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Range of motion in the avian wing is strongly
associated with flight behavior and body mass
V. B. Baliga1, I. Szabo2, D. L. Altshuler1*

Avian wing shape is highly variable across species but only coarsely associated with flight behavior,
performance, and body mass. An underexplored but potentially explanatory feature is the ability of birds to
actively change wing shape to meet aerodynamic and behavioral demands. Across 61 species, we found strong
associations with flight behavior and mass for range of motion traits but not wing shape and strikingly different
associations for different aspects of motion capability. Further, static morphology exhibits high phylogenetic
signal, whereas range of motion shows greater evolutionary lability. These results suggest a new framework for
understanding the evolution of avian flight: Rather than wing morphology, it is range of motion, an emergent
property of morphology, that is predominantly reshaped as flight strategy and body size evolve.
INTRODUCTION
An enduring mystery in the field of animal flight is that diversity in
wing shape across species is not well explained by flight style or by body
mass. Some simple metrics of wing shape, particularly aspect ratio,
correspondwith aerodynamic performance, albeit coarsely (1, 2). Other
more refined measurements of wing geometry show even weaker rela-
tionships between shape and flight style or body size across clades (3).

A potential explanation for the weak association between flight style
and wing shape is that static metrics are inherently insufficient to
capture the dynamic capabilities ofmobile limbs. Birds can dynamically
change wing shape, both actively and passively during routine flight,
which enhances control over aerodynamic forces and moments acting
on the wing (4, 5). Because the range of motion in the avian wingmay
fundamentally determine flight capabilities, examination of its evolu-
tion should inform how natural selection has reshaped wing design.
To address this hypothesis, we asked howwell wing morphing capabil-
ity is explained by flight behavior and body mass diversity in com-
parison to static measures of wing shape. Across a diverse sampling of
avian taxa, we first quantified wing shape and a variety of static traits of
the wing. We then measured the capability of the wing to extend and
flex across both the elbow and wrist joints, as well as the ability to bend
or twist at the wrist. Through a phylogenetic comparative framework,
we determined howwell flight behavior, bodymass, and/or phylogenetic
history explained variation in wing shape and range of motion traits.
By recording wing kinematics from two species, we then determined
how in vivo flight relates to osteological range of motion. We conclude by
measuring phylogenetic signal among measures of static and dynamic
morphology to determine how shared evolutionary history underlies
trait variation itself.
RESULTS
To measure static and dynamic morphological variation, we obtained
wings from adult cadavers of 61 species (125 individuals) of birds
spanning 20 avian orders (data S1). Although recent studies have pro-
duced well-supported hypotheses of relationships among avian clades
(6, 7), our sampling of taxa was not well represented among published
phylogenies, and our ability to account for sharedhistory (and topological
uncertainty) in our comparative analyses was limited. We therefore
applied a Bayesian framework (8) to infer time-calibrated phyloge-
nies from genetic sequences (nuclear and mitochondrial) and fossil
calibrations for a 220-taxon set of species (data S2 and S3 and table S1)
including representatives from every avian order and the focal 61 taxa
(Fig. 1A and data S4).

Each of the 61 species was assigned to one of nine flight behavior
groups following a literature survey (data S5 and fig. S1). To account
for the potential ability of each species to exhibit multiple flight modes,
we recorded whether each species has been documented to perform
each of a larger set of 12 potential flight behaviors (9). We then imple-
mented hierarchical clustering on the dissimilarity matrix of flight
modes, used the gap statistic (10), and determined that nine was the
optimal number of distinct groups, which we named using the behav-
iors that best distinguished each group.

