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A Multimodality Image-Based
Fluid–Structure Interaction
Modeling Approach for
Prediction of Coronary Plaque
Progression Using IVUS and
Optical Coherence Tomography
Data With Follow-Up
Medical image resolution has been a serious limitation in plaque progression research. A
modeling approach combining intravascular ultrasound (IVUS) and optical coherence
tomography (OCT) was introduced and patient follow-up IVUS and OCT data were
acquired to construct three-dimensional (3D) coronary models for plaque progression
investigations. Baseline and follow-up in vivo IVUS and OCT coronary plaque data were
acquired from one patient with 105 matched slices selected for model construction. 3D
fluid–structure interaction (FSI) models based on IVUS and OCT data (denoted as
IVUSþOCT model) were constructed to obtain stress/strain and wall shear stress (WSS)
for plaque progression prediction. IVUS-based IVUS50 and IVUS200 models were con-
structed for comparison with cap thickness set as 50 and 200 lm, respectively. Lumen
area increase (LAI), plaque area increase (PAI), and plaque burden increase (PBI) were
chosen to measure plaque progression. The least squares support vector machine (LS-
SVM) method was employed for plaque progression prediction using 19 risk factors. For
IVUSþOCT model with LAI, PAI, and PBI, the best single predictor was plaque strain,
local plaque stress, and minimal cap thickness, with prediction accuracy as 0.766, 0.838,
and 0.890, respectively; the prediction accuracy using best combinations of 19 factors
was 0.911, 0.881, and 0.905, respectively. Compared to IVUSþOCT model, IVUS50,
and IVUS200 models had errors ranging from 1% to 66.5% in quantifying cap thickness,
stress, strain and prediction accuracies. WSS showed relatively lower prediction
accuracy compared to other predictors in all nine prediction studies.
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1 Introduction

Current bottleneck of patient-specific coronary plaque model
construction is the resolution of in vivo medical imaging. The
threshold of cap thickness of vulnerable coronary plaques is
65 lm, while the resolution of in vivo coronary intravascular
ultrasound (IVUS) images is 150–200 lm, which is not enough to
identify vulnerable plaques with thin caps and construct accurate
biomechanical plaque models [1–3]. Optical coherence tomogra-
phy (OCT) with a 15–20 lm resolution has the capacity to identify
thin fibrous cap. A modeling approach combining IVUS and OCT
was introduced in our previous publication for cap thickness quan-
tification and more accurate cap stress/strain calculations [3]. In
this paper, patient baseline (time 1, or T1) and follow-up (time 2,
or T2) IVUS and OCT data were acquired and three-dimensional
(3D) coronary models were constructed using above approach for
plaque progression investigations. Morphological and mechanical
factors were combined together to identify best predictors and pla-
que progression prediction accuracies.

The pioneered research of Clarkson, Zarins, and Glagov and
others mainly focused on the relationship between plaque mor-
phology and plaque progression or remodeling based on histologic
sections from autopsy [4–6]. They performed several large-scale
studies to investigate the relationship between plaque area (PA),
lumen cross-sectional area (called lumen area (LA) for simplic-
ity), and the plaque remodeling [5–7]. As imaging technologies
advances, Mintz et al. and Nakamura et al. among others were
able to use medical imaging such as IVUS and angiography in
their investigation and their results also indicated that plaque area
and lumen area were closely related to plaque progression [8–10].
Besides plaque morphology, there have been intensive interests in
understanding the mechanism of plaque growth from the mechani-
cal perspective. By using ideal fluid models, Ku et al. indicated
that the early growth of plaque had a positive correlation with low
and oscillating flow shear stress [11]. When it comes to predicting
future plaque progression, histological or ex vivo experimental
approaches encounter an obstacle: they could only have one-time
data which could not provide data for plaque progression. Patient
(or animal) follow-up studies using advanced medical images can
provide multitime data to measure the growth of plaque over time.
These data can be used to investigate associations between risk
factors and plaque progression for possible plaque progression
prediction.

In recent years, several groups acquired follow-up in vivo
images (mainly IVUS in the current literature) to obtain quantita-
tive plaque morphological data including lumen area, plaque area,
and plaque burden (PB) changes (used as measurements of plaque
progression) and study their correlations with fluid hemodynam-
ics, particularly wall shear stress (WSS) [12–15]. Stone et al.
showed that large plaque burden and low local endothelial shear
stress could provide independent and additive prediction accuracy
in identifying plaques that develop progressive enlargement and
lumen narrowing, where additive prediction had 41% positive and
92% negative predictive accuracies [16]. Corban et al. used
follow-up virtual histology IVUS (VH-IVUS) data and indicated
that combination of plaque burden, WSS, and plaque phenotype
had incremental value for prediction of coronary plaque progres-
sion and increased plaque vulnerability in patients with nonob-
structive coronary artery disease [15]. Plaque progression may be
influenced by interactions of various morphological and mechani-
cal factors including structural and flow conditions, and its mecha-
nism has not been fully understood [17,18]. Wang et al. were
among the few that considered structural biomechanics in their
prediction analysis. They used fluid–structure interaction (FSI)
models with follow-up VH-IVUS data and showed that the combi-
nation of morphological and biomechanical factors could improve
prediction accuracy, compared to predictions using only morpho-
logical features [19]. These IVUS-based predictive studies have
provided fruitful achievements in our knowledge in the prediction
of plaque progression.

