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Background: Current methods used to diag-
nose the thalassemia minor (TM) patients
require high-cost assays, while broader
screening based on routine blood count
has limited specificity and sensitivity. This
study developed a new screening tech-
nique for TM patients’ diagnosis. Methods:
The study enrolled 526 patients database
that included 185 verified α and β TM
cases, and control group consisted of iron-
deficiency anemia (IDA), myelodysplastic
syndrome (MDS), and healthy patients.
More than 1,500 artificial neural networks
(ANNs) models were created and the net-
works that gave high accuracy were se-
lected for the study. TM patients were iden-
tified from the general database using the
best-optimized ANNs. Results: Comparison

between three or six routine blood
count parameters determined a slightly
higher accuracy of the model with the
three-parameter scheme, including mean
corpuscular volume, red blood cell distribu-
tion width, and red blood cell. Based on
these parameters, we were able to sep-
arate TM patients from the control group
and MDS group, with specificity of 0.967
and sensitivity of 1. Including IDA pa-
tients into comparison gave lower but, still,
very good values of specificity of 0.968
and sensitivity of 0.9. Conclusion: ANN-
based TM diagnostics should be used
for broad automatic screening of general
population prior diagnosis with high-cost
tests. J. Clin. Lab. Anal. 27:481–486,
2013. C© 2013 Wiley Periodicals, Inc.
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INTRODUCTION

The thalassemias represent the most common mono-
genic defect worldwide and are particularly prevalent in
the Mediterranean region, Middle East, Southeast Asia,
and some regions of Africa, representing a major pub-
lic health problem in these areas (1). There are several
thalassemia defects, all affecting the genes controlling
globin production, and among them α and β thalassemia
are the most common. Heterozygous thalassemia condi-
tion, called thalassemia minor (TM), is often unrecog-
nized and undiagnosed. Currently, the best methods to
determine the existence of hemoglobin (HB) defects are
high-performance liquid chromatography, protein elec-
trophoresis, and mutation screening by PCR and DNA
sequencing (2). All these techniques require special in-
strumentation, trained technicians and are of relatively
high cost.

The early recognition of the TM condition in a pa-
tient will prevent unnecessary treatment and costly tests,
and impede birth of thalassemia major children. There-

fore, several attempts were previously made to identify
the condition by a simple blood count with varying de-
grees of success. The use of complete blood count (CBC)
parameters to screen for thalassemia can be divided into
three major approaches: index based on a single parame-
ter (3–6), index based on several parameters (7–17), and
index based on a nonlinear approach (18–22).

Analysis of an index based on a single parameter (3–6)
provides some insight into the variables that might assist
in determining whether a patient is carrying thalassemia,
however, the sensitivity and specificity seems low, and fails
to identify thalassemia in the general population, appar-
ently due to the influence of unconcerned parameters and

∗Correspondence to: Yulia Einav, Mathematical Biology Unit, Fac-
ulty of Sciences, Holon Institute of Technology, 52 Golomb Str. 58102,
Holon, Israel. E-mail: yulia_e@hit.ac.il

Received 22 July 2012; Accepted 7 May 2013
DOI 10.1002/jcla.21631
Published online in Wiley Online Library (wileyonlinelibrary.com).

C© 2013 Wiley Periodicals, Inc.



482 Barnhart-Magen et al.

large variance in blood sample characteristics. The in-
dexes based on several parameters (7–17) are proven to be
more successful, but aggregating the set of parameters to
a single index reduces separation ability of this approach.
Thus, the combination of sensitivity and specificity values
of these indexes is insufficient for broad and, still, accurate
screening of general population.

