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Identification of fusion gene is of prominent importance in cancer research field because 
of their potential as carcinogenic drivers. RNA sequencing (RNA-Seq) data have been the 
most useful source for identification of fusion transcripts. Although a number of algo-
rithms have been developed thus far, most programs produce too many false-positives, 
thus making experimental confirmation almost impossible. We still lack a reliable program 
that achieves high precision with reasonable recall rate. Here, we present FusionScan, a 
highly optimized tool for predicting fusion transcripts from RNA-Seq data. We specifically 
search for split reads composed of intact exons at the fusion boundaries. Using 269 known 
fusion cases as the reference, we have implemented various mapping and filtering strate-
gies to remove false-positives without discarding genuine fusions. In the performance test 
using three cell line datasets with validated fusion cases (NCI-H660, K562, and MCF-7), 
FusionScan outperformed other existing programs by a considerable margin, achieving the 
precision and recall rates of 60% and 79%, respectively. Simulation test also demonstrated 
that FusionScan recovered most of true positives without producing an overwhelming 
number of false-positives regardless of sequencing depth and read length. The computa-
tion time was comparable to other leading tools. We also provide several curative means to 
help users investigate the details of fusion candidates easily. We believe that FusionScan 
would be a reliable, efficient and convenient program for detecting fusion transcripts that 
meet the requirements in the clinical and experimental community. FusionScan is freely 
available at http://fusionscan.ewha.ac.kr/.
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Introduction 

Fusion genes are important class of biomarkers in cancer studies. Numerous fusion genes 
have been established as cancer drivers including BCR-ABL1 fusion in chronic myeloge-
nous leukemia [1], TMPRSS2-ERG fusion in prostate cancer [2], EML4-ALK and CD74-
NRG1 fusions in non-small cell lung cancer [3,4], and FGFR3-TACC3 in glioblastoma [5] 
and bladder cancer [6]. 

A number of algorithms and programs have been already published for fusion detection 
problem from RNA sequencing (RNA-Seq) data. Basic idea is to identify the split reads 
and discordant read pairs that map to two distinct genes. Subsequently, the exact fusion 
point is determined from the split reads where single mate reads overlap the fusion junc-
tion, with the fusion-encompassing reads used as supporting evidence. Early approaches 
following this scheme include FusionSeq [7], ChimeraScan [8], deFuse [9], FusionMap 
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[10], TopHat-Fusion [11], and FusionHunter [12], as extensively 
reviewed by Wang et al. [13].  

However, their performance varies dramatically in terms of preci-
sion, sensitivity (recall), and computational costs according to the 
mapping methods, filtering strategies, and parameter optimization. 
According to recent comparison where the performance of these 
tools was evaluated using synthetic and experimental datasets, no 
program showed satisfactory performance [14]. Programs with 
high sensitivity (ChimeraScan and TopHat-Fusion) predicted 
thousands of false-positives. Programs with low sensitivity (Fusion-
Map, FusionHunter, and deFuse) still produced tens to hundreds 
of false-positives, unacceptable number for experimental confirma-
tion, and had very limited overlap in the results. 

Recent programs improved the performance by implementing 
diverse ideas. FusionQ used the concept of residual mapping to ex-
tend the short reads [15]. Similarly, BreakFusion combined the tar-
geted assembly procedure to overcome the limits owing to short 
read length [16]. EricScript [17] improved the mapping accuracy 
by building exon junction reference and recalibration using BLAT 
[18]. Nevertheless, no programs achieved the accuracy over 50% of 
sensitivity and specificity simultaneously for the experimental data-
sets. Two programs are notable exceptions even though they have 
not been tested on public datasets. SOAPfuse used a library of fu-
sion junction sequences by partial exhaustion algorithm and a se-
ries of filters to enhance confidence [19]. Analyzing two bladder 
cancer cell lines, they confirmed 15 cases out of 16 predictions, 
whereas deFuse identified 11 fusions of which 10 were confirmed 
by reverse transcriptase-polymerase chain reaction experiments. 
SOAPfusion implemented a novel masking and aligning procedure 
to achieve better sensitivity and false discovery rate than deFuse in 
the simulation test [20], but it needs further objective evaluation. 

