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ABSTRACT
The use of drug delivery systems (DDS) is an attractive
approach to facilitate uptake of therapeutic agents at the
desired site of action, particularly when free drug has poor
pharmacokinetics/biodistribution (PK/BD) or significant off-site
toxicities. Successful translation of DDS into the clinic is
dependent on a thorough understanding of the in vivo behavior
of the carrier, which has, for the most part, been an elusive goal.
This is, at least in part, due to significant differences in the

mechanisms controlling pharmacokinetics for classic drugs
and DDSs. In this review, we summarize the key physiologic
mechanisms controlling the in vivo behavior of DDS, compare
and contrast this with classic drugs, and describe engineering
strategies designed to improve DDS PK/BD. In addition, we
describe quantitative approaches that could be useful for
describing PK/BD of DDS, as well as critical steps between
tissue uptake and pharmacologic effect.

Introduction
Modern pharmacotherapy uses an expanded roster of

distinct classes of therapeutic, prophylactic, imaging, and
other agents ranging in size and complexity from diatomic
gases, oxygen, and nitric oxide to cellular fragments and cells
themselves—natural or modified chemically or genetically. In
between these extremes, therapeutics can be divided into
classic small drugs and biologicals or biotherapeutics, such as
proteins, nucleic acids, and other biomolecules.
Both small molecules and biologicals have issues with delivery

in the organism of a patient, from administration site to the
desirable site of action. Accordingly, diverse drug delivery
systems (DDS; liposomes, nanocarriers, affinity drug conju-
gates, and so on) are devised to enable or improve delivery
of some of these agents. In addition, in some cases, DDS
themselves have additional functions and even therapeutic
action. In this review, we highlight critical factors that affect
the behavior of DDS following injection into an organism.
The majority of the work discussed focuses on liposomes, as
these have been the most extensively studied DDS to date;
however, the critical parameters affecting in vivo behavior
are likely relevant to many types of DDS.

Each type of these agents—small drugs, biologicals, and
DDS—has advantages and challenges, some of which are
outlined in Table 1. Here, we attempt a comparative review of
the main parameters of their behavior in the body, which we
colloquially call pharmacokinetics (PK). PK is often defined
simply as “what the body does to the drug,” and is typically
described using four critical processes: absorption, distribu-
tion, metabolism, and elimination, or ADME. The interactions
between the drug molecule (or drug delivery system) and the
body control the relative rates and efficiencies of each of these
processes and body compartments involved.
Although these processes are well understood and described

for small-molecule drugs and for many protein therapeutics, a
thorough understanding of PK (and underlyingmechanisms) is
often lacking for DDS. This is likely due to several reasons,
including, but not limited to, assay limitations, interspecies
differences in processes controlling PK, and a smaller overall
body of work on PK of DDS, particularly in the clinic. In this
review, we discuss differences in ADME processes for small-
molecule drugs, protein biotherapeutics, and DDS. In addition,
the key features of DDS that can be tuned to modulate PK and
analysis of DDS PK are discussed in detail.

ADME Processes
One challenge in the characterization of the in vivo behavior

of DDS is the differences in mechanisms controlling PK and
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biodistribution compared with small-molecule drugs and bio-
logics. As the purpose of this review is not to provide a detailed
description of the ADME of small molecules and biologics but
rather to highlight their differences from DDS, only a brief
overview of mechanisms controlling their in vivo behavior is
provided (Fig. 1; Table 2).
Absorption. For drugs administered via an extravascular

route, the first barrier to reaching the site of action is absorption
into the bloodstream, which can be controlled by both
properties of the drug and the site of administration. For
small-molecule drugs, absorption most frequently occurs in

the gastrointestinal (GI) tract following oral administration.
In brief, following dosing, the dosage form must disintegrate
and the drug has to dissolve and permeate across the GI wall.
The rate and extent of this process can vary widely between
drugs, although predictions can often be made based on
physicochemical properties of the drug molecule (Palm et al.,
1997; Lipinski et al., 2001). It should be noted, however, that
interactions with transporters (Estudante et al., 2013) and
drug-metabolizing enzymes (Peters et al., 2016) in the GI
tract can significantly modulate the passive absorption pro-
file that would be predicted using molecular descriptors.

