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Multidrug resistance (MDR) is a multifac-
torial phenomenon and the role of these
proteins in generating the MDR phenotype
is controversial. With this in mind, this re-
view compiled the current data on the role
of ABCB1, ABCC1, and LRP proteins in
the prognosis of hematologic neoplasms
and their influence on the choice of ther-
apy. Literature showed that the detection
of these proteins, mainly ABCB1, is impor-

tant in the AL prognosis. However, there
is controversy regarding the methodology
used for their detection. In summary, the
expression and activity profiles of ABCB1,
ABCC1, and LRP, proteins capable of pro-
moting the efflux of a variety of chemothera-
peutic agents from the cell cytoplasm repre-
sent one of the greatest causes of failure in
AL treatment. J. Clin. Lab. Anal. 27:62–71,
2013. C© 2012 Wiley Periodicals, Inc.
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INTRODUCTION

Acute leukemias (ALs) constitute a heterogeneous
group of malignant hematologic diseases characterized
by the clonal expansion of bone marrow hematopoietic
cells with increased blasts and aggressive clinical course.
ALs may be of lymphoid or myeloid lineage, and vary in
differentiation (1).

The goal of leukemia treatments is to eradicate
the leukemic clone and, thus, reestablish normal
hematopoiesis. Several therapy methods have been em-
ployed in the treatment of leukemia, such as radiother-
apy, chemotherapy, immunotherapy, and bone marrow
transplant. Although bone marrow transplant is consid-
ered an important therapeutic weapon to achieve com-
plete leukemia remission, this procedure has clinical and
socioeconomic restrictions. For this reason, chemother-
apy is the most common antileukemic therapy employed
today, even with the high morbidity associated to it (2).

In spite of progress in chemotherapy, antitumor drug
efficacy is still limited by three main factors: (i) by the
drug’s pharmacokinetic characteristics in terms of reach-
ing the target cell in adequate amounts; (ii) by the adverse
events they cause in normal tissues and cells; and (iii) by
the resistance of tumors to the cytotoxic agents admin-

istered. The latter remains a primary problem in treating
AL.

Multidrug resistance (MDR) might be an inherent phe-
nomenon seen prior to medication therapy or acquired
after an initially successful therapy begins (3). The MDR
phenotype is characterized by the simultaneous resistance
against different drugs that have no structural similarity
and act on different molecular targets. It is a multifactorial
phenomenon with biochemical resistance mechanisms in
common, which can include the reduction of intracellular
drug concentrations by changes in its influx/efflux (4).

The extracellular efflux of chemotherapy agents funda-
mentally involves mechanisms mediated by a superfamily
of transport proteins called ATP-binding Cassette, includ-
ing ABCB1 (P-Glycoprotein), ABCC1 (MDR-associated
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Fig. 1. Schematics of protein ABCB1 (Adapted from 14).

protein [MRP] 1), and a protein involved in the nucleus-
cytoplasm molecule transport called LRP (lung resistance
protein; 4, 5).

Protein ABCB1 (P-Glycoprotein/PgP/MDR1)

ABCB1 (P-Glycoprotein or MDR1) is a glycosylated
protein encoded by the gene abcb1, which is located in
chromosome 7q21.12 (6, 7). This protein acts as an ATP-
dependant drug efflux pump and belongs to the ABC-
transporter superfamily, which includes proteins respon-
sible for the transport of a broad range of substrates, such
as sugars, amino acids, peptides, organic ions, and several
hydrophobic and metabolic compounds (8).

ABCB1 was first described by Juliano and Ling (1976)
who, by investigating MDR profiles in Chinese hamster
ovary cell strains, identified a 170 kDa glycoprotein in-
volved in the change in permeability to drugs; hence it
was named P-Glycoprotein (9). Later, Fojo and colleagues
(1985) characterized the presence of a DNA sequence
commonly amplified in cells with MDR phenotype, called
mdr1, which was responsible for coding a 170 kDa pep-
tide (10). Chen and colleagues (1986) sequenced this mdr1
gene and confirmed that it coded a 1,280-amino acid pro-
tein consistent with the estimated size for P-Glycoprotein
or ABCB1, proving the mdr1 gene was responsible for
coding protein ABCB1 (11).