In this article, we report a novel algorithm FusionScan that im-
plemented various strategies to enhance both the sensitivity and 
precision. We have compared the performance with other widely 
used programs using both experimental and simulated datasets. 
Our analysis demonstrated that careful mapping and extensive fil-
tering processes were essential for good performance. 

Methods 

FusionScan algorithm 
The goal of FusionScan is to identify fusion transcripts composed 
of combination of intact exons with high sensitivity and specificity. 
Thus, FusionScan requires multiple split reads that join intact exons 
of two different genes. This may miss cases where the fusion 
boundary exists inside the exon but the limitation is minor since 
most of important fusion markers are combination of intact exons 

thus far. This can be ascribed to the fact that the introns are much 
longer than exons in most eukaryotic genomes (e.g., ~27 times lon-
ger in the human genome). Furthermore, with the advances in se-
quencing throughput, the read length and sequencing depth of 
RNA-Seq has become long and deep enough to have multiple split 
reads including fusion boundaries in most cases. 

The algorithm consists of three main parts of preprocessing and 
mapping, fusion detection, and filtering steps as shown in Fig. 1. Us-
age of transcriptome model should be consistent through whole 
steps. We prefer the RefGene transcriptome model to the Ensembl 
because of its conservative criteria in modeling splice variants (e.g., 
total number of human transcripts for hg19 [GRCh37] assembly are 
53,598 and 204,940 in the RefGene and Ensembl tracks of Universi-
ty of California Santa Cruz [UCSC] genome browser, respectively). 
Each step is optimized for reliable detection of fusion genes with high 
sensitivity and specificity as described below. To avoid confusion 
from naming, we will call two genes involved in the fusion as the head 
and tail genes according to the transcription direction of 5′→3′, and 
two exons adjacent to the fusion boundary as fusion exons.  

Preprocessing and mapping 
A proper preprocessing to identify discordant reads and accurate 
alignment are the important starting points both for removing 
reads from normal transcripts for fast processing and for obtaining 
genuine split reads without loss. We find that these are the critical 
steps affecting the overall performance that have been overlooked 
in many cases. 
(1) Quality trimming and artifact filtering were done by fastq_

quality_trimmer (with the option of ‘-t 10 –l 38’ to keep reads 
with the minimum length >  38 bp of quality score >  10) and 
fastq_artifacts_filter in FASTX-Toolkit, respectively (http://
hannonlab.cshl.edu/fastx_toolkit/). 

(2) Mapping and removing regular reads were carried out in two 
step procedure. Bowtie2 v.2.1.0 [21] was used to map RNA-
Seq reads to the human transcriptome of refGene from the 
UCSC genome annotation database for the hg19 (GRCh37). 
Unaligned reads were stored into a file with an option of ‘-un’ 
and they were realigned to the human genome, further remov-
ing reads mapped to the intronic or intergenic regions. Paired-
end reads were processed independently in Bowtie mapping to 
identify discordant split reads. Then, the forward and reverse 
reads were joined and collapsed using fastx_collapser to pro-
duce unique unmapped reads only. 

(3) Remapping unmapped reads was achieved by SSAHA2 align-
ment software [22]. We have tested several alignment tools for 
sensitive remapping including GMAP v.2013-11-27 [23], SSA-
HA2 v.2.5, Bowtie2 v.2.1.0, BWA v.0.7.5a [24], BLAT v.34, To-

https://doi.org/10.5808/GI.2019.17.3.e262 / 12

Kim P et al. • Predicting fusion genes from RNA-Seq data

http://hannonlab.cshl.edu/fastx_toolkit/
http://hannonlab.cshl.edu/fastx_toolkit/


pHat2 v.2.0.9 [25], and MapSplice v.2.1.7 [26]. We collected 
269 fusion cases with known transcript sequence from TICdb 
[27] and ChimerDB 2.0 [28] (data available in the website). 
Then, we created the synthetic reads of variable length (50 bp, 
76 bp, and 100 bp) with the fusion break point in the middle of 
the sequence, and remapped the synthetic read to the hg19 ge-
nome using various alignment tools. The number of fusion cas-
es recovering correct alignments (i.e., identifying split reads 
successfully at the known fusion exons) was the highest in SSA-
HA2 by a narrow margin over Bowtie2 (Table 1). After exten-
sive testing, we recommend using SSAHA2 with the option of 

‘-solexa –skip 6 –cmatch 20 –best 5 –output pslx’ to set the seed 
length as 20 bp and to return five best alignments. Since this is 
the most time-consuming step, FusionScan supports the multi-
thread option to split the unique fasta file and to run SSAHA2 
alignment in parallel. 