The use of the nonlinear approach requires a more com-
plicated mathematical treatment; however, it may signifi-
cantly improve the separation ability, specificity, and sen-
sitivity. Artificial neural networks (ANNs) are one of the
nonlinear tools, which are successfully applied to various
fields in order to find patterns in ambiguous and cloudy
data. Basically, ANNs are the mathematical algorithms
generated by computers and resembling the biological
cluster of neurons structurally and functionally. ANN
consists of an interconnected group of artificial neurons
that learn through experience, not from programming.
Like a biological neuron network, the ANN is designed
to obtain an input, process and amplify the signal through
neuron connections, and supply the output, which in most
cases would be some prediction about the patterns and
behavior of the studied system. The power of neural com-
putations comes from connecting neurons in a network
like in a human brain and their greatest advantage is the
ability to detect complex relationships in data where real
human brain may fail to detect. In medicine, ANNs are
widely used in diagnosis, medical image analysis, model-
ing, and medical data mining (23).

There are previous studies that are concerned with the
problem of identifying TM patients from a healthy pop-
ulation using ANNs (18–22). These studies proved the
usefulness of the ANNs method and were able to sepa-
rate various thalassemia types among general datasets of
CBC. Despite the fact that most of these studies used large
number (up to 20) of CBC parameters, the results showed
insufficient values of sensitivity and specificity. Adding
chromatography HB typing improves the results but re-
quires additional costly analysis (18). The only study that
applied the ANN approach for thalassemia and had been
based on only four blood parameters achieved a sensitiv-
ity value of 0.92 and a specificity value of 0.95 (20).

Here, we created more than 1,500 ANNs and located
the networks that gave an optimized accuracy result.
This broad approach allowed us to separate thalassemia-
carrying patients from the general population, with speci-
ficity above 0.96 and sensitivity of 1.

MATERIALS AND METHODS

Patients

The patient database consisted of 526 patients of var-
ious ages and both genders living in Israel. The patients

TABLE 1. Patients Composition Inside the Database

Group name Number of patients

Control 229
Myelodysplastic syndrome (MDS) 58
Iron-deficiency anemia (IDA) 54
α and β thalassemia minor 185

were divided into four groups as detailed in Table 1. For
each patient, the following parameters were recorded: HB,
mean corpuscular volume (MCV), mean corpuscular HB
(MCH), red blood cell distribution width (RDW), red
blood cell (RBC), and platelet count (PLT).

The patients’ data were collected in the database over a
duration of 10 years. The data acquisition was conducted
in accordance with Helsinki declaration. The database
does not contain identifiable information such as age, gen-
der, or name.

System Design

The motivation for dividing the system’s design into
several stages was to differentiate between a group of
patients known to carry the thalassemia trait and other
diseases known to change the blood parameters. Iron-
deficient anemia is known to have symptoms that are close
to the symptoms exhibited by TM and we felt it impor-
tant to examine our method’s ability to separate these two
groups. The group of patients diagnosed with myelodys-
plastic syndrome (MDS) was used as an additional con-
trol, in order to test our system’s ability to differentiate a
disease that changes the CBC parameters nonspecifically.

At each stage of the study, we compared the group
of TM patients and the group of patients with different
subgroups (control: healthy individuals, MDS, and iron-
deficiency anemia (IDA)).

Another important aspect of these stages was the choice
of CBC parameters. In each comparison, first three pa-
rameters were used (stages 1–3) and then six (stages 4– 6).
Table 2 outlines the different stages deployed in our study.

TABLE 2. System Design Regarding Stages and CBC
Parameters

Stage Groups CBC parameters

1 Thalassemia vs.control group MCV, RDW, RBC
2 Thalassemia vs. control and MDS group
3 Thalassemia vs. control, MDS, and IDA
4 Thalassemia vs. control group MCV, RDW, RBC,

HB, MCH, PLT
5 Thalassemia vs. control and MDS group
6 Thalassemia vs. control, MDS, and IDA
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ANN Optimization

Above 1,500 ANNs were created and set to the task
of recognizing patterns in the data using MATLAB
programming environment (24). The constructed net-
works were designed to contain up to 16 fully connected
neurons.