TABLE 1
Comparison of features of small-molecule drugs, biotherapeutic proteins, and multimolecular DDS

Small Molecules Proteins DDSs

Size ,5 kDa 10–300 kDa Above 1000 kDa
,1 nm 1–10 nm 10–1000 nm

Advantages Stability Multifunctional
Utility Precision High drug load
Low cost Catalytic power Controlled release
Quality control Natural activity Regulation of PK/BD
High purity Targeting Delivery of nucleic acids
Routes of administration Targeting

Challenges High cost As for proteins
Off-target effects Parenteral routes RES overload
Limited efficacy Immunologic issues Host defense reactions
Limited mechanisms Precise delivery needed Biologic barriers

Fig. 1. Mechanisms controlling the behavior of small-molecule drugs (left), protein therapeutics (center), and drug delivery systems (right) in blood (top)
and in eliminating organs (bottom). FcRn, neonatal Fc receptor.
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On the other hand, in general, biologics are poorly absorbed
following oral absorption, and as such, are often administered
intravenously; however, subcutaneous dosing of protein ther-
apeutics has become more popular in recent years. Absorption
from this space is generally a slow process (hours to days)
due to the pathway through the lymphatic system that most
proteins follow after subcutaneous dosing (Supersaxo et al.,
1990; Bittner et al., 2018). Although determinants of the
efficiency of subcutaneous administration for protein thera-
peutics are not as well understood as oral absorption of small
molecules, it is appreciated that molecular properties of the
protein (e.g., size, charge), affinity for the neonatal Fc receptor
(Deng et al., 2012; Zheng et al., 2012; Richter et al., 2018), and
addition of absorption enhancers to the formulation (e.g.,
buffer components, hyaluronidase) can impact bioavailability
(Fathallah et al., 2015; Bittner et al., 2018).
Finally, for DDS, absorption is not typically a process that is

considered, as the efficiency of uptake into the systemic
circulation after extravascular delivery is very low. There have
been many preclinical investigations of oral delivery of nano-
particles; however, absorption is often low due to poor perme-
ation across the GIwall. Following extravascular injection (e.g.,
subcutaneous or intramuscular) of DDS, bioavailability would
likely be very low due to efficient uptake by resident immune
cells in the lymph nodes collecting fluid draining from the
injection site; however, this may be an efficient route of
administration for local delivery (Kaledin et al., 1982).
Distribution. Following entry into the systemic circula-

tion, the movement of drugs between blood and tissues is a
critical factor controlling the efficacy and toxicities associated
with therapy. As with absorption, distribution varies widely
between drug classes both in kinetics and in mechanism. The
distribution of small-molecule drugs, in particular, may range
from being confined to the plasma space to being distributed
throughout the entire body. This variability can, in part, be
described using molecular descriptors and binding to
plasma proteins (Poulin and Theil, 2002a,b). Distribution
of small-molecule drugs can be modulated by interactions
with uptake and/or efflux transporters expressed in certain
tissues (Giacomini et al., 2010).
The efficiency of distribution of protein therapeutics into

tissues is highly dependent on the molecular weight of the
protein, with smaller proteins entering tissues more effi-
ciently than larger proteins, due to enhanced diffusion and
improved permeation through paracellular pores (convective
uptake) (Sarin, 2010). Additionally, tissue uptake can be
increased via receptor-mediated transcytosis for proteins
with high affinity for receptors such as the transferrin
receptor (Friden et al., 1991; Pardridge et al., 1991).

As most DDS are much larger than typical pores between
endothelial cells, distribution is often limited to thevascular space
(Allen et al., 1989) in the absence of specific pathologies or affinity
for receptors. However, in tissues with larger endothelial pores
(e.g., fenestrations in liver and spleen), tissue uptake via bulk
fluid flow (convection) may be favorable. In a similar manner to
biologics, DDS with affinity for receptors that undergo trans-
cytosis may have enhanced tissue uptake at sites of target
expression (Cerletti et al., 2000; Hatakeyama et al., 2004).
Metabolism/Elimination. As with the previous processes,

elimination of drugs from the system occurs via different
mechanisms and at different rates for various types ofmolecules.
For smallmolecules, there are two primary routes of elimination.
Renal clearance is controlled by the relative efficiencies of
glomerular filtration, active secretion into the urine, and reab-
sorption (active and passive) from the tubules (Dave andMorris,
2015). Metabolic clearance, occurring primarily in the liver for
most drugs, is dependent on recognition of the drugmolecule by a
drug-metabolizing enzyme (e.g., cytochrome P450). Following
metabolism, the metabolite can be further metabolized, cleared
via the bile ducts into the feces, or eliminated in the urine.
For peptides and small-protein therapeutics, renal clearance