(4) Statistics of preprocessing and mapping are shown in Fig. 1 for 
the K562 RNA-Seq data of paired-end sequencing from the En-
cyclopedia of DNA Elements (ENCODE) project. Final num-
ber of remapped reads that may include the fusion candidates (2 
≤  no. of alignments ≤  11) was reduced to 8.5% of the original 
data, thus speeding up down-stream analysis significantly. 

Fig. 1. Overview of FusionScan algorithm. Computational pipeline is shown with programs used in each step. The statistics for processing 
K562 RNA sequencing data illustrates the effect of each procedure on reducing the candidates of split reads and fusion gene pairs. ENCODE, 
Encyclopedia of DNA Elements.

Table 1. Comparison of RNA-Seq alignment programs

Mapping program
No. of correct alignments out of 269 known fusion transcriptsa

50 bp 75 bp 100 bp
GMAP 59 28 3
SSAHA2 237 248 252
Bowtie2 242 245 248
BWA 1 238 244
BLAT 218 225 226
TopHat2 227 228 226

All alignment tools were run with default options.
RNA-Seq, RNA sequencing.
aTwo hundred sixty-nine known fusion transcripts were collected from TICdb and ChimerDB 2.0.
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Fusion detection 
FusionScan scans all read alignments looking for split reads whose 
aligned loci are apart by more than 50 kilo base pairs (kbp) in the 
genome, a condition that most known gene fusions satisfy. To en-
sure reliable alignment, we demand the minimum aligned length ≥  
20 bp on both sides and that the aligned parts cover more than 50% 
of the entire read. Two aligned loci of the split read should be con-
tiguous within the range of ± 10 bp over the transcript coordinate. 
Detailed conditions and explanations with illustrative figures are 
available at the online documentation. 

Read-through transcripts are fairly common in the human tran-
scriptome. Co-transcription and intergenic splicing (CoTIS) cre-
ates chimeric transcripts connecting exons of two neighboring 
genes [29]. Thus, we removed the read-through transcripts be-
tween two consecutive genes on the same strand with 5′ and 3′ ends 
accordant to the genome annotation. It should be noted that re-
moving read-through cases may remove some genuine gene fusions 
arising from genomic deletions. We also support filtering by the 
blacklist of gene fusions at this stage. The black list may include un-
duly frequent gene fusions or fusion predictions that have failed in 
experimental validation.  

Since FusionScan is designed to identify fusion genes specifically 
composed of intact exons from two participating genes, we apply 
two steps of examining fusion boundaries. First, we scan the fusion 
boundaries on the split read so that they appear within 6 bp from 
the intact boundaries of fusion exons (i.e., exon boundary offset ≤  
6 bp) to proceed to the next step. The candidate split read is then 
realigned to the synthetic sequence of combined fusion exons using 
the bl2seq tool of BLAST with the word size of 20 [30]. Again, the 
minimum aligned length is 20 bp on both sides with the minimum 
percent identity ≥  95%. Split reads satisfying all conditions given 
above are the seed reads that would strongly support the fusion 
event. For K562 cell line data shown in Fig. 1, the exon boundary 
condition and realignment against the synthetic chimeric transcript 
reduced the number of candidates considerably, and we obtained 
92 fusion gene pairs for the filtering procedure. 