In recent years, OCT with high resolution is gradually becom-
ing a powerful tool in plaque research for its ability in identifying
the thin fibrous cap (cap thickness< 65 lm), inflammation and
calcification which are primary determinants of positive remodel-
ing [2,20]. Using OCT, Uemura et al. found 69 nonsignificant cor-
onary plaques (diameter stenosis< 50%) from 53 patients to study
the relation between morphological characteristics and plaque
progression during 7-month follow-up period [21]. The univariate
regression analysis showed that thin-cap fibroatheroma and micro-
channel images had a high correlation with subsequent luminal
progression [21]. Some groups studied plaque remodeling after
placing stent using OCT follow-up data and fluid dynamics mod-
els [22–24]. Plaque progression study using OCT follow-up data
and prediction methods which include morphological factors,
structural stress/strain, and fluid shear stress is lacking in the
current literature.

In this paper, patient follow-up IVUS and OCT data were
acquired and 3D FSI models based on combined IVUS, OCT, and
angiography data were constructed to obtain more accurate human
coronary atherosclerotic plaque morphology and plaque stress/
strain conditions and investigate the relationship between plaque
progression and morphological and mechanical factors. Lumen
area, plaque area, and plaque burden changes were used as meas-
ures of plaque progression. Machine learning method was used to
fit the morphological and mechanical factors to predict plaque
progression. Prediction accuracies of key morphological and
mechanical predictors and their combinations were compared to
identify best predictors.

2 Data, Models, and Methods

2.1 Intravascular Ultrasound and Optical Coherence
Tomography Data Acquisition. Baseline and 10-month follow-
up in vivo IVUS/OCT/Angiography data were acquired from two
arteries (left circumflex coronary artery and right coronary artery)
of one participant (female, 80 age) at Cardiovascular Research
Foundation using approved protocol with informed consent
obtained. A total of 8620 IVUS images (2 pullbacks) and 813
OCT images (3 pullbacks) were acquired from two arteries at
baseline. A total of 11,017 IVUS images (3 pullbacks) and 813
OCT images (3 pullbacks) were acquired from two arteries at
follow-up. Different pullbacks from one artery could have differ-
ent overlap in same artery. A total of 105 matched baseline slices
(51 slices from left circumflex coronary and 54 slices from right
coronary artery) were used in our model construction and progres-
sion prediction analysis. IVUS catheter was traversed distally
through the artery to the region of interest and performed by an
automatic pullback speed of 0.5 mm/s using a motorized trans-
ducer from OptiCross, Boston Scientific/SCIMED Corporation
(Natick, MA). Aortic pressure was recorded through catheter and
used as pressure boundary condition in the model. Following
IVUS image acquisition, OCT catheter (St. Jude, Minnesota, MN)
was also traversed to the region of interest and an automatic pull-
back at 20 mm/s was performed. The positions of both catheters
were recorded with angiography prior to pullback. The IVUS/
OCT/angiography data at baseline (time 1, T1) and follow-up
(time 2, T2) were acquired uniformly according to the above
descriptions. All image slices were segmented into three plaque
elements: fibrotic plus fibro-fatty, necrotic core (lipid), and dense
calcium (calcification). The coregistration of IVUS and OCT
images were performed following the procedure described in Ref.
[25]. We used a framework that uses dynamic time warping for
the longitudinal coregistration and dynamic programming for the
circumferential coregistration of images. The segmentation of paired
IVUS and OCT was performed by experts. OCT segmentation meth-
ods have been previously reported [26]. More details in image regis-
tration and segmentation can be found in Refs. [3,25,26]. Figure 1
shows samples of paired IVUS and OCT images at T1 and T2 and
corresponding segmented IVUSþOCT contours. Paired IVUS and
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OCT images were merged into IVUSþOCT slices and denoted as
IVUSþOCTT1 and IVUSþOCTT2, with IVUS providing whole
slice (lumen and out-boundary) contours, and OCT providing cap
thickness and plaque component contours (see Fig. 1). Furthermore,
the merged IVUSþOCT data at the two time points
(IVUSþOCTT1 and IVUSþOCTT2) were coregistered for plaque
progression measurements between T1 and T2. This registration of
IVUSþOCT at T1 and T2 was performed by an expert using
branches as the main landmarks.