may be significant when molecular mass is smaller than the
glomerular filtration threshold (∼60 kDa). However, for pro-
teins that are not eliminated in the urine, catabolic breakdown
can occur throughout the body, typically following uptake into
the endo-lysosomal pathway. The efficiency of this breakdown
can be enhanced if a protein with high affinity for an
internalizing receptor is taken up via receptor-mediated
endocytosis in a process often referred to as target-
mediated drug disposition (TMDD) (Levy, 1994; Mager and
Jusko, 2001a). For proteins containing an Fc region [e.g.,
monoclonal antibodies (mAbs) and Fc fusion proteins],
elimination may be blunted via interactions with the neo-
natal Fc receptor, which protects IgG and albumin from
degradation, allowing them to have long circulating half-
lives (∼3 weeks in humans) (Ghetie et al., 1996; Israel et al.,
1996; Junghans and Anderson, 1996).
For drug delivery systems, the primary route of elimination

is via tissues of the reticuloendothelial system (RES), such
as the liver, spleen, bone marrow, and lung. These tissues
contain large amounts of phagocytic cells (e.g., macrophages)
that recognize nanoparticles as foreign bodies and efficiently
remove them from the circulation. The efficiency of this
pathway can be enhanced by opsonization of the nanoparticle
by serum proteins (e.g., immunoglobulins and complement
proteins), which cause more efficient recognition by phago-
cytes (Devine and Marjan, 1997). On the contrary, this
clearance mechanism can be slowed by enhancing the

TABLE 2
Comparison of mechanisms controlling pharmacokinetic processes

Drug Class Absorption Distribution Metabolism/Elimination

Small molecules Gut wall permeability Plasma protein binding Renal filtration
Active transport Diffusion Active transport
Drug metabolism Active transport Drug metabolism

Biologics Renal filtration
Lymph flow Diffusion Intracellular catabolism
FcRn binding Bulk fluid flow Target-mediated clearance

Nanoparticles N/A Bulk fluid flow Reticuloendothelial system
Target-mediated clearance

FcRn, neonatal Fc receptor; N/A, not applicable.
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“stealthiness” of nanoparticles via approaches such as conju-
gation of polyethylene glycol (PEG) (Klibanov et al., 1990) (see
DDS Design Parameters). Similar to targeted protein thera-
peutics, specific interactions with the receptors (TMDD) can
be a significant route of elimination for targeted DDS.

Physiologic Factors Affecting DDS
Pharmacokinetics

Tomechanistically describe the in vivo behavior of anydrug (or
drug carrier), understanding how physiology may control dispo-
sition is critical. In this section, we provide a high-level overview
of physiologic processes that contribute to the ADME of DDS.
Cardiovascular System. Following systemic injection,

drugs are immediately present in the bloodstream. While
often described as a simple, well mixed space in quantitative
representations of pharmacokinetics, the cardiovascular sys-
tem is, in reality, a dynamic space that significantly impacts
PK. Almost immediately following injection, nanomaterials
are typically coated with a layer of plasma proteins in a
process referred to as opsonization, or protein corona forma-
tion. While the exact determinant of the protein corona is
highly complex, and likely specific to a given nanoparticle,
species, and individual, it typically will include complement
proteins and immunoglobulins, which lead to more efficient
elimination of the particle by immune cells (Devine and
Marjan, 1997; Yan et al., 2005).
In addition to the coating of nanoparticles by proteins, there

is the potential for dynamic interactions between particles and
blood cells (e.g., erythrocytes, platelets, leukocytes). Although
this is not an area that has been studied extensively, flow
cytometry has been used to demonstrate rapid association of
liposomes with erythrocytes and platelets in mice following
intravenous injection (Constantinescu et al., 2003).
DDSs aggregation (or initially large size, usually.200–300 nm)

leads to rapid mechanical and charge-mediated entrapment in
the microvasculature and clearing compartments. This may
either impede delivery (Shuvaev et al., 2011b) or enable rather
fortuitous accumulation in the vasculature of organs of interest
(Myerson et al., 2016).
Reticuloendothelial System. Since the earliest studies

of the in vivo disposition of liposomes, it has been appreciated
that injected particles are rapidly taken up by the liver
(Gregoriadis and Ryman, 1971, 1972). The mechanism for
this efficient clearance pathway in liver and other tissues of
the RES (e.g., spleen, bone marrow, lung) is via phagocytic
uptake of particles by cells accessible from the vascular space
(e.g., hepatic Kupffer cells). This clearance pathway is satu-
rable at doses of 0.1–10 mg of lipid, and saturation of the
primary RES organs by increasing doses of liposomes has been
shown to lead to decreased uptake in liver and shifting uptake
to spleen (lower doses) and lung (higher doses) (Abra and
Hunt, 1981; Souhami et al., 1981). In fact, preblocking of the
RESwith empty liposomes has been investigated as a strategy
to improve circulation time (Ellens et al., 1982; Dave and
Patel, 1986) and enhance uptake in target tissues (Sun et al.,
2017; Liu et al., 2018). Additionally, Chow et al. (1989) have
demonstrated that the saturability of the RES not only leads
to redistribution to other tissues, but also allows for altered
distribution within the liver, shifting uptake from Kupffer
cells to hepatocytes.