Filtering steps 
Since most programs for fusion gene prediction yield too many 
false-positives, extensive filtering is essential for reliable perfor-
mance. In an effort to enhance the precision of the prediction (i.e., 
small number of false-positives), we have implemented several fil-
tering strategies to prevent accidental alignment leading to false 
split reads as follows: 
(1) Homology filter was applied if the nucleotides of 14 bp length 

before and after the fusion point were homologous to the origi-
nal sequences of two participating genes. Bl2seq was used to 

detect homology with the word size of 10. 
(2) Filters for repeat regions, paralogs, and pseudo-genes were im-

plemented as well. We discarded the seed reads that were 
aligned within the repeat regions obtained from the Re-
peat-Masker [31] track in the UCSC genome browser. Similar-
ly, gene fusions with paralogous genes obtained from the Dupli-
cated Genes Database [32] or pseudo-genes obtained from the 
Human Genome Organisation (HUGO) database [33] were 
removed from the candidates. 

(3) In spite of extensive filtering as described above, we still ob-
served many cases where the split read had alternative align-
ment of similar or better quality elsewhere in the genome. We 
implemented the multiple mapping filter by running the local 
version of BLAT v.34 (using the same option as the web version 
of BLAT) for seed reads to identify such cases of ambiguous 
multiple mapping (sequence identity >  95%) and removed 
those from the fusion candidates. 

(4) Finally, we choose the fusion candidates with multiple seed 
reads as reliable (i.e. the minimum number of seed reads =  2). 

For K562 cell line data, FusionScan predicted 4 fusion gene pairs 
in total, and 3 of those were validated experimentally. The workflow 
in Fig. 1 shows that (1) the homology filter was not effective for 
this data, (2) removing repeats, paralogs, and pseudo-genes is an 
important step of reducing 35 candidates, (3) recalibration with 
BLAT alignment is helpful to reduce 12 additional candidates. 
However, the condition of multiple seed reads was most critical to 
yield only 4 fusion candidates. 

Curative tools 
Even after using various elaborate filters described above, it is often 
necessary for users to examine the alignment explicitly. We have de-
veloped several tools to facilitate visual inspection by users. 
(1) Alignment plot is of great help to verify the genuine fusion 

events. We provide two different types of alignment plot as 
shown in Fig. 2. Fusion alignment view shows the alignment of 
fusion reads onto the synthetic fusion sequence. Progressive til-
ing pattern is the most desirable feature for the genuine fusion 
genes. Genome alignment view shows the alignment of fusion 
transcripts separately for head and tail genes as a custom track 
in the UCSC genome browser (Fig. 2B). 

(2) Coverage plot from next-generation sequencing data provides 
valuable information on genomic or transcriptome structures. 
For example, abrupt depth change at exon boundaries often in-
dicates the gene fusion or alternative splicing events. Fusion-
Scan provides coverage plots for head and tail genes. As shown 
in Fig. 2C, both the head and tail genes showed abrupt jump at 
the fusion boundaries in accordance with the BCR-ABL1 fu-
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sion event. Testing many RNA-Seq data, we found that this 
abrupt change applied well for most well-known cases, especial-
ly for the tail kinase genes. 

(3) Split seed reads are the most direct evidence of gene fusion. In 
FusionScan, we acknowledge the split reads as the seed only if 
both sides were aligned to fusion exons over 20 bp long. In cas-
es where only one side met the condition and the other side 
had a shorter aligned part, we classify them as the support reads, 
which still serve as indirect but good evidence of fusion event. 
To identify support reads, we realign all RNA-Seq reads to the 
synthetic chimeric transcripts using SSAHA2 again, and the re-
sult is reported with the number of seed reads or used in the fu-
sion alignment plot. This process is optional since it demands 
realignment of all RNA-Seq reads, taking significant amount of 
computation. The fusion alignment view may include the sup-
port reads as shown in Fig. 2A. 

Results 

Since a number of fusion detection programs are already available 

in public, it is critical to compare the performance of programs ob-
jectively. We have carried out the performance evaluation tests for 
FusionScan, SOAPfuse v.1.26, deFuse v. 0.6.1, FusionHunter v.1.4, 
FusionMap v.2012-08-12, and TopHat-Fusion v.2.0.9 using both 
experimental and simulation data sets. All programs were run with 
the default options using the recommended mapping programs 
and transcriptome model as summarized at the bottom of Table 2. 
For TopHat-Fusion, we used the output from the TopHat-Fu-
sion-Post that reduced the false-positives using BLAST search since 
it produced too many false-positives without the -Post option. The 
feature of blacklist was not used for fair comparison. 