2.2 The Three-Dimensional Fluid–Structure Interaction
Model and Mooney–Rivlin Model for Material Properties.
The IVUSþOCTT1 and IVUSþOCTT2 slice contours were used
to make 3D coronary geometries combing the angiography images
at T1 and T2. Time-dependent vessel centerlines which had curva-
ture change and cyclic bending information were extracted from
angiography for modeling use (Fig. 2). Segmented IVUSþOCT
slices were assembled to the vessel centerline with minimum cur-
vature to construct vessel 3D geometry using the segment location

Fig. 2 Curvature variation data from angiography of right coronary artery. (a) The angiography image with
minimum pressure. (b) The angiography image with maximum pressure. (c) Vessel bending curves with maxi-
mum and minimum curvature. (d) Stacked contours plot with minimum and maximum pressure. Contour
color: red lipid, black calcification, blue lumen, and out-boundary.

Fig. 1 Samples of paired IVUS and OCT images at T1 and T2 with segmented contours. Contour color: blue lumen
contour, green out-boundary, red lipid contour, yellow calcification.
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identified through coregistration. These models are referred to as
IVUSþOCT models. Figure 2 shows the angiography images,
vessel bending curves and 3D vessel segment with stacked con-
tours at maximum and minimum pressure. The time-dependent
displacement of the centerline obtained from angiography was
imposed to the vessel segment to implement cycle bending in our
FSI models. Aortic pressure (max, min pressure: 136, 88 mmHg)
obtained by catheter were used as inlet pressure conditions. Axial
retraction (also called axial shrink-stretch process in our previous
publications) was set at 5% in our models because atherosclerotic
vessels were stiffer than healthy vessels. Details of our FSI mod-
els can be found in Ref. [3,26].

For comparison purposes, models were also made using IVUS
data alone. Due to the limitation of IVUS resolution, when cap
thickness is under 200 lm, IVUS does not see it. In this paper,
two IVUS-based models were made with cap thickness set as 50
and 200 lm (denoted by IVUS50 and IVUS200), respectively, fol-
lowing procedures and justifications given in Ref. [3]. IVUS50
and IVUS200 models were constructed and solved, and results
were compared with that from the IVUSþOCT model to observe
improvements from our IVUSþOCT approach. It should be
noted that results from IVUSþOCT model is taken as a bench-
mark to measure the errors generated by IVUS50 and IVUS200
models with artificially added cap.

The anisotropic Mooney–Rivlin model was used for the vessel
tissue. Its strain energy density function is

W ¼ c1ðI1–3Þ þ c2ðI2–3Þ þ D1½expðD2ðI1–3ÞÞ–1�

þ ðK1=K2Þ f exp ½K2ðI4 � 1Þ2� � 1g (1)

I1 ¼
X

Cii; I2 ¼ 1=2½I2
1 � CijCij� (2)

where I1 and I2 are the first and second invariants of right

Cauchy–Green deformation tensor C defined as C¼ [Cij]¼X
T
X,

X¼ [Xij]¼ [@xi/@aj]; (xi) is current position; (ai) is original posi-

tion, I4¼Cij(nc)i(nc)j; nc is the unit vector in the circumferential

direction of the vessel; and c1, c2, D1, D2, K1, and K2 are material

parameters [27–29] whose values were determined using in vivo

IVUS data [3]: c1¼�262.6 kPa, c2¼ 22.9, D1¼ 125.9 kPa,

D2¼ 2, K1¼ 7.19 kPa, K2¼ 23.5.
Plaque components were assumed to be isotropic and the iso-

tropic Mooney–Rivlin material model was used to describe their
material properties

Wiso ¼ c1ðI1–3Þ þ c2ðI2–3Þ þ D1½expðD2ðI1–3ÞÞ –1� (3)

The material constants from existing literature were used in
this paper [27,30,31]: lipid: c1¼ 0.5 kPa, c2¼ 0, D1¼ 0.5 kPa,
D2¼ 1.5. Calcification: c1¼ 92 kPa, c2¼ 0, D1¼ 36 kPa, and
D2¼ 2.

The models were solved by a commercial finite element soft-
ware ADINA (Adina R & D, Watertown, MA) following established
procedures [27,32].