Target Epitope Properties. Uptake of DDS at the de-
sired site is often obtained via either active targeting or taking
advantage of pathologic alterations in the target tissue that
lead to advantageous distribution in the site of injury. For
example, in conditions such as inflammation and solid tumors,
vascular leakiness is increased, which may lead to improved
uptake into target tissues via bulk fluid flow. In the case of
solid tumors, many studies have used this enhanced perme-
ability and retention effect in mouse models to obtain delivery
of drug into the tumor (Maeda et al., 2013); however, it should
be noted that themagnitude of the enhanced permeability and
retention effect is likely highly variable and may not exist in
all tumors (Wilhelm et al., 2016).
In the case of active targeting, selection of the target epitope

can be critical in obtaining optimal delivery to the desired site.
While many targets are selectively upregulated in patholo-
gies, expression is still likely to occur in healthy tissues. The
relative target expression in diseased and healthy tissues is a
critical parameter that defines drug targeting (Scherpereel
et al., 2002; Shuvaev et al., 2011b).
Additionally, a critical parameter in active targeting is the

accessibility of the target, as thiswill lead to drastically different
concentrations of targeting ligand available to interact with the
target. For example, for a target expressed constitutively on the
surface of the vascular endothelium, the entire concentration of
the affinity ligand in the bloodstream will be able to bind;
however, if the target is located at an extravascular site, then
the relevant concentration will be that which has extrava-
sated into the tissue. This concentration will likely be folds
lower than the concentration within the bloodstream due to
generally poor uptake of particles into tissues, and the
limiting step in targeting may be tissue uptake rather than
target binding (Chacko et al., 2011; Howard et al., 2014).
Finally, following binding of DDS to target molecules, it is

possible that the DDS-target complex will be internalized. In
some cases, the features of DDS induce internalization even
though the DDS is anchored on a cellular receptor normally not
involved in internalization (Muzykantov, 2013; Han et al., 2015).
In general, internalization of DDS is desirable, as most DDS
release drugs within the endo-lysosomal space. However, for
chronic administration of DDS, internalization of the complex
may lead to reduced target available on subsequent doses, leading
to diminished targeting and efficacy on later doses. Although not
demonstrated to date for nanomedicines, this principle has
previously been shown for mAbs (Meijer et al., 2002).

DDS Design Parameters
To reach the desired site of action, DDS must evade major

clearance mechanisms (e.g., RES uptake) and bypass distri-
butional barriers to reach the desired site of action. The use of
DDS dates back nearly 50 years to early publications using
liposomes as delivery vehicles (Gregoriadis et al., 1971). Over
this nearly half-century, a myriad of approaches has been
proposed to modulate the in vivo behavior of DDS, with
varying degrees of success. In this section, we highlight some
of themost commonly studied strategies for the design of DDS,
mainly focusing on liposomes as a model DDS.
“Classic” Design Parameters. From the early days of

liposome research, it has been appreciated that modulating
the liposome properties can lead to alterations in blood
clearance (Juliano and Stamp, 1975). One parameter that

PK/PD Properties of Drug Delivery Systems 573



has been studied in detail for liposomes is the effect of size. Liu
et al. (1992) performed a detailed characterization of the PK
and biodistribution of liposomes and found that maximal
blood concentrations and minimal liver concentrations were
observed for liposomes in the size range of 100–200 nm. This
“sweet spot” of liposome size has been hypothesized to be due
to efficient extravasation of small (diameter ,100 nm) lipo-
somes in the liver, allowing for hepatocyte uptake, and rapid
clearance of large (diameter ∼500 nm) liposomes by Kupffer
cells and splenic macrophages (Rahman et al., 1982). In
addition to size, the impact of liposome charge has also
received a great deal of investigation for its impacts on PK
and distribution. In their early work, Juliano and Stamp
(1975) observed that cationic liposomes were cleared more
rapidly than anionic or neutral liposomes. Litzinger et al.
(1996) demonstrated that cationic liposomes were rapidly
taken up in the liver [60% injected dose (ID) at 5 minutes],
mainly in Kupffer cells. However, much like with size, it has
been hypothesized that there is a “sweet spot” for cationic
charge. In rats, it was shown that liposomes with a zeta
potential of ∼15 mV had enhanced PK relative to those with
zeta potentials of25 to110 mV and.125 mV. These results
were hypothesized to be due to balanced electrostatic interac-
tions with erythrocytes (favoring circulation) andKupffer cells
(favoring clearance) (Aoki et al., 1997).
Due to the observation that liposomes were primarily cleared