We next asked how well flight behavior or body mass associate with
either wing shape or the capacity to extend or flex the wing. We
captured static wing shape [outline shape in two dimensions (2D) at full
extension of thewing] and recorded the capability of extension and flex-
ion at both the elbow andmanus (wrist) joints in 3D (fig. S2 andmovies
S1 to S3). Range of motion was determined by manually applying force
at a joint until resistancewasmet, ensuring that hyperextension of joints
did not occur (11). Applying further force would have risked dislo-
cating or breaking bone, ligament, or other tissue. The extension range
of motion (ROM) was then defined as the space occupied by the outer
boundary of possible elbow angles against possiblemanus angles for this
type of motion. Via elliptical Fourier methods (12), we captured outline
shape diversity of each of these two datasets (Fig. 1, B and C) and then
used phylogenetic principal components analyses (pPCAs) (13) to de-
termine major axes of shape diversity across species (Fig. 1, D and E).We
then determined how variance in species wing or extension range of mo-
tion (ROM) shapes could be explained by flight behavior and/or body
mass using Bayesian generalized linearmixedmodels (14). This allowed
us to determine the extent to which fixed effects (flight behavior group,
natural log–transformed body mass, and/or their interaction) ex-
plained variance among principal components of wing shape or ex-
tension ROM (tables S2 and S3). Phylogenetic history was used to
inform the covariance matrix of the random effects and subsequently
calculate phylogenetic signal in models (15).

Flight behavior and body mass explained little variation among
species’ static wing shapes but substantial variation in extension ROM
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Fig. 1. Flight behavior and body mass influence the range of motion in wing extension and flexion but not wing shape. (A) Time-calibrated phylogeny of 61 focal
species, pruned from our 220-taxon maximum clade credibility tree. Circles to the right of the tree show natural log–transformed body mass (measured in grams)
colored by flight behavior. Ma, million years. (B) Wing shape [two-dimensional (2D) outline shape at maximum extension] and (C) extension range of motion (ROM) of
each species (outer boundary of possible elbow versus manus extension or flexion) after resizing shapes via Procrustes superimposition. Initials correspond to genus
and species. (D) Phylogenetic principal components analysis (pPCA) of avian wing shape; birds of varying flight behavior show extensive overlap in morphospace. (E) pPCA
of extension ROM shows higher differentiation among groups. Top diagrams each depict shape changes along major axes. (F) Mass varies little with wing shape (top) but
more strongly with extension ROM shape (bottom). Each variable was standardized (z-transformed). Std, standardized. (G) Phylogenetic flexible discriminant analyses
found that extension ROM had superior performance to predicting flight behavior group compared to wing shape or body mass. Purple kernel densities show jackknifed
empirical prediction accuracies; gray kernel densities show prediction accuracies of 61 randomized permutations.
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shapes (Fig. 1, D to F). For wing shape, a “null” but phylogenetically
informed intercept-only model provided the best fit [Pagel’s l mean,
0.64; 95% highest posterior density (HPD), 0.48 to 0.78]. Despite differ-
ences in species examined and in geometric morphometric methods,
our results reinforce a finding that wing shapes bear little correspon-
dence to flight behaviors or body size; rather, diversity lies largely along
phylogenetic lines (3). In contrast, extension ROM shape was best de-
scribed by including both body mass and flight behavior group in con-
cert with phylogenetic effects (l, 0.63; 95%HPD, 0.39 to 0.87) (Fig. 1, E
and F). A key difference in extension ROM shape lies between species
that use gliding, soaring, or other motion-restricted usage of the wing
and those that use higher-excursionmotions, oftenwith higher-frequency
flapping. This pattern was driven by differences among three flight be-
havior groups. Two groups (flapping and bounding; flapping and
gliding), which showed lower bodymasses, had enhancements to range
of motion in extension and flexion at extreme wing postures. The third
group, flapping and slope soaring, tended to have higher bodymass and
showed limited rangeofmotion throughout the full rangeofwingunfolding.

The strength of association between flight style and range of motion
motivated us to ask how well flight behavior itself could be predicted
from morphological features. We used phylogenetic flexible discrimi-
nant analyses (16) to test the predictive performance of extension
ROM, wing shape, and bodymass (separately), coupled with sensitivity
analyses and assessments against random chance (17). Extension
ROM shape considerably outperformed both wing shape and body
mass when used to predict species’ flight behavior groups (Fig. 1G),
with correct predictions in over half of cases.

The capacity to couple extension (or flexion) across the elbow and
manus via musculoskeletal linkage is a well-documented feature of the
avian wing, albeit only investigated in cadavers of pigeons (Columba
livia) (18). We asked whether this coupling motion also shows concor-
dance with flight behavior or body mass. By manually extending and
flexing the wing at the elbow and tracking corresponding changes to
manus extension/flexion, we determined that all 61 species have the
ability to couple motion across these joints, the resultant motion path
that we here term the “linkage trajectory” (Fig. 2A).