ABCB1 is structured in two homologous and symmetric
halves, each composed of a transmembrane region made
up by an N-terminal domain, a cytosolic C-terminal do-
main and two ATP-binding sites (Fig. 1; (12). ATP hydrol-
ysis by ABCB1 provides the energy needed for translocat-
ing substrates through the cell membrane (13).

Protein ABCB1 can be detected in cells from normal
tissues involved in physiological absorption and excretion
of compounds (14), such as the liver, the kidneys (15), the
placenta, the blood–brain barriers, blood–cerebrospinal
fluid barriers, and blood–testis barriers (16). ABCB1 is
also related to processes involving the regulation of cell
differentiation, proliferation (17), and apoptosis, acting in
blocking the activation of caspase 8 and caspase 3 (18).
Moreover, some studies show that protein ABCB1 plays a

role in immune responses, being involved in inflammatory
processes. This last hypothesis is corroborated by studies
showing that some immune system cells express ABCB1
constitutively (19) and that this protein is related to the
transport of cytokines, such as interleukin-2, interleukin-
4, and interferon-γ (20).

Protein ABCB1 is well characterized as an efflux pump
capable of extruding several drugs out of the cells, as
doxorubicin, daunorubicin, vinca alkaloids, actinomycin
D, paclitaxel, teniposide, and etoposide (6, 21). Several
models have been proposed to explain the efflux mecha-
nism promoted by protein ABCB1. One of the most well-
known models is called “hydrophobic vacuum cleaner”
(22), where the two subunits of protein ABCB1 form
a single transport channel through which the drug is
expelled, being it in its neutral or charged forms. An
adaptation of this model considers the occurrence of
conformational changes in the protein through ATP hy-
drolysis. These conformational changes lead to the open-
ing of a channel through which the drug is expelled. Hig-
gins (1994) proposed that the action of protein ABCB1
is similar to that of a flippase enzyme, which is present
in the cell membrane and aids the transport of phospho-
lipid molecules (23). Currently, the most accepted model
is the one that describes the partitioning of the substrate
from the lipid bilayer to an inner part of the protein,
called “inner leaflet,” where the substrate-binding site
is localized. When ATP binds to the nucleotide-binding
site (NBS), a great conformational change occurs, expos-
ing the substrate-binding site to the extracellular space,
thus allowing for the drug extrusion process to take
place (24).

Due to the drug extrusion mechanism, a marked ex-
pression of protein ABCB1 has been related to resistance
to chemotherapy. Gottesman (2002) highlighted that pro-
tein ABCB1 plays an important role in chemotherapy
tumor treatment, since (i) the levels of ABCB1 expression
in several tumors are high enough to provide significant
resistance to drugs; (ii) the acquisition of resistance after
chemotherapy is associated with an increase in the levels
of this protein; (iii) the expression levels of protein ABCB1
in some tumors can be used to predict the poor response
to chemotherapy, when the drugs employed are ABCB1
substrates (25).

Several pieces of evidence indicate that the expression of
gene abcb1 contributes to the resistance of leukemia cells
against antineoplastic agents (26). In this context, stud-
ies have shown that patients with acute myeloid leukemia
(AML) and acute lymphoblastic leukemia (ALL) who do
not overexpress protein ABCB1 in their cells had a full re-
mission rate after the induction therapy of 89% and 93%,
respectively. On the other hand, this rate dropped to 53%
and 56% in patients with AML and ALL, respectively,
who overexpressed protein ABCB1 (27, 28).
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Although many studies have shown the relationship be-
tween ABCB1 expression and the prognosis of several
neoplasms (29), other studies have shown exactly the op-
posite (30), making the role of protein ABCB1 in MDR
controversial. Nevertheless, the expression of protein
ABCB1, as well as gene abcb1, is becoming increasingly
relevant and recognized in deciding the most appropri-
ate treatment for patients with neoplasms (6). Therefore,
many researchers focus their investigations on improv-
ing the response to antineoplastic agents in patients who
overexpress protein ABCB1, and/or gene abcb1.