by cells of the innate immune system, several approaches were
put forward to create “stealth” liposomes with natural abilities
to evadeuptake byphagocytic cells. An earlymethodproposed to
extend liposome circulation was to mimic the outer surface of
a naturally long-circulating particle, erythrocytes, by includ-
ing sphingomyelin and ganglioside (GM1) in the liposome. This
approach led to large increases in blood and tumor uptake,
with significant decreases in RES clearance (Gabizon and
Papahadjopoulos, 1988; Allen et al., 1989).
In the early 1990s, multiple groups observed that modifying

lipids with PEG provided similar evasion of RES clearance
and extended circulation time (Klibanov et al., 1990; Allen
et al., 1991). This approach, termed PEGylation, was used in
the development of the first approved liposomal product,
liposomal doxorubicin (Doxil). However, it has been observed
that following repeated injections of PEGylated liposomes,
clearance and RES uptake were significantly increased
(Dams et al., 2000), which was shown to be due to formation
of an antibody response against PEG (Ishida et al., 2006;
Wang et al., 2007).
“Modern” Design Parameters. In recent years, as the

field has gained tighter control over the ability to reproducibly
manipulate nanomaterials, more intricate design features
have been used to alter the pharmacokinetics of DDS. Within
the last 15 years, there have been several investigations of the
impact of nanoparticle shape on biodistribution and pharma-
cokinetics, dating to the observation that long, worm-like
filomicelles have extended circulation time relative to spherical
carriers (Geng et al., 2007; Shuvaev et al., 2011a). Similarly, it
has been shown for mesoporous silica nanoparticles (Huang
et al., 2011) and for gold nanoparticles (Arnida et al., 2011) that
an extended (rod-like) configuration leads to extended blood
circulation and reduced RES uptake. For filomicelles, it was
suggested that their hydrodynamic properties allowed them to
better align with blood flow and remain in circulation (Geng
et al., 2007). While not exhaustive, these examples highlight

the potential for engineering of nanoparticle shape to modulate
interactions with clearance organs and prolong circulation.
With increasing interest in polymeric nanoparticles,

there has been an increased ability to tune not only size
and shape but also mechanical properties, creating “soft”
and “hard” nanoparticles. Anselmo et al. (2015) used poly-
meric hydrogels to demonstrate that increased nanoparticle
flexibility led to extended circulation time in mice and
decreased uptake in several types of cells (macrophage,
endothelial, tumor). Similarly, Guo et al. (2018) showed that
by tuning the elasticity of nanolipogels, uptake into tumor and
RES organs could be controlled. Our group has also demon-
strated that lysozyme-dextran nanogels were highly deform-
able and allowed for targeting of caveolar targets that were
otherwise inaccessible to rigid particles of a similar size
(Myerson et al., 2018), demonstrating the impact that particle
flexibility could have not only on pharmacokinetics but also on
active targeting.
Targeted DDS Design Parameters. Instead of merely

relying on passive uptake to guide delivery of DDS to their
intended sites, active targeting using mAbs, antibody frag-
ments, peptides, and small molecules has been extensively
studied. By coating the surface of a particle with a targeting
ligand, very high affinity and avidity for target epitopes can be
achieved. It is possible that by modulating targeting ligand
properties, the degree of uptake in the desired site of action
can be controlled.
Themost straightforward approach tomodulating targeting

properties would be to modify the density of targeting ligand
coating on the nanoparticle. In the simplest scenario, it would
be expected that by maximizing coating density, targeting to
the desired site would be enhanced, which does appear to hold
true in certain cases (Calderon et al., 2011). However, in-
creased targeting ligand density could also lead to delivery to
less desirable (e.g., off-target) sites or reduced sensitivity to
changes in target expression (Zern et al., 2013).
Additionally, in the specific scenario where receptor-

mediated transcytosis is the desired outcome, high-avidity
nanoparticles have been shown to have reduced transcytosis
due to poor release from the endothelial surface following
exocytosis (Wiley et al., 2013). In general, caution should be
applied when tuning nanoparticle avidity, and in vivo exper-
iments to assess the impact of changes in avidity on targeting
should be performed.
When selecting targeting ligands, the potential impact of

the properties of the ligand on pharmacokinetics and biodis-
tribution should also be considered. Classically, mAbs have
been used to target nanoparticles, but with recent advances in
molecular biology, the ability to make antibody fragments
(e.g., frament antigen binding (Fab), single-chain variable
fragment etc.) that can be conjugated to the surface of parti-
cles is enhanced. By coupling full-length mAbs to the surface
of nanoparticles, the potential for significant exposure of Fc
fragments is present, potentially leading to increased
immune-mediated clearance (Koning et al., 2001). The clear-
ance of liposomes displaying a high density of Fc fragments
was inhibited in mice by injection of an anti-Fc receptor mAb,
demonstrating the potential role of Fc receptor in the PK of
immunoliposomes (Aragnol and Leserman, 1986). By using
antibody fragments that do not contain an Fc fragment,
enhanced delivery of nanoparticle cargo to tumor was
obtained in lymphoma (Cheng and Allen, 2008) and breast
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cancer (Duan et al., 2018) models, which was hypothesized
to be due to decreased Fc-dependent clearance.