Selection of the best or optimal network was based on
our selection of appropriate optimization of the various
metrics. The scheme we decided to employ was designed
from the viewpoint of the best solution in a medical sense.
We wanted a minimal false negative (FN)—percentile of
patients wrongly identified as healthy, and a maximal true
positive (TP)—percentile of patients correctly identified
with TM, while maintaining the simplest ANN possible.
Optimizing for a minimal FN measure ensures that we will
not miss any patients (under the risk of falsely identifying
others) carrying thalassemia. Such system design allows
very flexible and accurate ANN optimization. Thus, the
accuracy metric was defined as the difference between
the FN and the TP values, while keeping the network
as simple as possible. This relationship is described as
accuracy value η and calculated as in equation (1):

η = T P − F N. (1)

While optimizing ANNs, the error in output prediction
was minimized across many learning cycles until the net-
works reached the requested level of accuracy, and then a
single ANN for each stage of the study was selected.

Stage Analysis

The metrics we employed were sensitivity, specificity,
positive predictive value (PPV), and negative predictive
value (NPV). In addition, the following metrics were also
recorded: TP,the percentile of patients correctly identi-
fied with TM; false positive (FP), the percentile of pa-
tients wrongly identified with TM; true negative (TN),
percentile of patients correctly identified as healthy; and
FN, percentile of patients wrongly identified as healthy.
All values were calculated as described in equations
(2)–(5):

Sensitivity = TP
TP + FN

, (2)

Specificity = TN
TN + FP

, (3)

PPV = TP
TP + FP

, (4)

NPV = TN
TN + FN

. (5)

RESULTS

Accuracy Level Comparison for Different Number
of Parameters

In order to check the impact of the number of param-
eters on the accuracy of the model, above 1,500 differ-
ent ANNs were constructed and their accuracy level was
calculated with three (MCV, RDW, RBC) or six (MCV,
RDW, RBC, HB, MCH, PLT) CBC parameters. Figure 1
illustrates accuracy vs. total number of ANNs for the six
stages of comparison, as described in the Materials and
Methods section.

These results illustrate that slightly higher accuracy of
ANNs is achieved with the three parameters than with
the six parameters scheme. The effect is more prominent
for the classification of TM from the healthy population
and the MDS patients (Fig. 1A and B); including IDA
into the comparison reduces the positive effect of limiting
the model for the three CBC parameters: MCV, RDW,
and RBC.

The Most Successful Neural Network for Each
Stage of the Study

From the collection of 1,500 ANNs constructed, we
optimized the best ANN for each stage of analysis based
on the accuracy metric. Then we evaluated the values of
FN, TP, NPV, PPV, specificity, and sensitivity for the best
ANN at each stage (Table 3).

The results for the separation of the TM group from the
control group (stages 1 and 4) achieve a sensitivity of 1
and specificity of 0.958. The separation of the TM group
from the control group and the nonrelevant blood dis-
ease, MDS (stages 2 and 5), achieve a sensitivity of 1 and
specificity of 0.967. The separation of the TM group from
the control group, MDS group, and IDA group (stages 3
and 6) achieved a sensitivity of around 0.9 and specificity
of 0.968. Our accuracy metric is based on the assumption
that the model should not miss any TM patients. Thus,
the best ANN for the separation of TM from the healthy
and the control group show 0% of FN results and NPV
of 1.

TABLE 3. Results of the Best ANN at Each Stage of the Study

Stage FN TP NPV PPV Specificity Sensitivity

1 0 0.957 1 0.957 0.958 1
2 0 0.966 1 0.966 0.967 1
3 0.105 0.971 0.895 0.971 0.968 0.902
4 0 0.957 1 0.957 0.958 1
5 0 0.966 1 0.966 0.967 1
6 0.111 0.971 0.889 0.971 0.968 0.897
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Fig. 1. Accuracy value for three or six CBC parameters. The accuracy
is presented against the number of ANNs for the three (black columns)
or the six (gray columns) blood parameters as detailed in the Materials
and Methods section. (A) TM vs. control group—stages 1 and 4; (B)
TM vs. control and MDS groups—stages 2 and 5; (C) TM vs. control,
MDS, and IDA groups—stages 3 and 6.