Protein ABCC1 (MDR-Associated Protein 1/MRP1)

ABCC1 (MRP1) is an ATP-dependant transmembrane
protein encoded by gene abcc1, located in chromosome
16p13.12 (7). Protein ABCC1 also belongs to the ABC-
transporter superfamily (31) and is involved in the trans-
port of hydrophobic and anionic substances, and also or-
ganic anions conjugated with reduced glutathione (GSH),
glucuronide, and sulfate (32).

The discovery, characterization, and identification of
protein ABCC1 and the gene responsible for its coding
follow the same paths of protein ABCB1. Several studies
have shown that some tumor cell strains have a MDR
phenotype without expressing protein ABCB1, which re-
inforces the hypotheses of another protein being involved
in the efflux of xenobiotics (33–35). In 1992, Cole and
colleagues identified the amplification of a gene sequence
as being responsible for the MDR phenotype in ABCB1-
negative tumor cell strains (36). Later, the sequencing of
this region identified the coding gene of the MRP, called
abcc1. After the discovery of MRP, other five homologous
proteins (MRP2–MRP6) were characterized and consid-
ered members of the same family. This family was then
called ABCC/MRP transporter subfamily, while pro-
tein MRP was then called protein ABCC1/MRP1 (37).
In 1994, Grant and colleagues characterized ABCC1 as
a whole-membrane, glycosylated protein with molecular
weight around 190 kDa (38).

Structurally, protein ABCC1 has two membrane span-
ning domains (MSD1 and MSD2), each of them with
six transmembrane helixes, and a third membrane span-
ning domain, with approximately 200 amino acids, which
is formed by five transmembrane helixes and an amino-
terminal region (Fig. 2; 39). It is believed that the protein
binding to its substrates happens by the interaction of
these transmembrane helixes (40). ABCC1 is made up of
two NBSs, located in the cytoplasmic portion of the pro-
tein (41). It must be highlighted that NBS1 has a greater
ATP affinity and NBS2 has a greater ATP-hydrolysis ca-
pacity (42).

The constitutive expression of protein ABCC1 happens
in hematopoietic cells of peripheral blood, lung, testicle,

placenta, brain, kidneys, adrenal gland, duodenum, heart,
colon, and skeletal muscle (7, 37, 43, 44). Protein ABCC1
acts in the transport of physiologic substrates such as
leukotriene C4 and oxidized glutathione (GSSG) (45).
Moreover, protein ABCC1 protects cells, playing a role
in the extrusion of xenobiotic toxic metabolites with the
goal of preventing their accumulation (15). In this way,
ABCC1 plays an important physiological role in detox-
ifying cells both from metabolites produced by normal
cellular processes and from exogenous toxic agents, such
as chemotherapy drugs, which favors the resistance mech-
anism. Vinca alkaloids, anthracyclines, epipodophyllo-
toxins, methotrexate, daunorubicin, and doxorubicin are
some of the most well-known antineoplastic agents that
are substrates for ABCC1 (37).

