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Neurobiology of Disease

Risperidone Ameliorates Prefrontal Cortex Neural Atrophy
and Oxidative/Nitrosative Stress in Brain and Peripheral
Blood of Rats with Neonatal Ventral Hippocampus Lesion
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Reduction of the dendritic arbor length and the lack of dendritic spines in the pyramidal cells of the prefrontal cortex (PFC) are prevalent
pathological features in schizophrenia (SZ). Neonatal ventral hippocampus lesion (NVHL) in male rats reproduces these neuronal
characteristics and here we describe how this is a consequence of BDNF/TrkB pathway disruption. Moreover, COX-2 proinflammatory
state, as well as Nrf-2 antioxidant impairment, triggers oxidative/nitrosative stress, which also contributes to dendritic spine impair-
ments in the PFC. Interestingly, oxidative/nitrosative stress was also detected in the periphery of NVHL animals. Furthermore, risperi-
done treatment had a neurotrophic effect on the PFC and antioxidant effects on the brain and periphery of NVHL animals; these cellular
effects were related to behavioral improvement. Our data highlight the link between brain development and immune response, as well as
several other factors to understand mechanisms related to the pathophysiology of SZ.
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Prefrontal cortex dysfunction in schizophrenia can be a consequence of morphological abnormalities and oxidative/nitrosative stress,
among others. Here, we detailed how impaired plasticity-related pathways and oxidative/nitrosative stress are part of the dendritic spine
pathology and their modulation by atypical antipsychotic risperidone treatment in rats with neonatal ventral hippocampus lesion.
Moreover, we found that animals with neonatal ventral hippocampus lesion had oxidative/nitrosative stress in the brain as well as in the
peripheral blood, an important issue for the translational approaches of this model. Then, risperidone restored plasticity and reduced
oxidative/nitrosative stress of prefrontal cortex pyramidal cells, and ultimately improved the behavior of lesioned animals. Moreover,
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risperidone had differential effects than the brain on peripheral blood oxidative/nitrosative stress.
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Introduction
In 1972 Frederick Plum referred to schizophrenia (SZ) as “the
graveyard of the neuropathologists”, because of the lack of deter-
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minant pathophysiological data (Plum, 1972). More than 4 de-
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clarify it. Interestingly, the reduction of the dendritic arbor length
and the lack of dendritic spines in the pyramidal cells of the
prefrontal cortex (PFC) are prevalent pathological features
(Garey et al., 1998; Glantz and Lewis, 2000; Konopaske et al.,
2018). Many studies in SZ focus on the PFC because of its relation
to cognitive functions that allow the individuals an adequate per-
ception of the reality and a proper behavioral response. Because
dendrites and dendritic spines are the main sites for excitatory
synapses in the brain (Harris and Kater, 1994), their reduction
alters PFC function in SZ, triggering various characteristic symp-
toms: psychosis, hallucinations, and anhedonia (Glausier and
Lewis, 2013). It has been proposed that excessive synaptic prun-
ing is the cause of the dendrites and spines lost in SZ and recent
studies show that this could be a microglia-mediated phenome-
non, due to complement activity or phagocytosis (Sekar et al.,
20165 Sellgren et al., 2019). The aforementioned highlights the
immune system as a potential link between early life insults in
brain development and their late consequences, which finally
onsets the disease (neurodevelopmental hypothesis of SZ; Wein-
berger, 1987; Potkin et al., 2009).

High levels of proinflammatory cytokines and immune mark-
ers, as well as an unbalanced inflammatory response in the pe-
ripheral blood of patients, have been detected (Garcia-Bueno et
al., 2014a,b; Leza et al., 2015; Dickerson et al., 2016). Also, post-
mortem studies have shown oxidative/nitrosative stress in the
PFC (Andreazza et al., 2010, 2013; Garcia-Bueno et al., 2016).
Thus inflammation and oxidative/nitrosative stress also are im-
plicated in the pathophysiology of SZ.

The neonatal ventral hippocampus lesion (NVHL) in the rat is
an useful animal model to study some mechanisms involved in
the pathophysiology of SZ (Tseng et al., 2009). Adult NVHL an-
imals have dendritic arbor and spine pathology (Flores et al.,
2005; Ryan et al., 2013; Tendilla-Beltran et al., 2019), as well as
oxidative/nitrosative stress in the PFC (Cabungcal et al., 2014).
These cellular impairments result in various behavioral SZ-
related abnormalities such as hyperlocomotion after exposure to
dopaminergic agonists or a novel environment (Lipska et al,
1993; Flores et al., 1996; Alquicer et al., 2004), altered sensory
gating (Le Pen et al., 2003; McDannald et al., 2011; Vazquez-
Roque et al., 2012), and social isolation (Le Pen et al., 2000;
Alquicer et al., 2008; Vazquez-Roque et al., 2012). Additionally,
some of these brain and behavioral alterations can be reversed by
antipsychotics (Sams-Dodd et al., 1997; Rueter et al., 2004; Brin-
gas et al,, 2012; Castellano et al., 2013).

Risperidone (RISP) is an atypical antipsychotic widely used in
SZ therapy. In addition to its canonical antipsychotic pharmaco-
logical mechanism (dopamine D2 and serotonin 5-HT2A recep-
tor antagonism; Kuroki et al., 2008), there is evidence that RISP
modulates the inflammatory response. In vitro protocols have
demonstrated that RISP treatment increases the levels of anti-
inflammatory cytokines and reduces proinflammatory cytokines
(Al-Amin et al., 2013; Brinholi et al., 2016). This effect has also
been reported in patients, and also this substance decreases oxi-
dative/nitrosative stress (Noto et al., 2014; Juncal-Ruiz et al,,
2018). Even in an animal model of neuroinflammation, RISP was
capable of reducing both inflammatory mediators and oxidative/
nitrosative stress in the PFC (MacDowell et al., 2013).

In this study, we aim to determine the effects of RISP treat-
ment on rats subjected to the SZ-like experimental model: the
NVHL. For this purpose, we evaluated neuronal morphology and
dendritic spine dynamics in the PFC. Furthermore, we studied
inflammatory parameters and oxidative/nitrosative stress in the

J. Neurosci., October 23,2019 - 39(43):8584 — 8599 « 8585

brain and peripheral blood. Finally, we also explored possible
behavioral effects of RISP in rats with NVHL.

Materials and Methods

Animals

Pregnant Sprague-Dawley dams (n = 10) with 14-16 gestational days
were obtained from our facilities (Autonomous University of Puebla and
Harlan). Animals were individually housed in a temperature/humidity
controlled environment in a 12 h light/dark cycle with ad libitum access
to food and water. After birth, considered postnatal day (P)0, at P7 only
male pups (n = 68) were randomly assigned for either sham (n = 34) or
NVHL surgery (n = 34). On P21, animals were weaned and a similar
number of sham and lesioned rats were placed in each cage (four animals
per cage). At P89, the locomotor behavior of a group of animals (n = 24
sham and 24 NVHL) was evaluated. After this, all animals were admin-
istered with vehicle or RISP for 21 consecutive days. After treatment, the
animals that were previously behaviorally tested were evaluated again for
motor activity and social behavior. The morphological assessments were
explored in these animals. Another group of animals (sham: n = 10,
NVHL: n = 10) was killed immediately after treatment for the biochem-
ical experiments (Fig. 1A). All procedures described in the present study
were performed in accordance with the BUAP Animal Care Committee
(FLAG-UALVIEP-17-1) and the Guide for Care and Use of Laboratory
Animals of the Mexican Council for Animal Care (Norma Oficial Mexi-
cana NOM-062-Z00-1999), as well as the Animal Welfare Committee
of Universidad Complutense in accordance with European legislation
(2010/63/EU). All efforts were made to reduce the number of animals
used and minimize animal suffering in the experiments.