2.3 Data Extraction and Plaque Measurements. Morpho-
logical and plaque stress, strain and flow shear stress were
extracted for all 105 slices from our 3D FSI models
(IVUSþOCT, IVUS50, and IVUS200) for model comparisons
and progression prediction use. Each slice contained 100 evenly
spaced nodal points taken on the lumen. Each lumen nodal point
was connected to a corresponding point on vessel out-boundary
(see Fig. 3). The length of the connecting line is defined as the
wall thickness (WT). If the line passes through a lipid or calcifica-
tion region, the distance between lumen nodal point and first time
the line meets the lipid or calcification is defined cap thickness.
The average and minimum values of cap thickness from one slice
were obtained and recorded as mean cap thickness and min cap
thickness, respectively. The length of the line segmented within

the lipid or calcification is defined as the lipid or calcification
depth. If slice contained the lipid or calcification, there are two
lines tangent to lipid or calcification, which pass the position trav-
ersed by centerline. The angle between the two tangent lines is
defined as the lipid or calcification angle.

The area of lipid or calcification in a slice was recorded as lipid
or calcification area. The area enclosed by lumen contour was
denoted as LA. The area between lumen and out-boundary was
defined as plaque area (denoted as PA). And, the PB was defined
by the following formula:

plaque burden ðPBÞ ¼ ½ðPAÞ=ðPAþ LAÞ� � 100% (4)

Therefore, morphological factors used in this study included LA,
PA, PB, WT, mean cap thickness (MeanCT), min cap thickenss
(MinCT), mean calcification cap thickness (MeanCaCap), min
calcification cap thickness (MinCaCap), mean lipid/calcification
depth (LipidDepth/CaDepth), lipid/calcification angle (LipidAngle/
CaAngle), and lipid/calcification area (LipidArea/CaArea), alto-
gether 14 morphological risk factors (used as predictors in the pre-
diction study).

For mechanical risk factors, WSS, plaque wall stress (PWS),
and plaque wall strain (PWSn) values were extracted from 3D FSI
model solution at 100 lumen nodal points of all slices. Average
values of WSS, PWS, and PWSn over 100 lumen nodals on each
slice were recorded for analysis. It should be noted that PWS,
PWSn, and WSS were all taken at the lumen wall (solid and flow)
as that is where the attention has been for both plaque remodeling,
progression, and vulnerability (possibility to rupture) investiga-
tions. If slice contains cap, mean cap PWS (CapPWS) and PWSn
(CapPWSn) values from all cap nodal points were calculated and
also recorded. If a slice did not contain lipid or calcification, its
CapPWS and CapPWSn were defined as 0. Altogether, we have
five mechanical risk factors to be used as predictors.

2.4 Plaque Progression Quantifications. For all paired sli-
ces (T1 slices paired with T2 slices), lumen area increase (LAI),
plaque area increase (PAI), and plaque burden increase (PBI)
from T1 to T2 were selected as measures for plaque progression

lumen area increase ðLAIÞ ¼ ðLA at T2Þ � ðLA at T1Þ (5)

plaque area increase ðPAIÞ ¼ ðPA at T2Þ � ðPA at T1Þ (6)

plaque burden increase ðPBIÞ ¼ ðPB at T2Þ � ðPB at T1Þ (7)

For the sake of simplification, for each progression measure which
would be the prediction target, plaque slices were classified into
two types. Using PAI as an example, for a given slice, if PAI> 0,
this slice would be labeled 1. If the slice had PAI � 0, it would be
labeled �1. Slices were labeled “1” and “�1” for LAI and PBI
following the same procedures.

2.5 Plaque Progression Prediction. The sample size was
105 slices using slice as analysis unit in this study. The least
squares support vector machine (LS-SVM), suitable for small

Fig. 3 Diagrammatic sketch of the definition of WT, cap thick-
ness, lipid depth, and angle
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sample size (100’s), was used for our plaque progression predic-
tion study. More details about LS-SVM can be found in Ref. [33].
In this study, LS-SVM used Gaussian radial basis function as the
kernel function and steepest descent method for searching optimal
parameters. A standard fivefold cross-validation procedure was
employed using all 105 slices as the training and testing sets. The
105 slices were randomly divided into five groups. Each time, any
four groups of slices would take turns to be the training set to
determine parameter values in the prediction model with the
remaining group (the testing group) was reserved to validate the
prediction accuracy of the model. This procedure was repeated
100 times to stabilize the prediction results. Nineteen morphologi-
cal and mechanical predictors identified in Sec. 2.3 were used to
determine their prediction accuracies. Different combination of
risk factors was used in LS-SVM to compare the prediction ability
and find the best combination for plaque progression prediction.