The likely MDR mechanism induced by ABCC1 is as-
sociated with the cotransport of GSH-conjugated anti-
neoplastic agents, for example, protein ABCC1 acts as
a GSH-dependant drug carrier (46). The importance of
this co-transport mechanism was verified by several stud-
ies that show a reduction in the transport of many sub-
strates by protein ABCC1 when GSH was absent or GSH
production was inhibited (47). Some studies enabled the
confirmation of a direct relationship between the increase
in ABCC1 expression and GSH in tumor cells (48, 49).
The interaction mechanism between GSH and ABCC1 is
complex and not completely understood, but it is believed
that these two molecules can interact by means of four
different mechanisms. The first mechanism suggests GSH
works as a substrate for ABCC1; in the second, GSH plays
the role of a co-transporter for some ABCC1 substrates.
Other possible mechanisms show that the enhancement of
the ABCC1 transport activity can be mediated by GSH
or by other compounds that are not ABCC1 substrates
(47).

Several studies in the literature show that the expres-
sion of protein ABCC1 is associated with resistance to
treatment of different types of cancer (50–52). Regarding
ALs, there is controversy about the role of protein ABCC1
when it is expressed. While some studies claim to find an
association of ABCC1 with MDR (53), others show that
protein expression seems to have no influence on resis-
tance to treatments (54). One possible explanation for the

Fig. 2. Schematics of protein ABCC1 (Adapted from 99).
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difficulty in determining the true clinical meaning of these
proteins in ALs is based on the fact that the expression
of gene abcc1 takes place in all normal hematopoietic
cell strains (55). It must be highlighted that many tumor
cells co-express proteins ABCB1 and ABCC1. Consider-
ing this, it might be possible that leukemia cells express
multiple membrane transporters and that multiple pro-
teins participate in generating the MDR phenotype (56).

Protein LRP (Lung Resistance Protein)

Protein LRP was isolated in 1996 as a vesicular protein
of molecular weight of 110 kDa, overexpressed in lung
cancer cell strains that had the MDR phenotype. Its iden-
tification allowed for the classification of LRP as the main
protein of a group of cell organelles discovered in the end
of the 1980s called vaults. These proteins include a fam-
ily of ribonuclear particles present in all eukaryotic cells,
explaining why LRP is also called human major vault
protein (MVP; 57).

Morphologically, vaults are organelles made up by four
structures: the MVP itself, adenosine diphosphate ribose,
telomerase-associated protein, and the small untranslated
RNA. Despite their complex structure and composition,
they are highly conserved among different phylogenetic
species and are present in different cell types. It has been
suggested that vaults perform basic functions in all cells,
especially in mechanisms that involve the protection of the
cell nucleus against toxic compounds and in the intracel-
lular transport of ribosomes and steroid receptors, includ-
ing those related to progesterone, estrogen, and glucocor-
ticoids (4). There are reports of the expression of protein
LRP in the bronchial epithelium and in the digestive tract,
in keratinocytes, in the adrenal cortex, in macrophages, in
the kidney proximal tubules, in the urothelium, in the pan-
creatic duct, in germinative cells, in fibroblasts, in Purkinje
cells, and in the endothelium of different tissues (58).

Immunihostochemical evaluations reinforce the corre-
lation between LRP levels and drug resistance in cell cul-
tures, the aggressiveness of tumors, and the bad prognosis
in cancer treatment. The molecular mechanism involved
in MDR mediated by LRP has not been fully determined,
but the early idea suggests that the protein acts in the
transport of molecules from the nucleus to the cytoplasm,
hypothesis generated due to the structural similarity and
close fitting to the nuclear pores. Besides transporting
toxic substances to the cytoplasm, it is believed that the
proteic complex of vaults can arrest molecules in vesicles
for later taking them out of the cells by exocytosis (Fig. 3;
58–60).

The hypothesis of drug arrest followed by its efflux by
using proteic pumps has been explained by investigations
involving cell signaling mechanisms and nuclear magnetic
resonance spectroscopy. It has been proposed that the

Fig. 3. Hypothetical role of LRP in mediating resistance against
chemotherapy drugs. LRP/vaults act in the nucleocytoplasmic and
vesicular transport of drugs. ER, endoplasmic reticulum (Adapted from
59).

vaults act as structured proteins in the signaling path-
ways of the epidermal growth factor. These proteins can
take part in multiple protein–protein interactions, which
result in a greater efficiency of the intracellular signaling
mechanisms. This model suggests that the role played by
LRP involves stimulation of the activation pathways of
molecules associated with cell proliferation mechanisms
and not necessarily the levels of LRP expressed in the cell
(59, 60).