Surgical procedures

NVHL protocol has been precisely described before (Lipska et al., 1993;
Flores et al., 1996). On P7, male pups (weighing 15-18 g) were anesthe-
tized using hypothermia. Then pups were positioned on a modified plat-
form (Sierra et al., 2009) fixed to a stereotaxic Kopf Instrument, and
subsequently 0.3 ul of ibotenic acid (10 wg/ul; Sigma-Aldrich) or an
equal volume of vehicle (0.1 m PBS, pH 7.4) was bilaterally injected into
the ventral hippocampus over a 2 min period through a 30-G stainless-
steel cannula connected to an infusion pump through a Hamilton syringe
positioned at the following coordinates: AP —3.0 mm, ML *3.5 mm to
bregma, and DV —5.0 mm from dura, according to the Paxinos and
Watson (1986) rat brain atlas. After the procedure, pups were placed on
a heating pad for recovery and returned to their dams.

Risperidone administration

At P90, sham and NVHL rats were administered (i.p.) either 0.25 mg/kg
RISP (Janssen Pharmaceutica) dissolved in 0.25% glacial acetic acid and
0.1 M PBS or vehicle for 21 consecutive days. Four groups of animals were
formed (n = 17/group): (1) sham-vehicle, (2) NVHL-vehicle, (3) sham-
RISP, and (4) NVHL-RISP.

Behavioral tests

Behavioral observations were performed between 8:00-12:00 h in a
noise-free, odorless room in which animals were acclimatized 24 h before
tests.

Locomotor activity. The test was performed twice: before treatment
(P89, n = 24 sham and 24 NVHL) and after RISP or vehicle administra-
tion (P111, n = 12/group). Locomotor activity was monitored for 120
min in 16 individual cages (20 X 40 X 30 cm), each of which was
equipped with eight photobeam detectors connected to a computer
counter (Tecnologia Digital México). Each photobeam interruption by
the rat was counted as locomotor activity (Morales-Medina et al., 2008).

Social interaction. One day after the post-treatment locomotor activity
test, the social behavior of the animals was evaluated. The protocol was
modified from the original method (File, 1980) and from a previous
report from our group (Vézquez-Roque et al., 2012). Six pairs of rats
from the same group (Sham-vehicle/Sham-vehicle, NVHL-vehicle/
NVHL-vehicle, Sham-RISP/Sham-RISP, NVHL-RISP/NVHL-RISP) and
that had no previous contact before were randomly organized and placed
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into an open-field arena (60 X 60 X 60 cm)
with dark walls. Their activity was recorded for
10 min, and videos were analyzed by a trained
observer who was blind to the experiment ob-
taining the total number of interactions and
the time spent during the active social behav-
iors. Only sniffing, following, grooming,
mounting, wrestling, and jumping on or
crawling under or over the partner behaviors
were considered social behaviors.

Tissue samples

After the behavioral tests, the animals were
deeply anesthetized (sodium pentobarbital 75
mg/kg, i.p.) and killed according to the needs
of the respective protocols. One group of rats
were used for the Golgi—-Cox method (n =
8/group), these animals were perfused intrac-
ardially with physiological saline solution and
their brains were extracted and preserved in
Golgi—Cox solution. Another group of rats was
subjected to the stereology protocol (n =
4/group), these animals were perfused intrac-
ardially with physiological saline solution fol-
lowed by 4% paraformaldehyde in 0.1 m PBS
and brains were extracted and preserved in 4%
paraformaldehyde. Another group of animals
(n = 5/group) was used for biochemical assays.
After anesthesia, intracardial blood samples
were obtained and located in EDTA, then the
brain was removed from the skull and the PFC
was excised and frozen at —80°C until assayed.

Neuronal morphology

Golgi—Cox stain method

To evaluate the effects of RISP on neural mor-
phology in the PFC neurons of NVHL rats, a
modified Golgi—Cox stain method was used
(Gibb and Kolb, 1998). Coronal brain sections
of 200 wm thickness at the level of PFC were
obtained using a vibratome (Campden Instru-
ments, MA752) and placed on clean gelatin-
coated microscope slides for the revealing
process: slides were treated with ammonium
hydroxide (30 min in dark), then with Kodak
Film Fixer (30 min in dark) and afterward
washed with distilled water, dehydrated, and
whitened in successive baths of 50% (1 min),
75% (1 min), 90% (1 min), and 100% (2 X 5
min) ethanol, followed by 15 min in xylene.
Finally, slides were mounted with a synthetic
resin medium.

Microscopic observation, Sholl analysis,
dendritic spine density, and classification
Bi-dimensional reconstruction of the entire
basilar dendritic arbor of pyramidal PFC neu-
rons located in layers 3 and 5 (area Cgl; plate
7-9) according to the Paxinos and Watson
(1986) rat brain atlas, was reproduced for each
neuron. For each animal, five neurons from
each hemisphere were drawn using a camera
Lucida at 400X magnification (DMLS 2000,
Leica Microscope). Dendritic tracings were
quantified using Sholl analysis placing a trans-
parent grid with equidistant (10 wm) concen-
tric rings centered over the tracings, and the
number or ring-dendrite intersections was
used to estimate the total dendritic length and
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Figure 1. A, Diagramillustrating the experimental protocol (PD: postnatal day). B, Representative coronal photographs of the

sham lesion and NVHL, arrows indicate the site of the lesion. €, D, Locomotor behavior was evaluated before and after treatment.
€, before treatment (n = 24/group), NVHL animals exhibited hyperlocomotion (U = 144, p = 0.002). D, After vehicle or RISP
administration (n = 12/group), RISP reduced the number of movements in NVHL rats ( “lesion effect: p < 0.001; *p << 0.05 vs
NVHL-RISP, p << 0.01 vs sham-RISP, p << 0.001 vs sham-vehicle). E, F, Social behavior was evaluated only after treatment (n =
6/group). E, NVHL rats spent less time in social behavior and RISP did not affect this parameter ( “lesion effect: p = 0.001). F, The
NVHL reduced the number of social encounters and RISP enhanced the number of encounters (*p << 0.05 vs all the other groups).
Statistical analyses for locomotor behavior before treatment were conducted using a Mann—Whitney U test; for the rest of
parameters a two-way ANOVA, Newman Keuls post hoc test was used.
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Table 1. Optical fractionator sampling parameters used for neural counting

Parameter Value

No. of sections, range 9-15
Distance between sections, um 150

Scan grid, um 800 X 800
Counting frame, wm 60 X 60
Disector height, m 20

Guard zones (upper and lower), um 10

Average section thickness, wm (range) 35.98 (33.2-38.1)

length per dendritic order (Sholl and Uttley, 1953). To calculate the spine
density, a 30 um approximated segment of distal dendrite was traced (at
1000X) and the number of spines was counted (to yield spines/10 wm).
For dendritic spine dynamics, 100 hundred distal dendritic spines were
manually classified (at 2000X) according to shape in six different cate-
gories: thin (elongated with similar head/neck diameter), mushroom
(prominent head with defined neck), stubby (unrecognizable neck), bi-
furcated (with 2 heads), multi-headed (>2 heads), and unclassified
(without complying with any the previous criteria; Brusco et al., 2010;
Bello-Medina et al., 2016; Tendilla-Beltran et al., 2019).