Comparison of fusion discovery tools using experimental 
data from three cancer cell lines 
The data 
NCI-H660 is a prostate cancer cell line where two fusion genes 
(TMPRSS2-ERG and EEF2-SLC25A42) have been verified to 
play important roles in tumorigenesis. We downloaded the RNA-
Seq data from the FusionSeq website [7], which included 6.5 mil-
lion paired-end reads of 51 bp long. 

Fig. 2. Alignment and coverage plots. BCR-ABL1 gene fusion detected from RNA sequencing data of K562 cell line is shown as an example. (A) 
Fusion alignment view is the read alignment of seed and support reads on hypothetical fusion transcript. (B) Genome alignment view shows 
the alignment of split reads on the University of California Santa Cruz (UCSC) genome browser for head and tail genes obtained by BLAT 
alignment tool. (C) Coverage plots on transcript coordinate show abrupt change in read depth at the fusion boundary for both head and tail 
genes. Blue vertical lines indicate the exon boundaries in each gene.
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Fusion alignment view

Genome alignment view

Coverage plot
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Table 2. Identification of known fusion genes by various fusion detection tools

Sample Known (Gold) fusion genes FS SF dF FH FM THF

NCI-H660 (2) TMPRSS2-ERG ● ● ● ● ● ●

EEF2-SLC25A42 ● ● ● ● -　 ●

TP/FP 2/0 2/16 2/11 2/1 1/1 2/1

Precision 1.0 0.11 0.15 0.67 0.50 0.67

Recall 1.0 1.0 1.0 1.0 0.50 1.0

K562 (3) BCR-ABL1 ● ● ● -　 ● ●

NUP214-XKR3 ● ● ○ ● ● ●

BAT3-SLC44A4 ● ● ○ - ● ●

TP/FP 3/1 3/7 3/27 1/1 3/12 3/0

Precision 0.75 0.30 0.10 1.0 0.20 1.0

Recall 1.0 1.0 1.0 0.33 1.0 1.0

MCF-7 (23) USP31-CRYL1 ● ● ○ ○ ○ ●

ARFGEF2-SULF2 ● ● ○ - ○ ●

TXLNG-SYAP1 ● ● ● - ○ ●

DEPDC1B-ELOVL7 ● ● ● ○ ● ●

SYTL2-PICALM ● ● ● ○ ● ●

RPS6KB1-DIAPH3 - ● ● - - -

AHCYL1-RAD51C - ● - ● ● ●

TAF4-BRIP1 - ● - - ○ -

POP1-MATN2 ● ● ● - ○ -

GCN1L1-MSI1 ●　 ● ● - - ●

ESR1-CCDC170 ● ● ● ● ○ ●

SMARCA4-CARM1 ● ● ● - ○ ●

MYO6-SENP6 ● ● ● ● ○ ●

ADAMTS19-SLC27A6 ● ● ● ● ○ ●

GATAD2B-NUP210L - ● ● - ○ ●

SLC25A24-NBPF6 ● ● ● - ● -

ATXN7L3-FAM171A2 ● ● ● - ● -

C16orf62-IQCK ● ● ● - ● ●

TBL1XR1-RGS17 ● - - - -

BCAS4-BCAS3 ● ● ● ● - ●

RPS6KB1-TMEM49 ● ● ● - ○ ●

ABCA5-PPP4R1L - ● - - - -

C16orf45-ABCC1 - - - - - -

TP/FP 17/14 21/83 18/132 8/11 17/126 15/26

Precision 0.55 0.18 0.12 0.42 0.12 0.37

Recall 0.74 0.91 0.78 0.35 0.74 0.65

Overall Precision 0.60 0.20 0.12 0.46 0.13 0.43

Recall 0.79 0.93 0.82 0.39 0.75 0.71

F1 score 0.68 0.33 0.21 0.42 0.22 0.53

Mapping program SSAHA2 SOAP2 GMAP Bowtie GSNAP Bowtie

BWA

Transcriptome RefGene Ensembl Ensembl RefGene RefGene Ensembl

‘●’ and ‘○’ indicate that the case was predicted successfully, with direction reversed in ‘○’. Precision = TP/(TP + FP), Recall = TP/(TP + FN), F1 score = 2 × 
precision×recall/(precision + recall).
FS, FusionScan; SF, SOAPfuse; dF, defuse; FH, FusionHunter; FM, FusionMap; THF, TopHat-Fusion; TP, true-positive; FP, false-positive; FN, false-negative.
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K562 cell line has long been the standard of leukemia studies 
where the most famous BCR-ABL1 fusion was identified. Sin-
gle-end RNA-Seq data for long polyA cytosol mRNAs was down-
loaded from the Caltech RNA-seq group at the UCSC ENCODE 
web site. The data includes 12.8 million reads of paired-end se-
quencing with 76 bp read length. Three cases of gene fusion were 