Studies employing ovarian carcinoma cells show that a
high LRP expression is required, but not enough, for the
development of the MDR phenotype in these cells. More-
over, no relation was seen between the resistance to drugs
such as etoposide, daunorubicin, and vincristine and the
overexpression of the vaults (61). Van Zon and colleagues
(2004) assessed the efflux and the arrest of anthracyclines
in vesicles and found these mechanisms to be independent
of the increased LRP expression (62). The absence and the
reduction of vaults expression were also assessed and were
shown not to induce hypersensitivity to cytostatic drugs
and not to affect the cells resistance ability (63).

However, other studies suggest the overexpression of
LRP can be seen as a phenomenon related to resistance
against several chemotherapy agents, such as doxorubicin,
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vincristine, etoposide, and taxol in patients with solid tu-
mors such as sarcomas, ovary, kidney, bladder, colon, and
lung cancer (64). In the case of neoplasms of hematologic
origin, LRP expression did not show any significant cor-
relation with risk groups identified by initial white blood
cell (WBC) count, gender, and age, while the presence of
the MDR phenotype seems to be significantly influenced
by them (65). The expression of LRP in AML, multiple
myeloma, and diffuse large B-cell lymphomas was asso-
ciated with reduced response to chemotherapy drugs and
with a shorter life expectancy of patients (66). In ALL
cases, LRP was shown to be related to the in vitro resis-
tance against daunorubicin (67). Studies have also eval-
uated the contribution of LRP in MDR in children with
ALL. These studies showed a positive correlation in pre-B
and pro-B ALL and a negative correlation in the T-cell
ALL cases (63, 68). The results are still contradictory,
since some analyses revealed no difference between LRP
levels in the initial diagnosis and after relapses, while oth-
ers found significantly larger expressions in samples with
multiple relapses (65, 69).

Several studies related the detection of LRP, and of
other resistance proteins that belong to the same cel-
lular group, to the MDR phenotype. While LRP and
ABCB1 are rarely overexpressed simultaneously, the fre-
quent concomitant expression of LRP and ABCC1 is
seen in ABCB1-negative malignant cell strains. Due to
the proximity in the location of genes lrp (16p11.2) and
abcc1 (16p13.1), it was initially believed that the gene lrp
was co-amplified with gene abcc1. However, later studies
reported the expression of LRP by itself, as well as de-
termined that two proteins are rarely located in the same
amplicon (58, 70).

Therefore, the contradictions seen in the studies pub-
lished so far suggest the need for further investiga-
tions regarding LRP/MDR (63). The latest studies
highlight the possibility of the involvement of LRP in
MDR through the signaling regulation by kinase pro-
teins traditionally regulated by extracellular growth fac-
tors (Ras/Raf/ERK) or by the phosphatidylinositol 3-
kinase/serine-threonine kinase (PI3K/AKT) pathway.
Among the phosphatases involved, Phosphatase and
Tensin Homolog (PTEN) stands out, as it interacts with
the pathways described above by promoting the regula-
tion of gene expression and cellular growth (60). In this
sense, mutations of the gene PTEN or the inhibition of
this enzyme can silence it and promote the development
of malignant neoplasms by the constitutive activation of
AKT. In the hematopoietic strains, active Raf and AKT
cause an MDR phenotype in cells by stimulating pro-
liferation, apoptosis prevention, and increase of clono-
genicity. In mammary cancer cells, Raf causes resistance
against chemotherapy drugs by inducing the expression
of ABCB1 and the antiapoptotic protein Bcl-2 (71, 72).