Neuronal density

Stereological analysis

Before sectioning, brains were placed in a sucrose gradient and then
50-um-thick coronal sections from PFC were obtained using a cryostat
(Leica, CM1510-1) and mounted on gelatin-coated microscope slides.
For stereological analysis, brain slices were stained with cresyl violet and
systematically random sampled with an optical fractionator probe
(Véazquez-Roque et al., 2012, 2014; Romero-Pimentel et al., 2014). Neu-
rons were identified by their size and shape (Chareyron et al., 2012),
using a MBF CX9000 color CCD camera (MicroBrightField) coupled to
an Olympus BX51WI microscope and sampled at 60X (UPlanSAPO
60X N.A. 1.20 water-immersion objective, Olympus) with the aid of
Stereolnvestigator v9.14.5 (MicroBrightField). Sampling parameters
used for cell counting are shown in Table 1.

Biochemical assays

Plasma, peripheral blood mononuclear cells, and PFC

sample collection

Immediately after obtained, blood samples were centrifuged at 1800 rpm
for 10 min at 4°C and plasma was collected and frozen at —80°C. The
residual sample was diluted (1:1) with RPMI media and loaded into
Ficoll solution (0.65 ml of Ficoll by 1 ml of sample) and centrifuged at
2000 rpm for 40 min at room temperature. Then, the mononuclear cell
phase was obtained and diluted again in 15 ml of RPMI and centrifuged
at 3000 rpm for 15 min at room temperature. The supernatant was de-
canted and the obtained pellet was resuspended in 1 ml of RPMI and
centrifuged at 3000 rpm for 10 min at room temperature. The superna-
tant was eliminated and the pellets, which represented the peripheral
blood mononuclear cells (PBMCs), were frozen at —80°C until assayed.

Cytosolic and nuclear extraction

To obtain cytosolic fraction and nuclear extracts, a previously reported
procedure was used (Martin-Hernandez et al., 2019). Shortly, PFC and
PBMC samples were homogenized in 300 ul buffer (10 mmol/L N-2-
hydroxyethylpiperazineN-2-ethanesulfonic acid, pH 7.9, 1 mmol/L
EDTA, 1 mmol/L EGTA, 10 mmol/L KCI, 1 mmol/L dithiothreitol, 0.5
mmol/L phenylmethylsulfonyl fluoride, 0.1 mg/ml aprotinin, 1 mg/ml
leupeptin, 1 mg/ml Na-p-tosyll-lysine-chloromethyl ketone, 5 mmol/L
NaF, I mmol/L NaVO,, 0.5 mol/L sucrose, and 10 mmol/L Na,MoO,).
After 15 min, Nonidet P-40 (Roche) was added to reach a 0.5% concen-
tration. The tubes were gently vortexed for 15 s and nuclei were collected
by centrifugation at 8000 X g for 5 min. Supernatants were considered
the cytosolic fraction. The pellets were resuspended in 100 ul buffer
supplemented with 20% glycerol and 0.4 mol/L KCI and gently shaken
for 30 min at 4°C. Nuclear protein extracts were obtained by centrifuga-
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tion at 13,000 X g for 5 min and aliquots of the supernatant were stored
at —80°C.

Western blot protocol

Briefly, after quantifying and adjusting protein levels, the PFC and PBMC
homogenates were mixed with Laemmli buffer (Bio-Rad) and 20 ul (1
ug/ul) was loaded in acrylamide electrophoresis gel. Once the proteins
were separated due their molecular weight, they were transferred to a
nitrocellulose membrane (Transfer-Blot Turbo Transfer Pack, Bio-Rad)
with a semidry transfer system (Bio-Rad). Then membranes were incu-
bated with specifically diluted antibodies in TBS-Tween, sometimes
added with bovine serum albumin (BSA): rabbit monoclonal anti-BDNF
(1:1000; Abcam, ab108319; RRID:AB_10862052), rabbit polyclonal anti-
TrkB (1:1000, 1% BSA; Santa Cruz Biotechnology, sc8316; RRID:
AB_2155274), rabbit polyclonal anti-PI3K (1:750, 1% BSA; Santa Cruz
Biotechnology, sc7189; RRID:AB_2165408), rabbit polyclonal anti-
Ser437phospho-Akt (1:1000; Cell Signaling Technology, 4060; RRID:
AB_2315049), rabbit polyclonal anti-Akt (1:1000; Cell Signaling
Technology, 4691; RRID:AB_915783), rabbit polyclonal anti-Thr202/
Tyr204phospho-ERK (1:1000; Cell Signaling Technology, 8544; RRID:
AB_11127856), rabbit polyclonal anti-ERK (1:1000; Cell Signaling
Technology,#4695; RRID:AB_390779), rabbit polyclonal anti-IkBa (1:
1000; Santa Cruz Biotechnology, sc371; RRID:AB_2235952); rabbit
polyclonal anti-NF-kB p65 (1:1000; Santa Cruz Biotechnology, sc372;
RRID:AB_632037), goat polyclonal anti-COX-2 (1:750, 2.5% BSA; Santa
Cruz Biotechnology, sc1747; RRID:AB_2084976), rabbit polyclonal anti-
PPAR-vy (1:1000; Santa Cruz Biotechnology, sc7196; RRID:AB_654710),
rabbit polyclonal anti-iNOS (1:750 1%BSA; Santa Cruz Biotechnology,
$c650; RRID:AB_2298577), mouse monoclonal anti-4-hydroxynonenal
(1:500, 3% BSA; R&D Systems, MAB3249; RRID:AB_664165), goat
polyclonal anti-Ser9phospho-GSK-3 (1:750, 1% BSA; Santa Cruz Bio-
technology, sc11757; RRID:AB_2279471); rabbit polyclonal anti-
GSK-3p (1:1000; Santa Cruz Biotechnology, sc9166; RRID:AB_647604),
mouse monoclonal anti-Keap1 (1:1000; R&D Systems, MAB3024; RRID:
AB_2132620); rabbit polyclonal anti-Nrf2 (1:1000; Santa Cruz Biotech-
nology, sc722; RRID:AB_2108502). After washing with TBS-Tween
solution, proteins were identified by incubating membranes with the
respective horseradish peroxidase-conjugated secondary antibody (1:
2000) for 90 min at room temperature and revealed by ECLTM-Kkit fol-
lowing the manufacturer’s instructions (GE Healthcare).