Linkage trajectory was strongly associated with flight behavior
group but, unlike with extensionROM,was not explained by bodymass
(Fig. 2, B andC, and tables S2 and S3). Flight behavior group had strong
effects on both the slopes and intercepts of the mixed model, but phy-
logenetic history also showed strong influence (l, 0.85; 95% HPD, 0.80
to 0.91). Dynamic soaring species showed particularly high slopes, in-
dicating that they have amore extreme capability to tunewing shape via
the linkage system to potentially negotiate trade-offs in aerodynamic
efficiency and static pitch stability (5).

The strong association between flight behavior and linkage trajecto-
ry suggests that variation in these motion paths should have functional
consequences. Given that aspect ratio influences aerodynamic power
and efficiency (2, 19), we next asked whether the relationship between
aspect ratio and linkage trajectory could be explained by flight behavior
or bodymass (Fig. 2, C and D, and tables S2 and S3). Neither predictor,
however, substantially improved variance explained, and instead, our
null, intercept-only model with phylogenetic random effects provided
the best fit (l, 0.80; 95% HPD, 0.74 to 0.86). Although Fig. 2D suggests
distinct patterns among flight behavior groups, estimated effects over-
lapped extensively in models informed by flight group (Fig. 2E). Thus,
extension or flexion via the avian wing’s linkage system causes similarly
proportional changes to aspect ratio across species of varying size and
flight behaviors.
Baliga et al., Sci. Adv. 2019;5 : eaaw6670 23 October 2019
In addition to the largely planar motion of extension and flexion, we
asked whether the wing’s out-of-plane capabilities also show associa-
tions with flight behavior or bodymass.We examined the capacity to
bend (elevate or depress) or twist (pronate or supinate) simultaneously
by manually manipulating wings over the full range of extension and
flexion of both the elbow and manus (fig. S3). Because of the increased
complexity of data capture, out-of-plane ranges of motion were deter-
mined only for the hand-wing (i.e., at themanus joint) and for 30 of the
61 species.

Although both bending and twisting capabilities showed complex
topographies across extension ROM, all species showed restrictions to
both bending and twisting as the wing was extended fully (Fig. 3). This
led us to ask whether such restrictions, the osteological mechanisms of
which have been generally described (20), vary according to body mass
or flight behavior.We found that heavier species showed greater overall
restrictions to both bending and twisting ROM (analyzed separately;
Fig. 3, A and C, and tables S2 and S3) and that these relationships were
little affected by phylogeny (l for bending, 0.03 and 95%HPD, 0 to 0.14;
l for twisting, 0.05 and 95% HPD, 0 to 0.13). Incorporation of flight
behavior in models hinted at some separation in standardized effects
between species that glide and soar against those that primarily use
flapping (Fig. 3, B and D, and tables S2 and S3), but these effects were
weak and not statistically distinguishable.

Because flight behavior associated with some range of motion
traits but not others, we asked how in vivo wing kinematics relate to
osteological range of motion. We recorded 3D wing motion during
in vivo flight from two species: the pigeon (C. livia, n = 1) and the
zebra finch (Taeniopygia guttata, n = 4). On each bird, we marked a
single wing in a similar fashion to that used in our cadaveric study
(see Materials and Methods). Five cameras recorded wing motion at
240 frames/s. The pigeon was observed alone, whereas all four zebra
finches were released into the flight cage together, but data were
collected only on one individual at a time. To attain as comprehensive
a sampling of wing usage as possible, we allowed birds to fly freely and
did not limit recordings to singular flight behaviors. Rather, we collected
data on an indiscriminate mix of behaviors including ascending flight,
level flapping, transient hovering, turning, and descending flight (al-
though we note that most recordings were of forward flight).