For our prediction method, prediction accuracy (Acc) is defined
as follows:

accuracy ¼ ðTPþ TNÞ=ðTPþ FPþ TNþ FNÞ (8)

where we set plaque increase and plaque no-increase as positive
and negative pattern, respectively, TP is the number of true posi-
tive outcomes, FP is the number of false positive outcomes, TN is
the number of true negative outcomes, and FN is the number of
false negative outcomes. Sensitivity (Sen) and specificity (Spe)
were also calculated using the formulas below to avoid the reli-
ance of the uneven distributed data in two classes

sensitivity ¼ TP=ðTPþ FNÞ (9)

specificity ¼ TN=ðFPþ TNÞ (10)

Results are reported in the next section.

3 Results

3.1 Plaque Progression Prediction Using Single Risk
Factors. Using three models (IVUSþOCT, IVUS50, and
IVUS200) and three progression measures (LAI, PAI, and PBI),
nine prediction studies were performed for all the predictors. For
each prediction study, 5-fold prediction experiments were
repeated 100 times for better stability. After averaging the predic-
tion results from the 100 repeated experiments, prediction accu-
racy of LAI, PAI, and PBI by nine most popular predictors using
results from the three models were given by Fig. 4. Values of pre-
diction accuracy, sensitivity and specificity were summarized by

Table 1. According to the accuracy values of 19 single factors
using IVUSþOCT data, PWSn showed the best prediction accu-
racy (0.766) for LAI, with accompanying sensitivity and specific-
ity at 0.787 and 0.756, respectively. For PAI prediction, CapPWS
had the best prediction accuracy (0.838) with its sensitivity and
specificity at 0.939 and 0.603, respectively. For PBI prediction,
MinCT gave the best prediction accuracy (0.890) with its sensitiv-
ity and specificity at 0.863 and 0.900, respectively. The best pre-
diction accuracy of PBI was 12.4% higher than the best accuracy
of LAI. The best sum of sensitivity and specificity of PBI was
22% higher than the best value of LAI.

For IVUS200 model, PWSn, PWS, and CapPWSn were the
best predictors for LAI, PAI, and PBI predictions, respectively.
Using LAI as measure, PWSn was the best single risk factor
IVUS200. This is the same for IVUSþOCT, and IVUS50.
Although WSS was commonly accepted as an important factor for
plaque progression, it showed relatively lower accuracies for pre-
diction of plaque progression in our nine prediction studies com-
pared to other predictors.

3.2 Plaque Progression Prediction Using Combinations of
Morphological Risk Factors. Lumen cross section area, plaque
area, and plaque burden were all associated with plaque progres-
sion [4–6]. The combination of WT, LA, PA, and PB (denoted as
Com.1) was used for plaque progression prediction. To emphasize
the importance of mean cap thickness (lipid) and min cap thick-
ness (lipid) due to their strong associations with plaque vulnerabil-
ity and progression, these two factors were added to Com.1 to
make Com.2 [2,3,20]. To get best possible accuracy, we combined
the all 14 morphological risk factors (denoted as Com.3) men-
tioned in Sec. 2.3 to obtain its accuracy of plaque progression pre-
diction. The accuracy, sensitivity and specificity values using
three combinations and three measurements of plaque progression
were showed in Table 2. For IVUSþOCT model, Com.3 using
LAI as the measure showed the highest accuracy (0.910) and
highest sum of sensitivity (0.880) and specificity (0.938). The
accuracy of Com.3 was all higher than the values of Com.1 and
Com.2 using each one of the each measures. For IVUSþOCT
model, the accuracy of Com.1 using PBI was the worst and 20.8%
less than the value of Com.3 using LAI. Using Com.3 as predic-
tors, the accuracy difference between IVUSþOCT, IVUS50, and
IVUS200 was tiny (<3%) for all three measures.

3.3 Plaque Progression Prediction Using Combinations of
Both Morphological and Mechanical Risk Factors. Mechanical
risk factors play an essential role in the process of plaque

Fig. 4 Prediction accuracies of nine single factors from IVUS 1 OCT, IVUS50, and IVUS200 models
according to three measurements of plaque progression
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progression. The combination of five mechanical risk factors
including local stress/strain, stress/strain and WSS and 14
morphological risk factors denoting as Com.4 was used to pre-
dict plaque progression. Table 3 gave the accuracy, sensitivity
and specificity of Com.4 with LAI, PAI, and PBI as the meas-
ures, respectively. For IVUSþOCT model, using LAI as the
measure, Com.4 showed the highest accuracy (0.911) and high-
est sum (1.819) of sensitivity and specificity, while PAI gave
the worse accuracy (0.881) which was 3% less than the value
of Com.4 using LAI. No matter which measure were employed
for plaque progression, the prediction accuracy of Com.4 from
IVUSþOCT model were always higher than 0.88, and accura-
cies from IVUS50 and IVUS200 models were slightly less, but
still exceeded 0.87.