Transfer blots were imaged using the Odyssey Fc System (Li-COR
Biosciences) and densitometrically quantified (NIH Image] software).
All densitometries are expressed in arbitrary units of optical density.
Housekeeping proteins were B-actin (1:15000; Sigma-Adrich, A5441;
RRID:AB_476744) for cytosolic extracts and GAPDH (1:5000; Sigma-
Aldrich, G8795; RRID:AB_1078991) for nuclear ones.

Nitrites

PEC tissue were sonicated in 600 ul phosphate buffer (50 mmol/L).
Nitrites (NO, ) were quantified in PFC homogenates and plasma using
the Griess method (Green et al., 1982). In an acidic solution with 1%
sulfanilamide and 0.1% N-(1-naftil) etilendiamide, NO, turned into a
pink compound photometrically measured in a microplate reader at 540
nm (Synergy 2, BioTek). NO,~ concentration in samples was calculated
using a NaNO, standard curve (1-25 um).

Lipid peroxidation

The thiobarbituric acid method was used for lipid peroxidation determi-
nation (Das and Ratty, 1987). PFC and plasma samples were de-
proteinized with 40% trichloroacetic acid and HCI (5 mol/L), following
the addition of 2% thiobarbituric acid (w/v) in NaOH (0.5 mol/L). The
reaction was incubated in water bath at 90°C for 15 min and centri-
fuged at 12,000 rpm for 10 min. Pink chromogen was measured in a
microplate reader at 532 nm (Synergy 2, BioTek). Malondialdehyde
(MDA) concentration in samples was calculated using a MDA stan-
dard curve (0-100 nm).

Protein assay
Protein levels were measured using the Bradford method based on the
protein-dye binding principle (Bradford, 1976).
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Statistical analyses A
The mean values of each animal were treated as
asingle measurement for data analysis. All data
are presented as the mean = SEM. Only data
on the locomotor activity before treatment
were analyzed using a Mann—Whitney U test.
The rest of the data were analyzed using two-
way ANOVA followed by the Newman—Keuls
test for post hoc comparisons; for locomotor
activity after treatment, social interaction, den-
dritic length, dendritic spine density, dendritic
spine classification, neuronal density, and bio-
chemical assays lesion and RISP treatment B
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were considered as independent factors; and Sham-Veh Sham-Veh

for length per dendritic order the independent 2

factors were lesion and branch order. In all "

cases, p < 0.05 was considered the threshold W W
for statistical significance. Also, p values were NVHL-Veh NVHL-Veh
rounded off to 3 decimal places and when p > 37

0.1 it was just stated p > 0.05. Data were ana- - 4

lyzed in GraphPad Prism 6.0. W *
Results Sham-RISP Sham-RISP
Verification of the lesion M
Coronal sections at the level of the ventral ’ ~
hippocampus were obtained and stained NVHL-RISP NVHL-RISP

with cresyl violet (n = 68). Then, sections . -~ 1 &

were analyzed and loss of hippocampal in- " Sl

tegrity was observed in rats with NVHL;

only rats with hippocampal damage were C Mushroom Thin Stubby Bifurcated Multi-headed Unclassified

used for the present study (n = 34). Sham
animals (n = 34) did not show any visible
damage (Fig. 1B).

Behavioral results Figure 2.
Effects of RISP on the behavioral
alterations of rats with NVHL

Locomotor activity was evaluated before
and after pharmacological treatment. Before treatment, NVHL
rats showed hyperactivity (U = 144, p = 0.002; Fig. 1C). After
treatment, hyperactivity persisted in NVHL animals (F(, 44, =
13.51, p < 0.001). Also, the interaction between the lesion and
RISP was significant (F(, 44) = 4.989, p = 0.03), and RISP reduced
the number of movements of the NVHL animals (post hoc: p <
0.05). RISP treatment did not affect the locomotor behavior of
sham animals (F, 4, = 2.127, p > 0.05; Fig. 1D).

In the social test, NVHL animals spent less time in social in-
teraction, without a RISP effect (lesion: F(, ,,) = 14.71,p = 0.001;
RISP: F(; 55y = 0.203, p > 0.05; Fig. 1E). There was an interaction
between the lesion and RISP factors in the number of social en-
counters (F(, 5, = 5.361, p = 0.031), that was reduced only in the
NVHL vehicle-treated group ( post hoc: p < 0.05; Fig. 1F).

its shape. Scale bar, 2 um.

Morphological results

Effects of RISP on neuronal morphology and dendritic spine
dynamics impairments in the PFC due to NVHL

The basal dendritic arbor length, dendritic spine density and den-
dritic spine morphological classification of 640 pyramidal neu-
rons from PFC layers 3 and 5 was performed (Fig. 2). In the PFC
layer 3 neurons, the NVHL reduced their total dendritic length
(F(128) = 9.431, p = 0.004) and RISP treatment increased it
(F1.28) = 5.869, p = 0.022; Fig. 3A). The decrease in the dendritic
arbor was because of the reduction of the second- and third-order
dendrites’ length only in the NVHL-vehicle group (interaction:
F1s.106) = 2.396, p = 0.002; lesion: F; 105y = 7.079, p < 0.001;

L4352 a4

A, Representative photomicrographs of the PFC layers 3 and 5 pyramidal neurons from the sham-vehicle group rat.
Scale bar, 50 rm. B, Dendritic segments of each group. Scale bar, 10 wm. €, Examples of each type of dendritic spine according to

dendritic order: F4 ;6) = 526.2, p < 0.001) and RISP treatment
restored the length of both orders in NVHL animals (post hoc.
second order: p < 0.01; third order: p < 0.001; Fig. 3B). Dendritic
spine density decreased because of NVHL (F, ,q) = 4.667, p =
0.039), increased as RISP effect (F(; 4 = 7.286, p = 0.011), and
there was an interaction between factors (F, ,5) = 9.911, p =
0.004); the decrease in dendritic spine number as a consequence
of NVHL got restored after RISP administration according with
post hoc analyses (p < 0.01; Fig. 3C). Regarding the morpholog-
ical classification of dendritic spines, the mushroom spine popu-
lation decreased because of NVHL (F(, ,5, = 20.99, p < 0.001)
and increased as a consequence of RISP treatment (F, 54y =
10.06, p = 0.004; Fig. 3D). Also, RISP increased the thin spine
population (F; 55, = 26.38, p < 0.001), and the NVHL effect of
reducing these kinds of spines was almost significant (F, ¢ =
4.192, p = 0.052; Fig. 3D). In the stubby spine population, not
only significant interaction between the lesion and RISP factors
was found, but also the number of stubby spines increased as
because of NVHL and decreased because of RISP (interaction:
F(y.25 = 7.049, p = 0.013; lesion: F,, g, = 40.03, p < 0.001; RISP:
F1 58 = 12.20, p = 0.002); post hoc analyses revealed that RISP
rescued this spine population in the NVHL animals (p < 0.001;
Fig. 3D). Moreover, RISP decreased the number of bifurcated
spines (F(, 5g) = 33.88, p < 0.001), without NVHL effect (F, ,,
= 1.962, p > 0.05; Fig. 3D). The NVHL increased the number of
multi-headed spines and RISP reduced them, also an interaction
between the lesion and RISP was found (interaction: F, 4 =
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Figure 3.  NVHL generates neural atrophy in the PFC layer 3 neurons that RISP treatment ameliorated (n = 8/group). A, NVHL reduced the total dendritic length of these neurons and RISP