known for the K562 cell line [34]. 

One of the most extensively studied samples for gene fusion is 
the MCF-7 breast cancer cell line. The Caltech RNA-Seq group in-
cludes RNA-Seq data of MCF-7 cell line as well (SRR521521 in 
SRA database). The data contains 40 million reads of paired-end 
sequencing with 76 bp read length. Sakarya et al. [35] inde-
pendently studied gene fusions in the MCF-7 cell line using 80 mil-
lion reads produced by SOLiD paired-end sequencing. They vali-
dated 23 gene fusions using TaqMan fusion assays, which were 
used as gold standards for our benchmark test. 

Three data sets of cancer cell lines from public resources repre-
sent diverse situations such as different cell types, sequencing 
depth, single and paired reads, and different read lengths, thus being 
expected to provide objective result in the comparison test. 

Performance comparison 
The result from six programs for fusion detection based on RNA-
Seq data is summarized in Table 2. For fair comparison, we filtered 
out all cases with the number of seed reads =  1 since FusionScan 
required the number of seed reads ≥  2. This may remove some 
true positives in other programs, but certainly helps in removing 
false-positives. We calculated the precision and recall rates since the 
true-negatives are difficult to prove in gene fusion discovery. It 
should be noted that we did not penalize other programs for giving 
wrong direction (i.e., reversed head and tail genes). 

In general, the precision and recall rates are contradictory to each 
other. FusionScan achieved the best in the precision rate (60%) and 
in the overall performance measured by F1 score, the harmonic 
mean of precision and recall rates. SOAPfuse was the best in the re-
call rate (93%) but its precision rate was just 20%, producing lots of 
false-positives. Fusion-Hunter achieved the precision rate of 46% 
by sacrificing the recall rate to 39%, missing too many true posi-
tives. TopHat-Fusion showed fairly good performance mainly be-
cause of recent implementation of extensive filtering scheme in the 
TopHat-Fusion-Post option. 

For experimental biologists or clinicians who carry out validation 
experiments with limited amount of samples, the precision rate is 
the most critical attribute. Thus, it is important to note that Fusion-
Scan achieved the precision rate of 60% without losing the recall 
rate considerably (79%). The difference with other programs is 
substantial, including FusionHunter that achieved excellent perfor-

mance in recent comparison test by the SOAPfusion study [20]. It 
should be noted that one fusion case of C16orf45-ABCC1 was not 
predicted by all programs, which may suggest that fusion reads for 
this case were not present in the Caltech RNA-Seq data unlike the 
SOLiD sequencing data by Sakarya et al. [35]. Excluding this case, 
the recall rate of FusionScan increases to 81.5%. 

The prediction results from five tools are further illustrated as a 
Venn diagram in Fig. 3, excluding FusionHunter that missed many 
true positives. Common hits would have better chance to be genu-
ine fusion cases. FusionScan showed the most common hits from 
more than three programs (28 out of 31 cases). Importantly, Fu-
sionScan had only one singleton prediction, which strongly sup-
ports the reliability FusionScan’s predictions. FusionMap, deFuse, 
and SOAPfuse had a number of singleton predictions, most of 
those being expected to be false-positives. 