Not only did we find that in vivo wing configurations fell within
osteological range of motion but also each species showed distinct
patterns of wing use (Fig. 4). Zebra finches used a broad array of wing
configurations, many of which overlapped the cadaveric linkage tra-
jectory (Fig. 4A). The pigeon, however, showed a narrower range of
both elbow and manus extension, with a tendency toward low-elbow,
high-manus configurations (Fig. 4B). It is conceivable that high-elbow,
high-manus configurations are used during gliding, but we did not ob-
serve this behavior (likely due to the limits of our flight arena). Data
from the pigeon also showed strong departure from the linkage trajec-
tory, indicating that wing morphing is not merely restricted to the path
achieved by the coupling of elbow andwristmotion.Out-of-planemotion
in both species also fell within the limits defined by our cadaveric study
(Fig. 4, D to F), although we note that because of difficulties in marker
visualization, we were unable to track wing twist in the zebra finches. Nei-
ther species showed bending or twisting as extreme as the underlying os-
teological capability, which aligns with the lack of correspondence we
found between flight behavior and out-of-plane range of motion.

Althoughother studies of avianwingbeat kinematics do not typically
track joint angles within the wing, a study of the gliding behaviors of
glaucous-winged gulls (Larus glaucescens) inferred elbow and wrist
3 of 14
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extension throughmatching in vivowing shapes to those shown byma-
nipulating cadavers through their range of motion (5). Inferred in vivo
data from this study similarly fall within the extension ROM of our ca-
davers for this species, tending toward fuller wing extension and
overlapping somewhat with linkage trajectory configurations (Fig. 4C).

Despiteobservations fromonlya fewspecies, comparing invivowing
usage against osteological range of motion suggests three hypotheses.
First, the shape of the wing when at full extension poorly describes the
airfoilbeingusedduringmostofthebehaviorswerecorded.Fullextension
Baliga et al., Sci. Adv. 2019;5 : eaaw6670 23 October 2019
was rarely, if ever, shown during flight. Second, different regions within
therangeofmotionseemtobeusedbyspeciesofdifferingflightbehaviors
andbodymass.Thesepatternsrevealexcitingpotential touserangeofmo-
tion as a substrate uponwhich to compare in vivowing usage bothwithin
and across taxa. Third, in vivo studies of wing kinematics typically cannot
guarantee to elicit the full range of behaviors that a species shows and in-
steadpresentamore limitedviewofwingusageandmorphingcapability.

Collectively, we find that different features of the wing and its range
of motion associate in notably different ways with body mass and flight
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behavior. Computing effect sizes (21) highlights the differences in rel-
ative importance of these variables in explaining static and dynamic
morphological variation (Fig. 5A and table S4). The inclusion of flight
behavior grouping and body mass did not explain variation in static
wing shape. In contrast, flight behavior was key to explaining wing
extension capabilities, particularly in the linkage trajectory achieved
via coupling elbow and wrist motion. The limits to out-of-plane mo-
tion were explained by variation in bodymass but not by flight behav-
ior or even phylogeny.
Baliga et al., Sci. Adv. 2019;5 : eaaw6670 23 October 2019
The fluctuating importance of phylogenetic effects across our
models led us to ask how shared history among species underlies
trait variation itself. We uncovered a stark difference in phylogenetic
signal for static and dynamic traits (Fig. 5B and table S5). Static mor-
phological traits and flight behavior group showed Blomberg’s k values
(22, 23) that were close to or overlapping 1.0, the value expected under a
Brownian motion model of evolution. Different evolutionary processes
can produce similar values of phylogenetic signal; therefore, k values
close to 1.0 should not necessarily be ascribed to Brownian motion
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(24). Nevertheless, we determined that static morphology in the avian
wing shows greater evolutionary conservatism, whereas dynamic range
of motion traits show more dynamic histories.
DISCUSSION
To examine whether variation in flight style and body mass is more
strongly associatedwith static or dynamic traits of thewing, wemeasured
the range of motion in extension, bending, and twisting for wings from
birds of diverse sizes and flight styles.We found that variation in range of
motion in extensionwas explained by both flight style andbodymass, but
extension coupling corresponded onlywith flight style. Both bending and
twistingwere influenced by bodymass but not flight style. In contrast, static
wing shape did not correspondwith either factor and showed stronger evo-
lutionary conservatism than all measurements of wing range of motion.