increased it ( *lesion effect: p = 0.0047; PRISP effect: p = 0.0221). B, The dendritic arbor length per branch order analysis showed that the NVHL reduced the length of second and third dendritic
orders and RISP reversed it (“lesion effect: p < 0.001; PRISP effect: p < 0.001; *p < 0.01 vs sham-RISP and NVHL-RISP, p << 0.001 vs sham-vehicle; p << 0.001 vs all the other groups). ,
Concerning dendritic spine density, RISP recovered the number of spines lost by the NVHL ( “lesion effect: p = 0.039; PRISP effect: p = 0.012; **p < 0.01vs all the other groups). D, NVHL had
differential effects on dendritic spine dynamics, because it reduced the number of mushroom and thin spines and increased the stubby, multi-headed and unclassified spines ( “lesion effect:
mushroom, stubby, multi-headed, and unclassified p < 0.001; thin p = 0.052; *p << 0.0 vs sham groups, p << 0.001 vs NVHL-RISP; ***p << 0,001 vs all the other groups). RISP decreased the
number of stubby spines and increased the rest of the spine populations (PRISP effect on stubby spines p = 0.002, on mushroom spines p = 0.004, on thin, bifurcated, multi-headed, and

undlassified spines p << 0.001). Statistical analyses were conducted using a two-way ANOVA, Newman Keuls post hoc test.

15.17, p < 0.001; lesion: F, ,g) = 40.56, p < 0.001; RISP: F, 54 =
28.94, p < 0.001); post hoc analyses identified that RISP recovered
the multi-headed spine population in NVHL animals ( p < 0.001;
Fig. 3D). NVHL increased and RISP decreased the number of
unclassified spines (lesion: F; 54y = 13.69, p < 0.001; RISP: F, ,5,
= 38.02, p < 0.001; Fig. 3D).

Regarding PFC layer 5, RISP increased the total dendritic
length of these neurons (F, .4 = 10.35, p = 0.003) without a
NVHL effect (F, 54y = 3.077, p = 0.09), also an interaction be-
tween factors was almost significant (F(, ,5, = 4.05, p = 0.054); in
that sense, post hoc analyses were made and revealed that RISP
rescued the dendritic length in NVHL animals (p < 0.05; Fig.
4A). The branch order analysis exposed that NVHL-vehicle rats
had reduced the length of the second, third and fourth branch
orders (interaction: F( 5 95y = 2.094, p = 0.007; lesion: F(5 ;¢ =
13.85, p < 0.001; dendritic order: F(4 9y = 495.0, p < 0.001), and
RISP recovered all of them (post hoc, second order: p < 0.05;
third and fourth orders: p < 0.001; Fig. 4B). Also in this layer, an
interaction between lesion and RISP was found in dendritic spine
density (F(, ,5) = 13.57, p = 0.001), post hoc analyses identified
that RISP recovered the spine density in NVHL animals (p <
0.01; Fig. 4C). Regarding dendritic spine morphological classifi-
cation, mushroom spine population decreased in NVHL animals
(F(128) = 14.2, p < 0.001) and RISP treatment increased these
kinds of spines (F(, ,4) = 5.6, p = 0.025), also interaction between

factors was almost significant (F(, ,5) = 4.1, p = 0.052; Fig. 4D); as
such, a post hoc test was made and revealed that RISP recovered
the number of mushroom spines in the NVHL rats ( p < 0.01; Fig.
4D). The stubby spine population increased because of NVHL
and decreased as a RISP effect, but also a significant interaction
between lesion and RISP was found (interaction: F; ,5) = 7.154,
P =0.012;lesion: F(, 54y = 6.912, p = 0.014; RISP: F(, 55, = 11.75,
p = 0.002); the post hoc test identified that RISP recovered the
population of these spines in NVHL animals (p < 0.001; Fig. 4D).
There were no NVHL or RISP effects on thin, bifurcated, and
multi-headed spines population (Fig. 4D). NVHL decreased and
RISP increased unclassified spine population (lesion: F; 55, =
5.025, p = 0.033; RISP: F,, 54, = 5.725, p = 0.024; Fig. 4D).

Effects of RISP on cell density in the PFC due to NVHL

NVHL reduced the number of cells in the PFC Cgl1 area, without
RISP effect (lesion: F, ;) = 30.43, p < 0.001; RISP: F; ;,, =
2.745, p > 0.05; Fig. 5B).

Effects of NVHL and RISP treatment on neuronal
plasticity-associated molecular pathways in the PFC

The brain-derived neurotrophic factor (BDNF) and its interac-
tion with the tropomyosin-receptor-kinase receptor B (TrkB) is
implicated in neuronal plasticity. BDNF protein levels remained
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Figure4.  NVHL generates neural atrophy in the PFC layer 5 neurons, which RISP treatment ameliorated (n = 8/group). 4, RISP increased the total dendritic length of these neurons, and because

the interaction between factors was very close to a significant threshold, a post hoc test indicated that NVHL animals treated with vehicle had a decreased arbor length that RISP recovered ( PRISP
effect: p = 0.003; *p < 0.05 vs sham-RISP, p < 0.01 vs sham-vehicle and NVHL-RISP). B, Analysis of dendritic arbor length per branch order analysis showed that the NVHL reduced the length of
second, third, and fourth dendritic orders and RISP reversed it ( “lesion effect: p << 0.001; PRISP effect: p = 0.025; *p << 0.05 vs all the other groups, &p << 0.001 vs all the other groups; °p < 0.05
vsboth sham groups and p << 0.001 vs NVHL-RISP). €, Concerning dendritic spine density, RISP recovered the number of spines lost by the NVHL ( *p << 0.05 vs sham-RISP, p < 0.01vs sham-vehicle
and NVHL-RISP). D, NVHL had differential effects on dendritic spine dynamics, since it reduced the number of mushroom and unclassified spines, and RISP increased both populations (mushroom
“Jesion effect: p < 0.001; PRISP effect: p < 0.001; undlassified “lesion effect: p = 0.033; PRISP effect: p = 0.024). Interaction in the mushroom spine population was very close to the significance
threshold and post hoc analyses indicated that NVHL vehicle-treated animals had fewer mushroom spines that RISP treatment recovered ( ®p < 0.01vs NVHL-RISP, p < 0.001 vs both sham groups).
Stubby spine population increased because of NVHL and decreased as RISP effect ( “lesion effect: p = 0.014; PRISP effect: p = 0.002), a post hoc test revealed that NVHL vehicle-treated animals
had more stubby spines that RISP treatment reduced (***p << 0.001 vs all the other groups). Thin, bifurcated, and multi-headed spine populations remained unchanged between groups. Statistical
analyses were conducted using a two-way ANOVA, Newman Keuls post hoc test.