Comparison of fusion discovery tools using simulation data 
sets 
Testing with experimental datasets is objective and reliable since it 
reflects diverse situations and experimental conditions that could 
not be mimicked in simulation studies. However, the scope of 
benchmark test is limited with small number of known fusion cases 
and with experimental settings under specific conditions. Thus, we 
carried out the benchmark test using simulation datasets as well to 
estimate the performance of each program in different conditions 
such as variable read length and coverage. 

Preparing the simulation data 
Positive cases of fusion gene were artificially constructed by joining 
two exons of randomly chosen genes, isoforms, and exons in the 
given order. Adjacent genes were avoided in the selection to exclude 
read-through transcripts. Using the transcriptome model of ref-
Gene, we have generated 10,000 fusion cases to sample diverse se-
quence characteristics for the benchmark test. 

For each fusion case, we prepared a synthetic fusion transcript by 
concatenating the 5′ side of the head transcript and 3′ side of the tail 
transcript at the fusion boundary. Random nucleotide position was 
selected to make a paired end read of desired read lengths (50 bp, 
75 bp, or 100 bp) until the pre-determined depth of 10 × , 30 × , or 
50 ×  was achieved. We also demanded the minimum coverage of 
transcript of 95% (i.e., less than 5% of nucleotides not covered by a 
sequencing read). The insert size of the paired end reads were se-
lected randomly following the normal distribution with the average 
insert size of 100 bp and with standard deviation of 10 bp.  

Compared to the existing simulation methods that usually add 
hundreds of synthetic fusion transcripts to the transcriptome mod-
el (e.g., RefGene or Ensembl) and run a simulator for producing 
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Fig. 3. Venn diagram of fusion predictions. We show the total number of predicted fusion genes for all three cell lines from five different 
programs. Numbers in the parenthesis indicate the number of true positive cases.

paired-end sequencing data [19,20], our procedure of preparing 
simulation datasets has the advantage of reflecting diverse charac-
ters of fusion gene sequences. Weakness of not taking imbalanced 
sequencing depth or sequencing errors into account can be alleviat-
ed by the comparison test using real datasets as previously de-
scribed. The list of 10,000 fusion cases and simulated paired-end 
sequencing data are available at the website. 

Performance comparison 
The precision and recall curves from six different programs for fu-
sion detection are shown in Fig. 4 for various sequencing depths 
and read lengths. Here, we used the default settings of each program 
for the minimum number of seed reads, instead of demanding two 
seed reads at least as for the experimental datasets. 

TopHat-Fusion-Post showed the highest precision rate consis-
tently but its recall rate was close to 50%. FusionScan was the sec-
ond to TopHat-Fusion in the precision and the best in the recall 
rate. At the read length of 100 bp and 50 ×  depth, a common prac-
tice with recent advances in sequencing technology, FusionScan 
showed the precision and recall rates of 89% and 87%, respectively. 
The performance of SOAPfuse and deFuse was slightly inferior to 
FusionScan in precision and was comparable in the recall rates. 

As the sequencing depth increased, the recall rates were im-

proved in all programs. FusionMap and FusionHunter showed sub-
stantial variation. The precision rates, however, were fairly indepen-
dent of sequencing depth and read length. 

Overall, the simulated test showed that three programs (Fusion-
Scan, SOAPfuse, and deFuse) achieved comparable performance 
with a slight advantage to FusionScan in the precision. TopHat-Fu-
sion’s prediction is reliable, but it misses many true positives as well. 

Implementation and computational resources 
FusionScan algorithm was developed using Java (JDK1.7) and Py-
thon languages. It further requires many third-party programs such 
as Bowtie2, SSAHA2, BLAT, bl2seq, samtools and FASTX-Toolkit. 
Thus, it is highly recommended to run FusionScan in Linux envi-
ronment with the Java Runtime Environment 1.7 or later. 