Collectively, these results provide new context for not only under-
standing the avian wing specifically but also, more generally, for testing
hypotheses of morphological evolution. Biomechanical systems com-
prise both underlyingmorphology and their emergent functional prop-
erties, the latter of which has stronger ties to performance of behavior
(25). In other vertebrate clades, static traits show similar extents of phy-
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logenetic signal to that seen in the avian wing (22, 23, 26), suggesting
that morphology may generally be expected to show evolutionary con-
servatism. Range of motion, an emergent feature of morphology, has
been little examined in a macroevolutionary context. Its evolutionary
lability and concordance with ecological factors point to its efficacy in
determining how selection for performance affects morphological evo-
lution in the avian wing. In birds, specialization for flight and size does
not impose strong limitations onwing shape (3) but instead reshapes an
emergent feature: the wing’s range of motion.

Although we considered multiple axes of wing motion capability,
birds can move other wing elements that we did not measure here.
Some feathers, e.g., the alula and the last primary, can be further con-
trolled by motion of the major and minor digits of the hand-wing (27),
and the forearm, much like that of other vertebrates, can also pronate
and supinate (9). We chose to focus on the largest motions in the distal
half of the wing because the center of pressure is located in this region
during flapping flight. Pressure location has been measured on
revolvingwing specimens, which confirmed that larger differential pres-
sure occurs where velocity along thewing is greatest (28). Thus, changes
to the distal half of the wing will strongly influence aerodynamic force
magnitude and orientation.
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Within aircraft design, there is increasing interest to explore the
potential for morphing wings to increase aerodynamic performance
and response to perturbations relative to static wings (29–32). The
results of our comparative study suggest specific design targets for drone
aircraft depending on flightmode andmass. Across species, we find that
increases inmass correspond to increasing restrictions within all axes of
range of motion. Motion capabilities are also limited in species that dy-
namically soar or glide, indicating that these flight styles may demand a
more rigid maintenance of posture akin to the wings found on engi-
neered gliders and sailplanes. Although flight behavior did not generally
explain variation in out-of-plane range of motion, we note that such
capabilities are particularly limited among species that use their wings
to swim underwater and face a relatively viscous environment. In
contrast, taxa that use high-excursion flapping and bounding behav-
iors show relatively fewer restrictions to any of the axes of variation we
measured, a correspondence that appears in multiple avian clades.
Among engineered vehicles, particularly those that rely on flapping, a
primary challenge inmoving from static tomorphingwing design is the
increased complexity of dealingwith unsteady flows (29, 32). By consid-
ering the limitations that natural selective forces have placed on birds of
a particular size and flight style, we find that passive control capability
within the avian wing provides convenient reference toward engineer-
ing of next-generation morphing wings on unmanned aerial vehicles.
MATERIALS AND METHODS
Specimens
For 58 of the 61 species examined, frozen cadavers of adult specimens
were each acquired from one of five sources: (i) University of British
Columbian Beaty Biodiversity Museum (Cowan Tetrapod Collection),
Vancouver, BC, Canada; (ii) Royal British ColumbiaMuseum, Victoria,
BC, Canada; (iii) Wildlife Rescue Association, Burnaby, BC, Canada;
(iv) Wild Animal Rehabilitation Centre, Victoria, BC, Canada; or (v)
Baliga et al., Sci. Adv. 2019;5 : eaaw6670 23 October 2019
BCMinistry of Forests, Lands, Natural Resource Operations and Rural
Development, Nanaimo, BC, Canada.

For the remaining three species, fresh cadavers of adult specimens
(Anna’s hummingbird, Calypte anna; pigeon, C. livia; and zebra finch,
T. guttata) were sourced from ongoing studies in the Altshuler Labora-
tory. All procedures with these species were approved by the Animal
Care Committee of the University of British Columbia.

Before data collection, each specimen was carefully assessed to de-
termine that its wings were fully intact (including all feathers) and did
not exhibit effects of desiccation or decomposition. Adult male speci-
menswere sampled for species inwhich appreciable sexual dimorphism
(by coloration or mass) occurs. Specimens that had been frozen were
fully thawed, and all subsequent data collection occurred within 10 min.
Masses were measured on intact carcasses before any dissection.Wings
were then removed at the shoulder joint, taking special care to ensure
that each wing’s skin, propatagial elements, and feathers remained in-
tact. Although in many cases, both wings of a cadaver were removed,
data collection occurred only on a single wing per specimen. Details of
sample sizes, body masses, and other static morphological measure-
ments (see the “Data collection: Static morphology” section) of speci-
mens are provided in data S1.