Uncertainties about the mechanism through which pro-
tein LRP is involved in the resistance against chemother-
apy drugs reinforce the multifactorial nature of MDR.
Several biochemical pathways can be simultaneously in-
volved, as well as specific cell types are shown to be more
susceptible to resistance against cancer treatment medi-
ated by LRP (66).

FINAL CONSIDERATIONS

The development of new chemotherapy drugs, as well
as the use of more aggressive therapeutic protocols, has
improved the rates of AL cure. However, some patients
do not respond to treatment and have relapses (73). It
is believed that one of the causes for treatment failure
takes place through the MDR mechanism. Extrusion of
chemotherapeutic drugs out of the cell, mediated by over-
expression or activation of transport proteins, is the most
commonly involved mechanism of chemoresistance in
hematologic neoplasms. Literature reports the increased
expression of proteins ABCB1, ABCC1, and LRP would
be related to the MDR phenotype, and several studies have
been published aiming to elucidate the relation between
the expression of proteins ABCB1, ABCC1, and LRP and
the prognostic factors of ALs, such as age, WBC count at
diagnosis, aberrant immunophenotypic markers in blasts
cells, and CD34 expression (Table 1).

However, many of these studies are controversial when
regarding the relationship between the overexpression of
these proteins with worse patient prognosis, emphasizing
the need for elucidation of resistance mechanisms oper-
ated by them (78).

Nowadays, the resistance mechanism mediated by
protein ABCB1 is the one that has been best estab-
lished. Some studies, by evaluating ABCB1 expression
in AL patients, showed that the correlation of this pro-
tein with patient prognosis has no clinical relevance
(65, 77, 80, 81, 86, 87). On the other hand, Fujimaki and
colleagues (2002) reported that the expression of proteins
ABCB1 and ABCC1 is more relevantly related in the
studies involving AML (73). According to Figueiredo-
Pontes and colleagues (2008), the heterogenicity of cells
in AMLs and the increased expression of MDR trans-
porters in most of the immature population of myeloid
leukemia cells reinforces that MDR might be responsible
for the failure in treating these neoplasms (85). However,
these results must be interpreted with care, since in some
studies the number of samples was small.

Other studies show that the isolated expression of pro-
tein LRP is determinant in the phenomenon of resistance
against chemotherapy drugs in cell strains of ALL pa-
tients (64,78). More specifically, Den Boer and colleagues
(1998) suggest that LRP might contribute to MDR espe-
cially in pre-B ALL in pediatric patients (67). Olson and
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TABLE 1. Studies on the clinical importance of the expression of genes abcb1, abcc1, and lrp and/or proteins ABCB1, ABCC1, and
LRP in ALs

Author Method Sample Results/conclusions

Dhooge et al. (1999) (74) Immunohistochemistry de novo ALL (n = 102)
and relapse ALL (n =
35)

The expression of protein ABCB1 negatively
influenced the prognosis, especially in de novo
ALL cases

Wutcher et al. (2000) (75) Flow cytometry ALL (n = 102) and AML
(n = 121)

The expression of protein ABCB1 did not negatively
influence the prognosis

Fujimaki et al. (2002) (73) Flow cytometry and
RT-PCR

ALL (n = 18) and AML
(n = 26)

The expression of gene and protein ABCB1 was
more significant in AML patients, mainly in
relapse cases. The expression of protein ABCC1
did not show clinical correlation

Schaich et al. (2004) (76) RT-PCR De novo or secondary
AML (n = 331)

The expression of ABCB1 and ABCC1 negatively
influenced full disease remission after treatment,
while LRP did not negatively influence the
prognosis

Suarez et al. (2004) (77) Flow cytometry De novo AML (n = 90) The expression of ABCB1, ABCC1, and LRP did
not negatively influence the prognosis

Valera et al. (2004) (78) RT-PCR ALL (n = 30) Among the evaluation of proteins ABCB1, ABCC1,
and LRP, only LRP negatively influence the
prognosis