We measured the CPU time and memory usage the K562 RNA-
Seq data are compared in Fig. 5. FusionScan and SOAPfuse took 
the longest CPU time mainly to achieve the high recall rates. For 
example, quality trimming with the option of ‘-t 20 –l 40’ instead of 
‘-t 10 –l 38’ decreased the run time by half in FusionScan, but lost a 
few true positives in benchmark testing with 3 cell line datasets. 
Measuring the CPU time spent for each step of workflow, the pre-
processing and mapping took almost half of the total CPU time. 
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Fig. 4. Precision and recall curves for performance evaluation using simulation data sets. (A) Precision rates at the read length of 100 
bp, 75 bp, and 50 bp. (B) Recall rates at the read length of 100 bp, 75 bp, 50 bp. 10×, 30×, and 50× indicate the sequencing depth of the 
simulation data.

Fig. 5. Comparison of CPU time (A) and memory usage (B). CPU time and memory usage are shown in hours and GB, respectively. RNA 
sequencing data for K562 cell line from the Encyclopedia of DNA Elements (ENCODE) project (SRR521464) was analyzed on a 64-bit 
machine AMD Opteron Processor 6176 (2.3 GHz, 8 core) with 32 GB RAM.
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Discussion 

For both the real and simulated datasets, the results show that Fu-
sionScan provides reliable predictions in fusion discovery under 
different sequencing coverage and read length. Even though the 
general trends were similar between the two datasets, the precision 
was much worse for the experimental datasets. This indicates that 
there exist many factors influencing the prediction accuracy in reali-
ty (e.g., coverage imbalance, sequencing errors, and sequence poly-
morphisms). Thus, the result from simulation data should be taken 
cautiously. Interestingly, SOAPfuse achieved better recall rate for 
the experimental datasets. 

FusionScan was the only program with the precision rate over 
50%. The enhanced performance of FusionScan may be ascribed to 
several points as follows.  
(1) Accurate read alignment is absolutely critical. We have selected 

SSAHA2 as the most sensitive mapping program through a test 
with known fusion transcripts. This process minimizes the loss 
of true positives from the start. In a similar effort, SOAPfusion 
used a special aligner that masked the intronic regions from the 
transcripts. It should be noted that other alignment tools in Ta-
ble 1 may do better with extensive adjustment of optional pa-
rameters. We provide the full set of known fusion cases for test-
ing such possibility. 

(2) Reads with alternative mapping positions should be analyzed 
cautiously. Many false-positives from other programs had their 
seed reads mapped to other positions concordantly with similar 
mapping quality. FusionScan removed those ambiguously 
mapped reads using extensive filters afterwards. Critical two 
steps were removing repeats, paralogs, and pseudo-genes and 
recalibration with BLAT alignment as shown in Fig. 1. 

Predicting fusion genes from RNA-Seq data is a procedure full of 
optimization steps. For example, we have noticed that four true 
positive cases in MCF-7 cell line were filtered out in FusionScan at 
the final step since they had only one seed read. Relieving the mini-
mum number of seed reads as 1 or using support reads as the basis 
of rescuing those cases would introduce too many false-positives. 

We used the preliminary version of FusionScan and TopHat-Fu-
sion to build the ChimerDB 3.0 update [36]. Fusion gene candi-
dates were obtained by analyzing RNA-Seq data from The Cancer 
Genome Atlas (TCGA). Of note, STAR-Fusion was recently re-
leased in bioRxiv and GitHub. It achieved comparable performance 
to FusionScan in terms of precision and recall rate. JAFFA is anoth-
er latest pipeline for fusion detection that utilizes read assembly into 
transcripts before fusion detection [37]. This assembly-based 
method certainly achieved a good performance in favorable condi-
tions with large number of high quality reads. But its performance 

decreased rapidly in bad conditions where misassembles led to 
many false-positives and negatives. A latest benchmark test was car-
ried out to evaluate the performance of 12 popular fusion detection 
tools and provided some guidelines even though their test datasets 
are rather limited [38]. 

In conclusion, FusionScan made a reasonable compromise be-
tween precision and recall rates, achieving 60% and 79%, respec-
tively, in tests using experimental datasets. With implementation of 
several curative tools facilitating validation of fusion transcripts, we 
believe that FusionScan would be a reliable tool for detecting fusion 
transcripts, meeting the conservative conditions required for clini-
cal and experimental studies. 
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