Tree inference
We reconstructed phylogenetic relationships using a molecular dataset
that comprised sixmitochondrial (12S, 16S, COI, CytB,ND1, andND2)
and six nuclear gene regions (B-Fib, MUSK, ODC, RAG1, TGFB2, and
ZENK), with 18,246 total base pairs. We obtained sequences for 220
birds and a two-taxon out-group (crocodiles). All 61 species for which
we examined morphology and ROM were included in this sampling.
The additional 159 species of birds (220 to 61) were included to aid
in the estimation of divergence times among avian clades. All sequences
were downloaded from GenBank (see data S2 for accession numbers
and information on genetic sampling).
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We aligned each gene sequence separately using the built-in
algorithm in Geneious v9.1.6 (33). Flanking regions that contained
sequences from less than 60% of taxa were excluded. To identify the
best-fitting model of nucleotide substitution for each gene, we used
PartitionFinder v2.0 (34). In each case, we found the best fit (assessed
via Akaike’s information criteria and Bayesian information criteria
scores) to be a GTR + I + G model or a close variant thereof.

Using SequenceMatrix v1.7.8 (35), we concatenated the aligned
sequences into a supermatrix. We partitioned this supermatrix by
individual molecular markers and performed a maximum-likelihood
analysis in RAxML (36), using a bootstrap analysis under a GTR + G
model with 1000 pseudoreplicates. The phylogenetic tree with the best
likelihood score was retained to guide further analyses (data S3).

We then used BEAST v2.4.7 (8) to simultaneously estimate topology,
branch lengths, and divergence times via BayesianMarkov chainMonte
Carlo (MCMC). Using a relaxed log normal clock model approach, we
partitioned the supermatrix by sequence and fit a separate model for
each partition based on our results from PartitionFinder. To estimate
divergence times, we placed informative parametric priors on nodes
of the tree to reflect the available paleontological history of the group
(table S1). Descendant members of each specified node were based
on the topology of the maximum likelihood tree from RAxML.

To ensure that each BEAST MCMC sampling converged on the
target distribution, we ran nine separate chains, each from a different
random starting tree. Each MCMC chain ran for 200 million genera-
tions, sampling every 20,000 generations. We assessed convergence by
plotting likelihood versus generation and estimating the effective sample
size (ESS) of each parameter. A similar analysis in which the super-
matrix was not partitioned resulted in most MCMC chains not attain-
ing stationarity.

Once we discarded the burn-in from each chain (the first ~20%), we
combined chains via LogCombiner v2.4.7 (8). Within each chain, the
ESSs of all parameters were generally >200, with the lowest ESS still
>100. After we combined all results, most of the parameters had ESS
of >2000. The combined set included >500million trees, which we used
to assemble themaximumclade credibility tree in TreeAnnotator v2.4.7
(8). This resultingmaximumclade credibility tree (data S4) was used for
all phylogenetically informed analyses of comparative data (and used to
generate main text figures). In addition, 1000 trees were sampled from
the posterior distribution to aid in the understanding of phylogenetic
sensitivity in all comparative analyses (see Fig. 5).

Determination of flight behavior grouping
We determined 12 potential flight behaviors using descriptions
from (9). These behaviors were the following: unassisted hovering,
ability to hover without being reliant on wind conditions; dynamic
hovering, reliance on wind speed gradients to hover in place (often
transiently using a head wind); bounding, short bursts of flapping flight
alternating with (short) intervals where the wings are folded against the
body; flap gliding, short bursts of flapping flight alternating with (short)
intervals where the wings are held an extended position; gliding, wings
are held in an extended position (no flapping), often resulting in losing
altitude; thermal soaring, bird propelled upward bymoving air on rising
thermals; slope soaring, bird propelled upward by rising air along a
slope; dynamic soaring, use of wind speed gradients and bird’s own
momentum to maintain or increase altitude; stooping, controlled,
rapid, head-first dives; foot-propelled swimming, bird uses feet but
not wings to propel itself underwater; wing-propelled swimming,
bird uses wings to propel and steer itself underwater; (relatively) in-
Baliga et al., Sci. Adv. 2019;5 : eaaw6670 23 October 2019
frequent flight, behavior meets any of the following: (i) completely in-
capable of flight, (ii) ground-dwelling, (iii) incapable of flight for several
weeks (often due to molt), (iv) aversion to flight, and/or (v) previous
classification of “poor flight.”