Benderra et al. (2005) (79) Flow cytometry De novo AML (n = 85) The expression of ABCB1 was shown to influence
treatment failure

Olson et al. (2005) (80) Flow cytometry Initial ALL (n = 295) The overexpression of ABCB1, ABCC1, and LRP to
diagnostics did not influence treatment failure

Anuchapreeda et al. (2006)
(81)

RT-PCR ALL (n = 61) and AML
(n = 14)

The expression of gene abcb1 was statistically similar
in patients with relapse and patients who
responded to treatment

Huh et al. (2006) (82) Nested RT-PCR ALL (n = 32) and AML
(n = 39)

The expression of ABCB1, ABCC1, and LRP
influenced full remission and the survival rate in
AL patients, especially ABCB1 and LRP

Styczynski et al. (2007) (83) Flow cytometry Initial ALL (n = 527),
relapse ALL (n = 104),
initial AML (n = 133),
and relapse AML
(n = 23)

The expression of ABCB1, ABCC1, and LRP
represented an adverse prognostic factor with
relevance in de novo ALL cases

Yasunami et al. (2007) (64) Flow cytometry and
real-time RT-PCR

ALL-T (n = 11) Among the evaluation of proteins ABCB1, ABCC1,
and LRP, only LRP showed increased expression
and function

Fedasenka et al. (2008) (84) Real-time RT-PCR Pre-B ALL with
differentiated responses
to CT (n = 19)

The expression of ABCC1 and LRP did not have a
direct relation with minimum residual disease

Figueiredo-pontes et al.
(2008) (85)

Flow cytometry De novo AML CD34+
(n = 26)

The overexpression of ABCB1, ABCC1, and LRP in
more immature leukemia cell strains influenced
treatment failure

Grotel et al. (2008) (86) Flow cytometry and
real-time RT-PCR

ALL-T (n = 72) The expression of ABCB1, ABCC1, and LRP to
diagnosis, in all cut-offs adopted, did not
negatively influence prognosis

Svirnovski et al. (2009) (87) Flow cytometry and
RT-PCR

ALL (n = 65), relapse
ALL (n = 42), AML
(n = 53), and relapse
AML (n = 16)

There was no significant difference between the
expression of gene abcb1 and protein ABCB1 in
patients with de novo and recently diagnosed AL

El-Sharnouby et al. (2010)
(88)

RT-PCR All (n = 34) The expression of ABCC1 and LRP were associated
with poorer outcomes and worse two-year survival

Chauhan et al. (2012) (89) Real-time RT-PCR ALL (n = 40) and AML
(n = 45)

High expression of ABCB1 in AML and ABCC1 in
ALL was associated with poor response to
induction chemotherapy

Scheiner et al. (2012) (90) Flow cytometry AML (n = 109) ABCB1 expression did not show an impact on the
response to remission induction therapy

ALL, acute lymphoblastic leukemia; ALL-T, acute lymphoblastic leukemia of lymphocytes T; Pre-B ALL, acute lymphoblastic leukemia of pre-B
lymphocytes; AML, acute myeloid leukemia; CT, chemotherapy; RT-PCR, reverse transcriptase–polymerase chain reaction.

J. Clin. Lab. Anal.



68 Moraes et al.

colleagues (2005) did not find a correlation between LRP
and the worst prognostic of ALL patients (80).

Another parameter often evaluated in the literature is
the relationship between MDR proteins and the pres-
ence of CD34 antigen, an immature cell marker and an
important factor in AL prognosis. Studies investigating
AML patients showed the activity and expression of pro-
teins ABCB1, ABCC1, and LRP were more relevant in
CD34+ cells than in those with a negative phenotype
for this marker (79, 85, 91). Grotel and colleagues (2008)
showed that pediatric patients with LLA-T CD34+ had
shorter life expectancy (86). However, authors associated
the short life expectancy of these patients with an increase
in resistance protein activity, but not with an increased
expression of genes abcb1, abcc1, and lrp. A possible ex-
planation for this fact would be the existence of addi-
tional posttranscriptional regulatory mechanisms or the
occurrence of posttranslational modifications necessary
for protein activity.