unchanged among groups (Fig. 6A). Two isoforms of TrkB were
analyzed, the full-length one (TrkB-FL), which increased because
of RISP (F; 1) = 10.36, p = 0.005) and there was a trend of the
NVHL to reduce it (F(, 5, = 4.020, p = 0.062; Fig. 6B); and the
truncated isoform glycoprotein-95 (TrkB-T1) whose levels re-
mained unchanged (Fig. 6C). Also, it was calculated a ratio
among TrkB-FL/T1, which increased because of RISP (F(, ;4, =
8.610, p = 0.01) without NVHL effect (F, 1) = 0.4302, p > 0.05;
Fig. 6D). Within the diverse signaling pathway activated by
BDNF/TrkB activity, there are phosphoinositide 3-kinase
(PI3K)/protein kinase B (Akt) and mitogen-activated protein ki-
nases (MAPK) pathways. PI3K levels decreased in the rats with
NVHL (F, 1) = 15.92, p = 0.001), and the RISP increased the
levels of this protein (F, ;4 = 16.26, p = 0.001; Fig. 6E). Inter-
action between lesion and RISP was found in Akt ratio (F; ;4 =
7.932, p = 0.012), which increased in the NVHL-RISP animals
only in comparison with the NVHL-vehicle group ( post hoc: p <
0.05; Fig. 6F ). Moreover, a MAPK pathway involved in neuronal
plasticity is the one regulated by the extracellular-regulated ki-
nase (ERK). NVHL has no effect on ERK ratio protein levels
(F(1,16) = 0.4513; p > 0.05), but increased because of RISP (F; 14
= 8.889; p = 0.009); also an interaction between lesion and RISP
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Figure 5.  NVHL generate a neural loss in the PFC. A, Representative photomicrographs of

cresyl violet-stained brain sections of the region-of-interest. Scale bar, 100 pm. B, NVHL de-
creased the cell number without a RISP effect (n = 4/group; “lesion effect: p << 0.001).
Statistical analyses were conducted using a two-way ANOVA.

was significant (F(, ;5 = 7.401, p = 0.015) and post hoc test anal-
yses showed that RISP recovered the decreased levels of ERK ratio
in NVHL animals (p < 0.01; Fig. 6G).
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Effects of NVHL and RISP treatment on inflammatory and
oxidative/nitrosative stress markers in the PFC

To evaluate the inflammatory state in the PFC, the nuclear
factor-« B (NF-«kB) pathway was studied. The inhibitory subunit

NVHL disrupts the BDNF/TrkB pathway in the PFC. Representative Western blotimages of each protein and group (n = 5/group). A, BDNF did not change among groups. B, The NVHL
effect of reducing TrkB-FL levels was close to significance threshold, however, RISP treatment increased them ( “lesion effect: p = 0.062; PRISP effect: p = 0.005). €, TrkB-T1 remained unchanged
among groups. D, TrkB-FL/T1 ratio increased because of RISP ( PRISP effect: p = 0.001). E, NVHL reduced PI3K levels and RISP increased them ( “lesion effect: p = 0.001; PRISP effect: p = 0.001).
F, Aktincreased in the NVHL rats after RISP treatment (p << 0.05 vs NVHL-vehicle). G, RISP increased ERK-ratio levels and recovered the decrease in the NVHL animals ( RISP effect: p = 0.009; *p <
0.05 vs both sham groups, p << 0.01 vs NVHL-RISP). Statistical analyses were conducted using a two-way ANOVA, Newman Keuls post hoc test.

of the NF-«kB, I k B a (IkBa), increased because of RISP (F, 4, =
8.129, p = 0.012) without NVHL effect (F, ;5, = 0.1575, p >
0.05; Fig. 7A). Neither lesion or RISP treatment affected NF-«B
levels (Fig. 7B). Also, the cyclooxygenase-2 (COX-2) levels were
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Figure7.

NVHL generates oxidative/nitrosative stress in the PFC, that RISP treatment ameliorates. Representative Western blotimages of each protein and group (n = 5/group). A, B, The NF-«B

pathway was studied and (4) RISP increased | kBo levels ( PRISP effect: p = 0.012) but (B) neither NVHL or RISP had an effect on NF-«B levels. €, COX-2 increased as a consequence of NVHL and
because the interaction between factors was very close to the significance threshold a post hoc test was made and revealed that RISP reduced COX-2 levels in the NVHL animals ( “lesion effect: p =
0.035; **p << 0.01 vs all the other groups). D, NVHL reduced PPAR-y protein levels (“lesion effect: p = 0.004). E, NVHL increased NO, concentration ( “lesion effect: p = 0.03). F, iNOS levels
remained without changes among experimental groups. G, NVHL increased MDA concentration, post hoc analyses revealed that MDA concentration decreased because of RISP in NVHL animals
(“lesion effect: p = 0.012; *p < 0.05 vs all the other groups). H, RISP reduced the 4-HNE levels ( PRISP effect: p = 0.004). Statistical analyses were conducted using a two-way ANOVA, Newman

Keuls post hoc test.

evaluated, which increased as the main effect of the NVHL (F, ;¢
=5.278, p = 0.035) and interaction between lesion and RISP was
almost significant (F(, s, = 4.226, p = 0.056; Fig. 7C), in that
sense, a post hoc test was made and COX-2 levels increased only

in NVHL-vehicle group (p < 0.01), thus RISP reduced COX-2
in NVHL animals. Furthermore, the peroxisome proliferator-
activated receptor gamma (PPARY) protein levels were evalu-
ated, which decreased because of the NVHL (F, ;) = 11.34,
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NVHL impairs the Nrf2 pathway in the PFC of NVHL rats (n = 5/group). A, NVHL increased GSK-3 3 levels ( “lesion effect: p = 0.04). B, Also NVHL increased Keap1 protein levels, and

because the interaction between factors was very close to significance threshold, a post hoc test was made and revealed that RISP decreased Keap1levels in NVHL animals ( “lesion effect: p = 0.005;
#p < 0.05 vs RISP-treated groups and p << 0.01vs sham-vehicle). ¢, NVHL reduced Nrf2 levels and RISP increased them ( *lesion effect: p = 0.003; PRISP effect: p = 0.04). Statistical analyses were

conducted using a two-way ANOVA, Newman Keuls post hoc test.

p = 0.004) and RISP did not affect (F(, ;5, = 0.08502, p > 0.05;
Fig. 7D).

To explore oxidative/nitrosative stress, NO, concentration
was examined. NVHL animals had higher NO, levels (F, ;) =
5.689, p = 0.029), without RISP effect (F, 1) = 3.543, p = 0.078;
Fig. 7E). Then, neither NVHL or RISP affected the inducible
isoform of the nitric oxide synthase (iNOS) levels (Fig. 7F). Also,
lipid peroxidation markers MDA and 4-hydroxy-2-nonenal (4-
HNE) were evaluated. NVHL has no effect on MDA concentra-
tion (F(; 16y = 9.021, p > 0.05) but RISP decreased it (F; ;) =
4.592, p = 0.048), and the interaction between the lesion and
RISP was significant (F; ;4 = 8.106, p = 0.012); the post hoc test
indicated that RISP reduced the concentration of MDA in NVHL
animals (p < 0.05; Fig. 7G). Moreover, RISP decreased 4-HNE
protein levels (F(; sy = 11.61, p = 0.004) without the NVHL
effect (F(; 6 = 2.953, p > 0.105; Fig. 7H).