3.4 Comparison of IVUS 1 OCT, IVUS50, and IVUS200
Models. Cap thickness has a significant effect on the accuracy of
stress/strain prediction based on computational modeling studies.
Table 4 shows the comparison of MinCT, MeanCT, CapPWS, and
CapPWSn of four representative slice samples from IVUSþOCT,
IVUS50, and IVUS200 models. The cap thickness of
IVUSþOCT was from the measurement of OCT data. As could
be seen from Table 4, IVUS50 underestimated MinCT by 66.5%
and overestimate CapPWS by 58.6%, compared to IVUSþOCT.
IVUS200 overestimated the MeanCT by 25.1% and underestimate
CapPWS by 17.0%, compared to IVUSþOCT. It should be noted
that IVUS50 and IVUS200 estimated the cap thickness with errors
which are unknown without OCT in practice, thereby likely lead
to the erroneous estimation of CapPWS and CapPWSn values.

Table 2 Prediction accuracy, sensitivity, and specificity using three combination of morphological risk factors according to three
measurements of plaque progression from IVUS 1 OCT, IVUS50, and IVUS200 models. Com.1 is a combination of WT, LA, PA, and
PB. Com.2 is a combination of mean cap thickness, min cap thickness, WT, LA, PA, and PB. Com.3 is made of a combination of 14
morphological risk factors used in this study.

LAI PAI PBI

Predictor (Acc, Sen, Spe) (Acc, Sen, Spe) (Acc, Sen, Spe)

IVUSþOCT Com.1 (0.774, 0.754, 0.803) (0.845, 0.906, 0.708) (0.702, 0.494, 0.816)
Com.2 (0.849, 0.834, 0.869) (0.838, 0.909, 0.682) (0.883, 0.820, 0.918)
Com.3 (0.910, 0.880, 0.938) (0.866, 0.929, 0.719) (0.904, 0.854, 0.931)

IVUS50 Com.1 (0.812, 0.776, 0.843) (0.810, 0.872, 0.694) (0.648, 0.468, 0.764)
Com.2 (0.862, 0.830, 0.891) (0.806, 0.865, 0.701) (0.887, 0.832, 0.921)
Com.3 (0.901, 0.869, 0.930) (0.854, 0.919, 0.741) (0.890, 0.839, 0.919)

IVUS200 Com.1 (0.801, 0.758, 0.842) (0.813, 0.703, 0.874) (0.871, 0.376, 0.946)
Com.2 (0.867, 0.893, 0.840) (0.808, 0.877, 0.680) (0.879, 0.748, 0.941)
Com.3 (0.898, 0.925, 0.865) (0.878, 0.923, 0.797) (0.917, 0.819, 0.960)

Table 1 Nine single factors with prediction accuracy, sensitivity and specificity from IVUS 1 OCT, IVUS50, and IVUS200 models
according to three measurements of plaque progression

LAI PAI PBI

Predictor (Acc, Sen, Spe) (Acc, Sen, Spe) (Acc, Sen, Spe)

IVUSþOCT PWSn (0.766, 0.787, 0.756) (0.699, 0.829, 0.415) (0.619, 0.170, 0.840)
PWS (0.706, 0.653, 0.761) (0.657, 0.842, 0.256) (0.622, 0.212, 0.828)
CapPWSn (0.619, 0.420, 0.792) (0.794, 0.936, 0.467) (0.872, 0.857, 0.881)
CapPWS (0.619, 0.418, 0.804) (0.838, 0.939, 0.603) (0.850, 0.805, 0.872)
WSS (0.596, 0.617, 0.594) (0.695, 0.961, 0.061) (0.673, 0.250, 0.890)
PB (0.699, 0.674, 0.729) (0.698, 0.959, 0.072) (0.660, 0.135, 0.915)
LA (0.634, 0.542, 0.731) (0.759, 0.840, 0.582) (0.615, 0.101, 0.874)
MeanCT (0.591, 0.356, 0.802) (0.726, 0.897, 0.342) (0.862, 0.853, 0.861)
MinCT (0.572, 0.360, 0.770) (0.711, 0.884, 0.307) (0.890, 0.863, 0.900)

IVUS50 PWSn (0.779, 0.759, 0.807) (0.617, 0.322, 0.788) (0.722, 0.871, 0.467)
PWS (0.719, 0.835, 0.575) (0.772, 0.609, 0.862) (0.681, 0.802, 0.484)
CapPWSn (0.620, 0.798, 0.404) (0.718, 0.405, 0.885) (0.900, 0.897, 0.907)
CapPWS (0.686, 0.876, 0.445) (0.750, 0.518, 0.876) (0.896, 0.900, 0.891)
WSS (0.542, 0.595,0.513) (0.639, 0.049, 0.951) (0.670, 0.878, 0.316)
PB (0.748, 0.768, 0.727) (0.640, 0.092, 0.927) (0.593, 0.839, 0.190)
LA (0.676, 0.761, 0.581) (0.786, 0.699, 0.837) (0.596, 0.871, 0.141)
MeanCT (0.667, 0.888, 0.387) (0.734, 0.398, 0.913) (0.895, 0.900, 0.889)
MinCT (0.650, 0.838, 0.414) (0.623, 0.223, 0.842) (0.913, 0.921, 0.902)