Fig. 2. Accuracy of the best ANN. The accuracy value was calculated
for the best ANN of stage 2 of the study and is presented against the
number of patients tested.

Accuracy Level Comparison for Different Patient
Group Size

In order to examine the performance of the best ANN
selected, accuracy for different patient groups was eval-
uated. We varied the amount of data given to the best
ANN achieved (a specific ANN) for stage 2 in order to
understand the effect of different patient group sizes on
the accuracy of the optimized ANN.

Figure 2 shows that the accuracy of the ANN is high
for patient groups over 300. In our study, each ANN was
optimized for the complete patients’ database. Some accu-
racy fluctuations seen under 500 patients can be attributed
to the fact that the optimization of the ANN was done
for the maximal patient group (526 patients) and not for
the smaller groups. This result shows that the best TM
classification can be achieved when ANN is optimized on
the database of at least 300 patients.

DISCUSSION

Identification of TM patients is important to prevent
misdiagnosis and a birth of thalassemia major children.
Current methods for identification of thalassemia carriers
are high-performance liquid chromatography and protein
electrophoresis for the β TM, and mutation screening by
PCR and DNA sequencing for the α type (2). However,
the need for specific instrumentation and the relatively
high cost of these methods prevent their application from
a high-throughput screening of wide population. A low-
cost and fast screening that can be performed directly and
together with routine blood count is required to achieve
the effective recognition of TM patients. In the present
study, we used patients’ database of 526 patients, which
was gathered over a period of 10 years. TM patients in the
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database were diagnosed and verified prior to the study.
Our database included both α and β types of TM as well
as non-TM patients.

From the CBC, three of the parameters (MCV, RBC,
and RDW) were chosen for the analysis because of their
high relevance for the diagnosis of TM (25, 26). To study
the contribution of additional parameters, we added three
more parameters: HB, MCH, and PLT, which we thought
to be associated with TM. The first two parameters,
HB level and MCH, are broadly used for TM detection
(11, 13–15), while the latter (PLT) was reported to differ-
entiate between thalassemia trait and IDA (27). We found
that the first three parameters were enough and even gave
improved results for TM differentiation than the six pa-
rameters. Thus, we conclude that at least in our model,
the HB level, MCH, and PLT are of lesser importance
than MCV, RBC count, and RDW. Analysis of the best
ANN at each stage showed that the only differences be-
tween the three and the six parameters scheme is observed
for the stages 3 and 6, when the IDA patients are added to
the comparison. The FN value, that is missed TM patients,
is slightly higher with the six parameters, while together
with a slightly lower sensitivity value, agrees with the sug-
gestion that three parameters perform better than six. As
noted earlier, precise identification of the parameters that
contribute the most to thalassemia identification was not
conducted here. A more rigorous examination of the pa-
rameters included in the routine CBC analysis is possible
and will require additional mathematical method, such as
principal component analysis (28).

After we found the best ANN, we used it to study the sig-
nificance of the number of patients included in the study.
We have shown that at least 300 patients are needed to
gain stable accuracy results. Some fluctuations in accu-
racy measure could arise from different devices used to get
CBC, as our database was collected from different clinics
over 10 years. Our study shows that the use of smaller
scale databases can significantly reduce the accuracy of
the study. It is likely that as more samples are added in a
future study, the performance of the ANN would increase.