Regarding the nuclear factor (erythroid-derived 2)-like 2
(Nrf2) pathway, which is related to the antioxidant response was
evaluated. The glycogen synthase kinase 3 8 (GSK-33) modulates
the activity of the Kelch-like ECH-associated protein 1 (Keapl),
which is the cytosolic inhibitor of Nrf2. NVHL increased GSK-33
ratio (F(; 1) = 4.975, p = 0.04) and RISP did not modify this ratio
(F(1,16) = 0.3938, p > 0.05; Fig. 8A). The same patter effect was
observed in Keap1 protein levels, which increased in NVHL ani-
mals (F(; 14 = 10.79, p = 0.005) without RISP effect (F, ;¢ =
1.012, p > 0.05); and because the interaction between factors was
close significance threshold (F(, ;) = 3.999, p = 0.063; Fig. 8B), a
post hoc test was made and revealed that RISP reduced Keapl
levels in NVHL animals (p < 0.01). Finally, NVHL decreased the
nuclear protein levels of Nrf2 and RISP increased them (lesion:
Fiiie) = 12.53, p = 0.003; RISP: F, 1) = 4.937, p = 0.041; Fig.
8C).

Effects of NVHL and RISP treatment on inflammatory and
oxidative/nitrosative stress markers in serum and PBMCs

The peripheral inflammatory balance was evaluated in PBMC.
Regarding the NF-«B pathway, the NVHL did not change IkBa
levels (F, 15 = 0.00249, p > 0.05), but RISP treatment increased
them (F(, ;) = 9.167, p = 0.008; Fig. 9A). However, NF-«B pro-
tein levels remained unchanged (Fig. 9B). Both NVHL and RISP
increased COX-2 protein levels (lesion: F; ;) = 4.766, p = 0.044;
RISP: F; 1) = 9.601, p = 0.007; Fig. 9C). PPARYy protein levels
remained unchanged among groups (Fig. 9D). Also NO, and
iNOS was explored. NVHL increased NO, concentration (F; ;¢
= 4.703, p = 0.045) without RISP effect (F(, ;) = 0.0878, p >
0.05; Fig. 9E). For iNOS levels, there was an interaction between

lesion and RISP factors (F(, sy = 4.835, p = 0.043; Fig. 9F),
however, no differences among groups were significant. Interac-
tion between lesion and RISP was close to the significance thresh-
old for MDA concentration (F(, ;) = 4.042, p = 0.061), in that
sense, the post hoc test revealed that RISP reduced MDA concen-
tration in NVHL animals (p < 0.05; Fig. 9G). 4-HNE showed an
interaction between factors (F, ;5 = 7.805, p = 0.013) and RISP
treatment decreased the protein levels only in the NVHL rats
(post hoc: p < 0.05; Fig. 9H ). Finally, regarding the Nrf2 pathway,
NVHL increased GSK-38 ratio levels (F(, ;) = 5.839, p = 0.028)
and significant interaction between lesion and RISP was found
(F1.16) = 5455, p = 0.033), RISP recovered GSK-35 ratio in the
NVHL animals (post hoc: p < 0.05; Fig. 10A). However, Keapl
protein levels did not change (Fig. 10B). NVHL was closely to be
significant as the main effect promoting the increase of Nrf2 pro-
tein levels (F(, 14y = 3.959, p = 0.064) and RISP did not affect
them (F(, ;) = 2.301, p > 0.05; Fig. 10C).

Discussion

We found that NVHL rats have dendritic arbor and spine pathol-
ogy in pyramidal cells of the PFC when studied at adulthood.
Also, these animals lose cells due to impaired BDNF/TrkB signal-
ing and oxidative/nitrosative stress in this area. Furthermore,
adult animals subjected to NVHL exhibit peripheral oxidative/
nitrosative stress. Twenty-one consecutive days of RISP treat-
ment (0.25 mg/kg, i.p.) ameliorated most of those alterations and
also corrected behavioral abnormalities observed in the NVHL
rats.

PFC dysfunction is associated with the behavioral alterations
exhibited by the NVHL rats (O’Donnell, 2012). The novel envi-
ronment hyperlocomotion of NVHL animals is related to stress
vulnerability observed in schizophrenia, and indicates an in-
crease in the ventral striatum dopaminergic tone (Flores et al.,
1996, 2005). Therefore, RISP reduced mesolimbic dopaminergic
hyperfunction in rats with NVHL, and as a consequence the
number of movements during the motor test. Also, the rise in the
ventral striatum dopaminergic tone generates a dysregulation in
the corticolimbic system due to NAcc GABAergic hyperactivity
in the ventral pallidum. This structure regulates the spontaneous
activity of the dorsomedial thalamus, and the aforementioned
would dysregulate the PFC function (Flores et al., 2016). Also,
NVHL rats had poor social interaction, an innate behavior in the
rats (Vanderschuren et al., 1997) that can be related to social
isolation, a negative symptom of SZ (Wible et al., 2001). Gener-
ally, negative symptoms only improve with long antipsychotic
treatments (Remington et al., 2016). In our study, RISP only
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Figure9. Oxidative/nitrosative stress was observed in the periphery of NVHL rats (n = 5/group). A, |Ba increased after RISP treatment ( PRISP effect: p = 0.008). B, NF-B levels remained
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animals (*p < 0.05 vs NVHL-vehicle). Statistical analyses were conducted using a two-way ANOVA, Newman Keuls post hoc test.

improved the number of social encounters of NVHL animals,
may be because of the duration of the treatment.

Behavioral enhancement as a result of RISP in NVHL rats
might have functional and anatomical substrates at the CNS
level. Our results demonstrate that PFC pyramidal neurons of

NVHL animals are atrophied and have a dendritic spine pa-
thology and RISP treatment ameliorated those morphological
alterations.

Neural plasticity is regulated by various molecules, including
neurotrophic factors such as BDNF. BDNF acts via Trk receptors,
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Schematic abstract of the results. BDNF/TrkB pathway is disrupted in the PFCof NVHL animals as well as the downstream ERK and PI3K/Akt pathways. Also, increased NO, , COX-2 and

impaired Nrf2 pathway results in lipid peroxidation (LPO) and oxidative/nitrosative stress. The aforementioned is related to neural atrophy and the dendritic spine pathology in PFC pyramidal cells.
RISP had neurotrophic and antioxidant effects restoring BDNF/TrkB and Nrf2 pathways, respectively, and ultimately ameliorated morphological impairments in the PFC. Oxidative/nitrosative stress
can also be detected in the periphery of NVHL rats, and a COX-2 increase was observed both in the PFCand in the PBMC. RISP reduced LPO but increased COX-2 levels in sham animals.
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and the most abundant isoform in the neocortex is the TrkB,
including the TrkB-FL and TrkB-T1 isoforms (Middlemas et al.,
1991; Bramham and Messaoudi, 2005). When BDNF interacts
with TrkB-FL, it promotes the arborization of the dendritic arbor
and spinogenesis (Cohen-Cory et al., 2010); but when it interacts
with TrkB-T1 it has an antagonistic effect on TrkB-FL signaling
(Carim-Todd et al., 2009). Neither BDNF, TrkB-FL, and
TrkB-T1 were affected by NVHL. However, RISP increased the
TrkB-FL levels in the NVHL rats. Interestingly, a reduction in
BDNF mRNA in the PFC of NVHL animals has been observed
(Lipska et al., 2001).