IVUS200 PWSn (0.739, 0.739, 0.752) (0.614, 0.338, 0.773) (0.628, 0.544, 0.540)
PWS (0.682, 0.740, 0.619) (0.750, 0.587, 0.839) (0.714, 0.697, 0.575)
CapPWSn (0.619, 0.818, 0.372) (0.744, 0.403, 0.927) (0.796, 0.585, 0.885)
CapPWS (0.592, 0.803, 0.336) (0.786, 0.517, 0.929) (0.812, 0.657, 0.858)
WSS (0.581, 0.633, 0.536) (0.644, 0.037, 0.963) (0.666, 0.343, 0.720)
PB (0.727, 0.757, 0.693) (0.636, 0.093, 0.925) (0.665, 0.391, 0.666)
LA (0.672, 0.765, 0.566) (0.775, 0.690, 0.826) (0.755, 0.775, 0.636)
MeanCT (0.652, 0.873, 0.374) (0.711, 0.353, 0.904) (0.754, 0.518, 0.873)
MinCT (0.633, 0.820, 0.397) (0.742, 0.436, 0.906) (0.778, 0.586, 0.860)

Acc-accuracy; Sen-sensitivity; Spe-specificity.
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Cap thickness decrease could be seen from the cap thickness val-
ues of the same slice at T1 and T2 in Table 4. Another item to be
aware of is that IVUS50 and IVUS200 cannot give accurate val-
ues of cap thickness increase from T1 to T2, when the real cap
thickness is under 200 lm. The fact that, IVUS50 and IVUS200
were not capable of measuring cap thickness increase since their
cap thickness were artificially made in the modeling process due
to limitation of IVUS resolution.

4 Discussion

4.1 Significance of Multimodality Image-Based Models.
Plaque vessel wall thickness changes were normally under 200 lm
and “vulnerable plaque” cap thickness threshold value defined as
65 lm. Hence, imaging resolution has been a major limitation for
vulnerable plaque progression research (and other areas in a
broader sense). Image resolutions at 150 lm (IVUS)–300 lm
(magnetic resonance imaging) are not sufficient to accurately mea-
sure the plaque progression. OCT and IVUS could combine and
complement each other for more accurate plaque morphology,
which, in turn, could provide better calculations of stress/strain [3].
Compared to IVUS-based modeling study, OCTþ IVUS-based
model possesses more accurate plaque information and has the
potential to improve the prediction accuracy of plaque progression.
Wang et al. used combination of eight morphological and mechani-
cal risk factors to predict the plaque progression by using PAI as
the measurement [19]. The results shown that the sum of sensitivity
and specificity was 1.5928, which is 10% less than 1.693 using
Com.4 from our IVUSþOCT model.

4.2 Combination of Morphological and Mechanical
Factors Could Lead to Higher Prediction Accuracy. Although
most plaque progression research paid attention to plaque mor-
phology and fluid flow factors, Tang et al. have demonstrated
that structural stress/strain and critical stress/strain may play an

important part in plaque vulnerability and progression [16,18]. By
using follow-up IVUS and OCT data to make FSI models, we
could obtain more accurate stress and strain calculation which
will improve the prediction of plaque progression. Results given
by Table 1 demonstrated that mechanical factors, particularly
stress, and strain conditions are important for prediction of plaque
progression. Regardless of which plaque progression measure-
ment was used, combination of morphological and mechanical
risk factors provided the highest accuracy and highest sum of sen-
sitivity and specificity. The prediction accuracy of Com.4 for LAI
was approximately 91%. Combing morphological factors and
mechanical factors demonstrated great ability in plaque progres-
sion prediction.

4.3 The Relationship Between Risk Factors and Prediction
of Lumen Area Increase, Plaque Area Increase, and Plaque
Burden Increase. Values of LAI, PAI, and PBI could reflect pla-
que progression from the views of plaque area and stenosis. For a
single risk factor, the prediction accuracy of PBI was generally
higher than the values of LAI and PAI. From the results of
IVUSþOCT model, the five best factors of PBI (MinCT,
LipidAngle, CapPWSn, LipidDepth, and LipidArea) were all
associated with lipid. Lipid features had an important impact on
the prediction of PBI. For Com.3 and Com.4, prediction accuracy
of LAI was higher than the values of PAI and PBI. Using LAI as
the measure, prediction accuracy improved gradually following
the order of single factor, Com.1, Com.2, Com.3, and Com.4.
PWSn provided the highest accuracy for LAI among in all single
risk factors. Morphological and mechanical factors all affected the
prediction of LAI.