The results in literature show that the methodology em-
ployed for the analysis of resistance proteins directly inter-
feres on the interpretation of results. For example, while
the study of Dhooge and colleagues (1999) showed by
immunohistochemistry the existence of a strong correla-
tion between the expression of protein ABCB1 and the
adverse clinical course for ALL, Wutcher and colleagues
(2000) used flow cytometry and obtained contrary results
(74,75). Fujimaki and colleagues (2002), in a study involv-
ing patients who were nonresponsive to the chemother-
apy treatment, found higher levels of expression for gene
abcb1, determined by reverse transcriptase–polymerase
chain reaction (RT-PCR), than of expression for protein
ABCB1, determined by flow cytometry (73). This study
shows that the results obtained by flow cytometry and RT-
PCR are not correlated in all cases. This is due both to the
complexity of the mechanisms involved in translation of
the functional protein and to the sensibility of the method
and its standardization, since, according to some authors,
the sensibility of RT-PCR is higher for determining the
MDR phenotype (64, 73).

As it can be seen, the influence of the MDR phenotype
is controversial in AL prognosis. The contradictory results
can be justified by use of different cut-off values, existence
of demographic variations among samples, involvement
of other resistance mechanisms, and use of different anal-
ysis methodologies (78).

The use of methodologies that directly quantify the
expression of the gene seems to be the most adequate
for defining its participation in the resistance phenotype
against chemotherapy drugs in oncohematologic diseases.
However, RT-PCR only evaluates the gene expression,
while flow cytometry can bring up more information re-
garding AL prognosis as it allows for trials that evaluate
the activity of MDR proteins and the phenotypic detec-

tion of additional markers typical of hematologic neo-
plasms.

Since the discovery of MDR proteins, investigations
have been carried out to establish their role in the prog-
nosis of hematological malignancies and discover drugs
capable of antagonizing their role in chemoresistance. Al-
though relative success was achieved in determining the
biological role of MDR proteins (89,90,92,93), little suc-
cess has been obtained in demonstrating the benefits of
their pharmacological modulation (93–95).

Among the possible target proteins related to the MDR
phenotype, inhibitors of ABCB1 protein are the ones to
have been most thoroughly investigated. Based on se-
quential refinements in the pharmacodynamic properties
of ABCB1 competitive inhibitors, they are categorized
into three generations of drugs (95). Studies that used cy-
closporine A (CSA), a first-generation ABCB1 inhibitor,
showed a response and survival advantage for its use
in relapsed and refractory AML (96). However, subse-
quent randomized trials of CSA or valdospar, a second-
generation ABCB1 inhibitor, failed to demonstrate an
improvement in outcomes (94, 97). Zosuquidar, a third-
generation inhibitor, also demonstrated promising results
at first (98), but Cripe and colleagues (2010) failed to
demonstrate the same benefits from the addition of zo-
suquidar to standard induction chemotherapy (93). De-
spite the failure to find an ABCB1 inhibitor of proven
clinical efficacy, studies that seek inhibitors of MDR pro-
teins have not been completely abandoned, since it is im-
possible to ignore the connection between MDR proteins
and therapy outcome, especially in AML patients (95).

In summary, MDR is a multifactorial phenomenon.
The expression and activity profiles of ABCB1, ABCC1,
and LRP, proteins capable of promoting the efflux of a va-
riety of chemotherapeutic agents from the cell cytoplasm
represent one of the greatest causes of failure in AL treat-
ment. Although there is a consensus in reporting that the
detection of these proteins, mainly ABCB1, is important
in the AL prognosis, there is controversy in the literature
regarding the methodology used for their detection.
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