Alterations in the counterbalancing effect of TrkB-FL and
TrkB-T1, assessed by the ratio of TrkB-FL to TrkB-T1 expression
(hereafter FL/T1 ratio), have been used as a variable index for
describing BDNF receptor expression and has been related to
distinct mental disorders (Fenner, 2012), including SZ (Wong et
al., 2013; Martinez-Cengotitabengoa et al., 2016). RISP treatment
increased the TrkB FL/T1 ratio in both sham and NVHL rats.

BDNF/TrkB activity stimulates ERK and PI3K/Akt pathways,
which represent a potential therapeutic target of much interest in
several mental illnesses, such as SZ (Alonso et al., 2004; Yuan et
al., 2010; Enriquez-Barreto and Morales, 2016). Phosphorylated
ERK immunoreactivity develops rapidly in dendritic regions in
long-term potentiation (LTP) phenomena (Dudek and Fields,
2001; Kelleher et al., 2004; Tang and Yasuda, 2017), a cellular
substrate for cognitive functions (Ying et al., 2002). For LTP
development, an adequate quantity, composition and spatial dis-
position of postsynaptic density (PSD) are necessary (Bosch et al.,
2014; Nicoll, 2017). The PSD is made of several cytoskeleton-
related proteins, adhesion molecules, and receptors, including
TrkB (Aoki et al., 2000; Sheng and Hoogenraad, 2007). As the
PSD is specifically located on the spine surface, its expansion
results in a bigger head size. In such a manner, there is a correla-
tion between shape and function in the dendritic spines, the
mushroom-shaped spines being considered mature spines (Mat-
suzaki et al., 2004). Thus, ERK activity is not only associated with
dendritic spine synaptic function but also novel spine formation
and maturation (Tang and Yasuda, 2017). Here we demonstrate
that NVHL attenuates ERK in the PFC as demonstrated before
(Bychkov et al.,, 2011), and this could be related to the lack of
spines, as well as the reduction of mature spines in PFC neurons.

Increased PI3K/Akt protein levels were also observed in
NVHL animals after RISP treatment. The PI3K/Akt pathway is
involved in cell survival (Cardone et al., 1998; Lee et al., 2008),
and it’s impaired activity described here can be associated with
the neural density reduction observed in the NVHL. Although a
specific neural population decrease was not studied, because cre-
syl violet stain only allows us to distinguish between neurons and
glia because of their size, a decrease of parvalbumin GABAergic
interneurons in the PFC has been demonstrated in the NVHL
(Cabungcal et al., 2014). Another factor that can be implicated in
the PFC cell loss is oxidative/nitrosative stress.

PI3K/Akt (effector), as well as GSK-38 (inhibitor), regulates
the Nrf2 antioxidant pathway (Sandberg et al., 2014). Nrf2 is a
nuclear factor that promotes the synthesis of different enzymes,
such as glutathione peroxidase and catalase that protects the cells
from oxidative/nitrosative stress, and its dysfunction has been
reported in SZ (Genc and Geng, 2009). Interestingly, the gene
expression of the afore-mentioned enzymes is reduced in the
NVHL (Hui et al., 2019), in congruence with the disruption of
the Nrf2 pathway reported here. This impaired antioxidant re-
sponse could promote oxidative/nitrosative stress. In such a
manner, we analyze the nitric oxide (NO) system by quantifying
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NO, levels as well as the iINOS (Guix et al., 2005). Here we found
that NVHL animals have increased NO, levels in the PFC, in
congruence with previous reports (Negrete-Diaz et al., 2010;
Bringas et al., 2012), however, the source of this NO, rise has not
been examined yet. iNOS is overexpressed in glial cells in re-
sponse to inflammatory stimuli and produces a large amount of
NO (Galea et al., 1992). NVHL does not have an effect on iNOS
protein levels, suggesting that other molecules are implicated in
oxidative/nitrosative stress.

COX-2 is a potent inflammatory mediator that activates mi-
croglia, and the levels of this protein increased in the NVHL
animals (Garden and Moller, 2006). Excessive microglia popula-
tion and activity has recently been demonstrated in the PFC of
NVHL animals (Hui et al., 2019). Thus, it can be proposed that
oxidative/nitrosative stress is modulated by microglia in the
NVHL. Interestingly, increased microglia activity also can be re-
lated to excessive synapse elimination and postsynaptic spine
shape modifications (Weinhard et al., 2018), explaining the re-
duction of mature spines in the NVHL.

Most of the information about inflammation and oxidative/
nitrosative stress in SZ is from plasma or PBMC studies. These
findings attempt to explore (indirectly) the inflammatory state of
the brain and to find biomarkers for the disease (Miller et al.,
2011; Fraguas et al., 2017). We analyzed the peripheral inflam-
mation and oxidative/nitrosative stress in the NVHL model. PB-
MCs of NVHL animals have increased COX-2 protein levels, a
common finding between the brain and periphery. COX-2 inhib-
its the synthesis of 15-deoxy-delta-12,14-prostaglandin J, (15d-
PGJ,) and therefore reduces the anti-inflammatory response via
PPARY. Clinical studies have demonstrated that the reduction in
15d-PGJ,, a potent anti-inflammatory molecule, and the increase
in NF-kB activity are associated with SZ (Garcia-Bueno et al.,
2014Db). Also, the capacity of RISP has been shown to reduce some
proinflammatory cytokines after lipopolysaccharide stimulus
(Chen et al., 2012; Al-Amin et al., 2013). Interestingly, RISP in-
creased COX-2 levels in sham and lesioned animals. This can be
related to the capability of RISP to increase membrane omega-3
fatty acid synthesis in erythrocytes and the PFC, contributing to
an antioxidant effect (McNamara et al., 2009, 2011). Thus, fur-
ther studies must detail the effects of RISP on PBMCs. However,
the antioxidant capacity of RISP was revealed in the NVHL, be-
cause it was capable of reducinglipid peroxidation in the PFC and
in PBMCs.

In that sense, aforementioned neurotrophic and antioxidant
effects could be common antipsychotic mechanisms that ulti-
mately improve behavioral abnormalities in the NVHL model
(Rueter et al., 2004; Negrete-Diaz et al., 2010; Bringas et al.,
2012). A schematic abstract of the results is shown in Figure 11.

In conclusion, RISP ameliorates neural PFC abnormalities
caused by the NVHL not only due to its monoaminergic antago-
nist activity, but also by restoring plasticity and reducing the
oxidative/nitrosative stress. Then, PFC function improves and, as
a consequence, the behavior of the animals improve. Moreover,
brain inflammatory imbalances and oxidative/nitrosative stress
exhibited in the PFC of NVHL animals, and the RISP modulation
in these animals, have an association with peripheral markers.
This establishes the usefulness of this animal model to explore a
linkage between neurodevelopmental and immunological cues
relevant for SZ pathophysiology.
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