and EdgeConv, are proposed.
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