To account for the ability of each species to exhibit multiple flight
behaviors, we scored each species’ ability to exhibit a given flight be-
havior on a binary scale. For a given behavior, species were scored a
“1” if that behavior was regularly or repeatedly found in natural ob-
servations, descriptions, and/or previous categorizations of that species
(9, 37–43). A 61 × 12 flight behavior matrix (data S5) was thereafter
created with each species occupying a row and each flight behavior oc-
cupying a column.

We then categorized taxa into flight behavior groups by first
generating a dissimilarity matrix based on the flight behavior matrix
using the Gower distance between rows (44). We then performed
hierarchical clustering based onWard’s clustering criterion (45) on the
dissimilarity matrix. To determine the optimal number of flight behav-
ior groups, we computed the gap statistic, which compares the change
in within-cluster dispersion with that expected under a null distribution
(10), using 500 bootstrap replicates. Because the gap statistic identified
nine groups as the best performing scheme, we then cut our hierarchical
cluster tree at nine groups (fig. S1A). To aid in the identification of
behaviors that best described each group, we then performed pPCA
(13) on the flight behavior matrix and used the loadings of the pPCA to
determine how specific flight behaviors corresponded to each group
(fig. S1B). Groups were thereafter named using the flight behaviors that
best corresponded to that group’s ordination in pPCA.

Data collection: Range of motion
To determine their range of motion, wings were mounted to a
support frame. The head of the humerus was attached to the frame,
and several motion types were actuated by hand (movies S1 to S3).
To capture resulting changes in wing shape, five points were marked
on the dorsal surface of each wing (fig. S2): (i) the head of the hu-
merus, (ii) the center of motion of the elbow joint, (iii) the center of
motion of the manus joint, (iv) the distal tip of the carpometacarpus,
and (v) point on the dorsal wing surface that lay in line with the edge
of the carpometacarpus (point 4). Point 5 was located along the leading
edge of the wing. The locations of point 5 was such that a line segment
along the dorsal surface of the wing connecting points 4 and 5 would
lie perpendicular to the length of the carpometacarpus (i.e., the seg-
ment along the dorsal surface connecting points 3 and 4). Select covert
feathers were removed to allow for a clearer visualization of the spe-
cifiedmarkers.Wingsweremarked either with permanentmarker ap-
plied directly to the skin or on pieces of tape that were attached lightly
to the wing to not restrict freedom of movement across joints. Mark-
ing occurredwithin 1min, which allowed for subsequent filming of all
range of motion within 10 min of thawing the wing.

Wingmotionwas captured in 3D at 24 frames/s at 1920 × 1080 pixel
resolution using three Miro M120 video cameras (Vision Research, NJ,
USA), and Phantom Camera Control (v3.3.781.0) software was used to
synchronize video recording across cameras. Calibrations for 3D digi-
tization were performed by waving a 7 cm by 7 cm checkerboard grid
within the filming area before each recording session to obtain direct
linear transformation coefficients via easyWand v6 (46). Axes were
defined using a stationary object. Throughout all videos, the antebrachi-
umof thewingwas held in parallel with theX-Yplane. The directions of
X and Y were not standardized, but the Z axis was strictly defined to
align with the dorsoventral axis of the wing (+Z, dorsal). One camera
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(24-mm lens) was oriented to give a top-down view that aligned with
the X-Y plane of wing motion. The other two cameras (both 28-mm
lenses) were positioned such that all markers could be visualized
throughout the range of motion actuation. We then used DLTdv
v6 (47) in MATLAB (MATLAB and Statistics Toolbox Release 2016b)
to digitize range of motion data in 3D. During digitization of videos, a
maximum reprojection error of 1.0 pixel was strictly enforced.