Design of In Vivo Studies
Quantitatively accurate, objective, and methodologically

reliable characterization of carrier behavior in vivo [both
PK and biodistribution (BD)] is necessary. Nonspecific
PK/BD influences DDS in many ways and may ultimately
override a proposed targeting mechanism. Without knowl-
edge of PK/pharmacodynamics (PD), data obtained from
animal models are of limited translation value, as lack of
knowledge of these parameters may lead to erroneous
interpretation of the mechanism(s) of delivery and effect.
Therefore, it is critical to define the relative contributions
of the designed targeting mechanism and other factors in
delivery and effects of DDS.
Interaction with components of the blood may lead to

uptake by blood cells, aggregation, opsonization, degrada-
tion, or other alterations to DDS, which may alter PK/PD
differentially in normal versus diseased organisms. Addi-
tionally, drugs and biologically active components of the DDS
may affect PK/PD. To account for all of these scenarios, the
following formulations should be tested in vivo:

1. targeted versus untargeted (coated by inactive ligand)
carriers; pristine characters are not a proper compar-
ison group, as they may have different size, charge, and
surface properties;

2. naïve animals versus animal model(s) of disease; and
3. empty versus drug-loaded DDS.

Available methodologies to study PK vary, and no single
method is sufficient to address all potential questions related
to in vivo behavior. By tracing DDS labeled with optical
probes, localization within the tissue at the microscopic level
at postmortem andmacroscopically in real time in sufficiently
transparent sites is feasible (Pollinger et al., 2013). However,
optical methods are subjective, relatively low throughput, and
difficult to analyze quantitatively.
The use of molecular imaging approaches, such as positron

emission tomography, single-photon emission computed to-
mography, and magnetic resonance imaging, is insufficient to
analyze subtissue localization, but these clinically useful
technologies allow for real-time imaging of isotope-labeled
components of DDS (Danilov et al., 1989; Rossin et al., 2008;
Brinkhuis et al., 2012; Zern et al., 2013) at a macroscopic
level, with the ability for quantitative approximation of the
intensity of a signal from a region of interest (partially
subjective).
Labeling of a DDS may alter PK/PD features and lead to

artifacts due to dissociation of the labeled component from the
DDS. To mitigate this, ideally, both the drug cargo and carrier
(but not targeting moiety) should be stably traced by conju-
gated labels (Simone et al., 2012). Direct measurement of the
isotope level in drawn blood samples and tissue specimens
postmortem is arguably the most reliable approach for PK
studies (Danilov et al., 1991; Muzykantov et al., 1991, 1996,
1999; Shuvaev et al., 2011a; Pan et al., 2013). It allows for
accurate, quantitative analysis of key parameters of PK,
targeting, and biodistribution, including percentage of ID
(%ID) in tissues, localization ratio (or ratio of %ID per gram of
tissue to that in blood), and immunospecificity index (or ratio of

localization ratio for targeted versus untargeted formulations)
(Muzykantov et al., 1995, 1996).
It is critical that PK/BD data be normalized to the injected

dose of DDS. Using the concentration in the first blood draw
because 100%ID is not acceptable, a significant fraction of
DDS may be eliminated within seconds. This can lead to
artifacts in blood and tissue concentrations when analyzing
PK/BD data (Fig. 2).
A useful approach to increase the throughput of PK/BD

studies would be to inject in the same animal a mixture of
both targeted and untargeted formulations labeled by differ-
ent isotopes. This can help to minimize individual variability
and significantly reduce efforts. However, caution should be
taken to not administer a cumulative dose of DDS that would
lead to saturation of nonspecific clearance processes (e.g.,
RES uptake).