Our results show that effective TM differentiation can
be achieved using the ANNs analysis based on a standard
CBC test. Differentiation between TM and the nontha-
lassemia patients (control group and MDS) achieved zero
FN results, NPV value of 1, and PPV value of 0.966. Cal-
culation of specificity and sensitivity resulted in 0.967 and
1 values, respectively. Therefore, a positive result of our
method yields a very limited number of false outcomes,
while a negative result reliably excludes a patient for the
presence of TM condition. The method we presented in
this study is flexible and can be used to optimize results
according to the scheme selected. In our study, we per-
formed optimization toward higher sensitivity over lower

specificity values. A different optimization scheme could
have been chosen.

Previous studies using linear methods were not able to
achieve satisfactory results and usually accomplished a
rather low specificity and sensitivity values (3–17). Non-
linear approaches resulted in improved values. For exam-
ple, nonlinear approach using support vector machines
and K nearest neighbors achieved a specificity of 0.95
and sensitivity of 0.92 (21). A different study conducted a
comparison between decisions trees, evolved through ge-
netic programming, and ANN. This study had the ANN
outperform the decision tree, while also showing that a
multilayer ANN performs better than a single-layer ANN
(18). A more recent study shows that a different method of
implementing decision trees can increase performance to
a specificity of 0.998 and sensitivity of 0.972 that outper-
forms multilayer ANN (19). This study included healthy
population and other hemoglobinopathies and excluded
patients with IDA. In the work presented here, we felt
it important to include nonthalassemia disease, MDS
(which changes blood parameters non-specifically), α and
β thalassemia types, and even IDA patients. Although
IDA patients decreased the overall accuracy; specificity
and sensitivity were 0.968 and 0.9, respectively. These re-
sults are good as we believe them to more accurately de-
scribe the real population in a clinic, because sometimes
TM patient are misdiagnosed as IDA.

The method we propose here is novel in some aspects,
as unlike other studies implementing ANN, in this study a
more broad approach was conducted. Usually designing
ANN for a specific purpose requires intensive optimiza-
tion of network configuration (e.g., number of neurons
and their connections) and currently, the trial and error
is the best method for this task. Therefore, most studies
with medical ANN applications are limited to a small
number of ANN configurations, attempting to optimize
only several best working networks. In the present work,
we designed more than 1,500 networks that differed by
their configurations and selected the best ANN for each
task. This novel approach has saved most of the trial-and-
error optimization steps and allowed us a broad screening
from the large ANN repository. The selected networks are
highly optimized for the TM screening task.

In comparison with other ANN-based attempts of TM
screening, our method gives the best results based on only
three input parameters and does not require any addi-
tional data besides the standard CBC. The input param-
eters are a part of a routine CBC and our approach im-
poses no further test or calculation other than the ones
already performed by laboratories. Thus, the ANN model
we present here can be used to review current medical
databases in order to locate potential TM patients by a
simple one-step computational screening.
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ANNs bear a strong resemblance to many well-known
statistical methods, for example, linear regression, but are
usually easier to apply. The networks are implemented
as a computer program obtaining the input of specified
CBC parameters and providing the prediction output as
a simple yes or no answer. Such software can be designed
in a user-friendly manner and operated by a nontrained
laboratory technician. There is no need to re-optimize
the ANNs constructed in this study, our algorithms can
be implemented directly in various scenarios. We propose
that our method will be applied as a screening before
diagnosis with complicated and high-cost testing. This
screening will be simple, rapid, and indicate the possibility
of having TM. The ANN software attached to routine
blood count devices or applied by a technician on specific
samples will lead to low cost and high sample throughput
analysis. Positive result will need further confirmation by
conventional methods. Due to high NPV, the number
of samples forwarded to this extensive analysis would be
significantly reduced. The low cost of our model will be of
special importance in the developing countries with high
frequency of thalassemia alleles. Moreover, the model we
propose here can be applied for the screening of other
diseases that change any CBC parameters, such as early
diagnosis of nonsymptomatic patients with myelo- and
lympho-proliferative disorders. Furthermore, our model
is not limited to CBC parameters and can be used with
any countable parameters available.
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