4.4 Limitations. (a) Sample size. The sample was small in
our studies since it was challenging to get IVUS and OCT data for
two time points. Only two arteries from one patient were used to
make follow-up FSI model. That was why we used slice as our

Table 3 Prediction accuracy, sensitivity and specificity using 14 morphological risk factors and five mechanical risk factors
according to three measurements of plaque progression from three models. Com.4 means the combination of all mechanical and
morphological risk factors.

LAI PAI PBI

Predictor (Acc, Sen, Spe) (Acc, Sen, Spe) (Acc, Sen, Spe)

IVUSþOCT Com.4 (0.911, 0.879, 0.940) (0.881, 0.933, 0.760) (0.905, 0.860, 0.930)
IVUS50 Com.4 (0.917, 0.899, 0.936) (0.874, 0.915, 0.806) (0.884, 0.851, 0.906)
IVUS200 Com.4 (0.909, 0.888, 0.929) (0.874, 0.910, 0.815) (0.907, 0.805, 0.955)

Table 4 Four slice samples from IVUS 1 OCT, IVUS50, and IVUS200 models showing comparisons of MinCT, MeanCT (unit: mm),
CapPWS (unit: kPa), and CapPWSn. The subscripted represents time. Notation S12T1 means slice 12 at T1, same for other slices.

Slice at T1 MinCT Mean CT Cap PWS Cap PWSn Slice at T2 MinCT Mean CT Cap PWS Cap PWSn

IVUSþOCT S12T1 0.177 0.242 60.8 0.150 S12T2 0.124 0.134 139.7 0.212
S13T1 0.190 0.223 60.1 0.141 S13T2 0.090 0.109 138.1 0.215
S58T1 0.190 0.269 161.6 0.189 S58T2 0.100 0.169 166.0 0.176
S59T1 0.177 0.248 144.3 0.192 S59T2 0.114 0.181 172.3 0.177

Average 45 slices 0.223 0.289 88.9 0.163 45 slices 0.208 0.280 105.6 0.190

IVUS50 S12T1 0.05 0.102 124.5 0.173 S12T2 0.05 0.076 193.7 0.211
S13T1 0.05 0.084 125.4 0.167 S13T2 0.049 0.075 184.3 0.206
S58T1 0.048 0.165 245.1 0.207 S58T2 0.048 0.126 277.4 0.190
S59T1 0.045 0.154 211.6 0.203 S59T2 0.049 0.122 277.5 0.190

Average 45 slices 0.171 0.255 120.4 0.173 45 slices 0.142 0.221 157.1 0.177

IVUS200 S12T1 0.201 0.246 50.7 0.141 S12T2 0.203 0.226 84.0 0.180
S13T1 0.202 0.234 51.8 0.129 S13T2 0.202 0.225 81.5 0.174
S58T1 0.203 0.280 158.3 0.189 S58T2 0.200 0.249 142.0 0.170
S59T1 0.200 0.263 147.6 0.190 S59T2 0.200 0.247 142.5 0.171

Average 45 slices 0.268 0.343 80.5 0.158 45 slices 0.247 0.316 92.4 0.162
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analyzing unit. (b) Modeling conditions and assumptions. Many
factors can affect model stress/strain predictions, such as image
data resolution, lack of flow conditions, pressure conditions,
patient-specific material properties, residual stress, cardiac
motion, vessel shrinkage (longitudinal shrinkage can be 30–50%
for healthy vessel), and others. These features should definitely be
cooperated in our modeling procedure when data become avail-
able. (c) 3D FSI model construction is very time consuming and
automation is needed for potential implementation for clinical
application. (d) Neither IVUS nor OCT is gated, so it is likely that
coregistered images were acquired at difference points in the car-
diac cycle. That is a common problem in OCT imaging and mod-
eling. This is a pilot study and large-scale patient studies are
needed for further validation.
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Nomenclature

FSI ¼ fluid–structure interaction
IVUS ¼ intravascular ultrasound

LA ¼ lumen area
LAI ¼ lumen area increase

LS-SVM ¼ least squares support vector machine
OCT ¼ optical coherence tomography

PA ¼ plaque area
PAI ¼ plaque area increase
PB ¼ plaque burden

PBI ¼ plaque burden increase
PWS ¼ plaque wall stress

PWSn ¼ plaque wall strain
VH-IVUS ¼ virtual histology IVUS

WSS ¼ wall shear stress
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