Quantitative Descriptions of DDS
Pharmacokinetic

“Nonmechanistic” Approaches. For simple comparison
of thebloodkinetics ofDDS formulations, simple, nonmechanism-
based approaches are often sufficient. The simplest of these,
termed noncompartmental analysis, simply utilizes values that
can be extracted from the concentration versus time curve to
characterize the PK of drugs (Fig. 3A). Common parameters
that are obtained from noncompartmental analysis include
the terminal half-life (t1/2), volume of distribution (Vss, Vd),
clearance, area under the curve, and mean residence time.
This approach is useful for obtaining estimates of parameters
related to drug exposure and distribution. To obtain a
further description of the concentration versus time curve,
simple mammillary models can be used (Fig. 3B). In brief,
these models link compartments representing volumes in
rapid and slow equilibrium with the blood stream via
distributional clearance terms (CLD) and assume all elim-
ination occurs from the central compartment (in rapid
equilibrium with blood). These models can be used with
either linear or nonlinear (saturable) clearance kinetics.
While there have been many models proposed for lipo-
somes, many of them are used to describe the kinetics of the
loaded and free cargo as opposed to the particle (Harashima
et al., 1999; Hempel et al., 2003; Fetterly et al., 2008).
However, there are several examples of models proposed to
describe the PK of the particle in rodents (Kume et al.,
1991; Palatini et al., 1991; Decker et al., 2013), suggesting
the potential utility of simple, mammillary models in
describing the PK of DDS.
Mechanism-Based Modeling. To make meaningful ex-

trapolations from modeling analyses, some degree of mecha-
nism should be included in the model. Simple TMDD models
developed via inclusion of parameters related to target bind-
ing, expression, and turnover in a mammillary model struc-
ture are a common approach used to describe nonlinear PK of
targeted therapeutics (e.g., mAbs) (Mager and Jusko, 2001a).
To date, there have been no descriptions of the use of TMDD
models for DDS in a mammillary model; however, with the
large number of studies of targeted liposomes, this model
structure could potentially be useful for those seeking to
characterize target-specific parameters without needing to
build a physiologically based model.
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Amore elegant, and possibly predictive, approach to describe
the in vivo behavior of DDS would be to build pharmacokinetic
models including somedegree of physiologic relevance.One such
example, semiphysiologically pharmacokineticmodeling, adds a
tissue of interest onto amammillarymodel (Fig. 3B). This tissue
is described using physiologically relevant volumes and flow
rates and is used to describe the tissue concentration versus
time profile of a drug. This approach was used previously to
describe the blood, liver, and tumorPKof radiolabeled liposomes
detected by positron emission tomography imaging (Qin et al.,
2010) and more recently to describe the processes controlling
tumor exposure to nanoparticle-encapsulated drugs (Benchimol
et al., 2019). In addition, we recently used a semiphysiologic
model to describe the pharmacokinetics of vascular-targeted
nanocarriers in a mouse model of acute respiratory distress
syndrome. Using this model, we were able to predict the
heterogeneous distribution of nanocarriers across the lung
and support experimental hypotheses regarding the mecha-
nisms controlling lung distribution (Brenner et al., 2017).
The “gold standard” for prediction of drug behavior in an

in vivo setting is the full physiologically based pharmacokinetic
(PBPK) model, which has been widely applied both for small
molecules (Jones et al., 2015; Sager et al., 2015) and for biologics
(Wong and Chow, 2017; Glassman and Balthasar, 2019). In
brief, these models include all tissues of the body and are
parameterized with physiologically relevant values (e.g., blood
flow, tissue volume, receptor expression, etc.). To date, there
have been several reviews describing the potential utility of
PBPK in nanomedicine; however, there are relatively few

examples of applications of this approach (Li et al., 2010,
2017; Yang et al., 2010; Moss and Siccardi, 2014; Yuan et al.,
2019). Kagan et al. (2014) were among the first to demonstrate
the use of PBPK for DDS. In their paper, they considered the
blood and tissue PK of AmBisome (liposomal amphotericin) in
mice, rats, and humans and ultimately used their model to
predict the clinical PK of AmBisome over a multiple-dosing
regimen. Key features of their model included 1) dual-level
modeling of encapsulated and released drug, 2) consideration
of saturable uptake by phagocytic cells of the RES, and 3)
interspecies scaling to predict the clinical behavior of liposomal
drug (Kagan et al., 2014). More recently, Carlander et al. (2016)
proposed an extension to themodel developed by Li et al. (2014)
for PEGylated polyacrylamidenanoparticles to consider several
types of nanomaterials (polyacrylamide, gold, TiO2). In this
model, the authors considered saturable uptake by phagocytic
cells in all tissues of the body, potentially providing a platform
that could be used to describe the redistribution of nanoparticles
from the liver and spleen at doses that would saturate RES
clearance (Carlander et al., 2016). Further development of PBPK
models incorporating critical determinants of DDS disposition
would be desirable for prediction of the behavior of DDS in
pathologies or for optimization of dosing regimens.

Pharmacodynamics of DDS
Beyond merely understanding what the body does to the

DDS (e.g., pharmacokinetics), it is just as important to charac-
terizewhat theDDSdoes to the body (e.g., pharmacodynamics).

Fig. 2. Apparent pharmacokinetics for a theoretical DDS with a terminal half-life of 6 hours when normalizing to injected dose (blue) and blood
concentration 1 (orange), 5 (gray), or 10 (yellow) minutes postinjection for a DDS with 50% of injected dose eliminated in 1 (A), 5 (B), 10 (C), or 30 (D)
minutes.
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This is generally a less well understood process; however, by
delineating the key steps required to move from uptake into
tissues to therapeutic effect, one can gain an appreciation for
the complexity of the underlying mechanisms and potentially
gain insights into the kinetics of each individual step (Fig. 4).
Following uptake into the tissue of interest, the journey of a

DDS (and its cargo) is not complete. Although merely un-
derstanding total tissue concentrations, or concentrations in a
pathologically altered region of tissue, may be sufficient to
generate a dose-response relationship, the pharmacologically
relevant concentration is likely to be within a subset of that
space. For most DDS, the site of action is within the in-
tracellular space of a target cell (e.g., tumor cell). Therefore,
following extravasation into the target tissue, the first critical
processes are binding to (generally rapid for highly avid
particles) and internalization by target cells (dependent on
target epitope). For the therapeutic payload (cargo) to reach
its intracellular destination, release of drug should occur from
the DDS within the endo-lysosomal route, often via break-
down of the particle, allowing the payload to diffuse to its
target organelle and elicit a pharmacologic effect.
From this simplified schematic of DDS processing and drug

release, it becomes apparent that a critical step in the
pharmacodynamics of drugs loaded into DDS is the release

from the particle. For most delivery systems, drug release is
optimally slow in the circulation and rapid inside of target
cells. In general, burst release from the particle within the
endo-lysosomal space is ideal for molecules that are stable
within this harsh environment, whereas for macromolecules
(e.g., proteins and nucleic acids), release into the cytoplasm
would be desirable.
To tune release within intracellular compartments, several

strategies have been proposed, including 1) incorporation of
pH-sensitive lipids into the bilayer, which destabilize the
liposome at acidic pH and/or induce fusion with the endosomal
membrane (Connor andHuang, 1985, 1986; Straubinger et al.,
1985); 2) incorporation of endosomal escape peptides (Parente
et al., 1988; Mandal and Lee, 2002; Kakimoto et al., 2009) or
lipids (Du et al., 2014; Sabnis et al., 2018) into the nanoparticle
to facilitate cytoplasmic release; or 3) reliance on natural
breakdown of the liposome in the harsh lysosomal environ-
ment. Each of these methods may provide different kinetics
and efficiencies of release of therapeutic payload into the
cell, potentially leading to differential kinetics of pharmaco-
logic effect.
In general, these transduction steps between delivery to

target cells and pharmacologic effect are hidden away in a
“black box” due to poor understanding of the kinetics of each

Fig. 3. Pharmacokinetic data analysis. (A) Sample concentration versus time curve showing calculations for select parameters derived using
noncompartmental analysis. (B) Pharmacokinetic model structure for a simple two-compartment mammillary model (gray) and a semiphysiologic (blue
+ gray) model. AUC, area under the curve; CL, clearance.
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individual step. With this level of knowledge, the best-case
scenario for describing pharmacodynamics would be to link
an estimated total or receptor-bound target tissue concen-
tration to a therapeutic outcome using a signal transduction
model (Sun and Jusko, 1998; Mager and Jusko, 2001b; Lobo
and Balthasar, 2002). However, to open this “black box” of
transduction compartments, recent developments in cellu-
lar pharmacokinetic/pharmacodynamic models could be
repurposed in nanomedicine, leveraging in vitro cellular
processing data to predict in vivo effects following receptor
binding. In particular, models developed for antibody-drug
conjugates could be of particular utility, as they consider
similar processes as would be required for nanoparticle-
based DDS (Cilliers et al., 2016; Singh et al., 2016; Singh and
Shah, 2017).

Conclusions
Successful use of drug delivery systems in clinical medicine

has been hampered by poor understanding of the mechanisms
controlling pharmacokinetics and biodistribution, as well as
the kinetics of each of these processes. In this review, we
provided an overview of critical differences in ADME process-
es for small-molecule drugs, protein therapeutics, and DDS,
focusing on the physiologic mechanisms relevant for DDS. By
understanding the interplay between the organism and the
DDS, engineering strategies can be applied to the drug carrier
to modulate the efficiency of various ADME processes. Well
designed PK/BD studies for DDS coupled with quantitative
approaches for describing PK can be useful in predicting the
pharmacologic effect (pharmacodynamics) and ultimately
allow for the design of better drug delivery systems.
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