For wings from all 61 species, the range of flexion and extension of
both the elbow andmanus joints was recorded. All measurements were
made by V.B.B. Range of motion was determined by applying force
manually at two locations on the wing: (i) midway along the length
of the carpometacarpus tomanipulate themanus and (ii)midway along
the ulna to manipulate the elbow. Force was applied at a joint until
resistancewasmet (11). In all species, the range of extensionwas limited
by the skeletal system rather than by soft tissue such as ligaments or
tendons. Thus, any differences in soft tissue compliance were not regis-
tered with this technique. Special care was taken to ensure that hyper-
extension of the joints did not occur; applying further force would have
risked dislocating or breaking bone.

The ability to couple elbow andmanusmotion via amusculoskeletal
linkage system in the wing (18) was additionally assessed across all spe-
cimens. The wing was initially held in a fully flexed position; the elbow
was then extended until maximum elbow extension was achieved, held
briefly at maximum position, and then reversed to full flexion of the
elbow to complete one “cycle.” Six full cycles of movement were re-
corded for each wing, with each cycle actuated at approximately 0.5 Hz.

Because of increased difficulty in out-of-plane digitization, the range
of motion in bending or twisting the wing was determined only for the
hand-wing (i.e., at themanus joint) and for 30 of the 61 species. Out-of-
plane wing motion was manipulated by applying force manually mid-
way along the length of the carpometacarpus (see fig. S2). As for
extension, the out-of-plane motion was determined by applying force
until resistance was met within the wrist joint and was limited by bone
rather than by soft tissue. Bending and twisting of the hand-wing were
simultaneously determined over the full range of flexion and
extension of both the elbow and manus.

In all videos, elbow angles were calculated as angular changes
involving points 1, 2 (vertex), and 3, whereas manus angles were
calculated as angular changes involving points 2, 3 (vertex), and
4. For bending motion, elevation (positive) and depression (nega-
tive) of the hand-wing were assessed as the vertical axis (Z) angular
change of point 4 relative to point 3. For twisting, pronation (neg-
ative) and supination (positive) were calculated as the angular de-
flection of point 5 (or 6) against a horizontal drawn from point 4.
This angle was calculated in degrees using the points {X5,Y5,Z5},
{X4,Y4,Z4} (vertex), and {X5,Y5,Z4} (see fig. S2).

Data collection: Static morphology
For each wing, the following linear measurements or discrete counts of
static morphology were recorded (definitions in parentheses): humeral,
ulnar, and carpometacarpal length (linear distance inmillimeters be-
tween points 1 and 2, 2 and 3, and 3 and 4, respectively); static wing
length (linear distance in millimeters between point 1 and the distal-
most tip of the wing when held at full extension, measured perpendic-
ular to the root chord of the wing); and primary and secondary feather
counts (numerical counts; primary feathers, remiges located on the
hand-wing; and secondary feathers, remiges located on the arm-wing).

Measures of wing shape, wing area, and wing aspect ratio (data S1)
were each computed in 2D from video recordings from the “top-down
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view” camera only. “Static” wing shape (the shape of the wing at max-
imum extension of the elbow and manus) was determined by first
finding the video frame in which both elbow and manus angle were
maximized and then using the Freehand Selection tool in ImageJ v1.5
(48) to create a selection that included all components of the wing. This
selection was first used to compute static wing area (in square milli-
meters). Each of these selections was then imported into R and
converted into a closed outline (Coe) object using theMomocs package
(12) for further analyses of wing shape (see the next section). Measures
of wing area and wing length were also captured for every frame of the
videos in which coupling of the elbow and manus was assessed. Again,
using the Freehand Selection tool, a selection that included all compo-
nents of the wing was first created and then used to compute wing area
in square millimeters. The length of the wing was calculated as the lon-
gest possible line from the distalmost portion of the wing perpendicular
to the wing root. Aspect ratio was then calculated as

Wing AR ¼ b2

S

where b was twice the length of the wing, and S was the 2D wing area.

Quantification of range of motion and wing shape
Wequantified range ofmotion in the avianwing using threemetrics: (i)
extension ROM, (ii) bending capability, and (iii) twisting capability.
Extension ROM was defined as the space occupied by the outer
boundary of possible elbow angles against possible manus angles.
To determine extension ROM for each species, the set of all possible
elbow angles (X axis; ranging from 0° to 180°) was plotted against all
possible manus angles (Y axis; ranging from 0° to 180°). Because we
found intraspecific variation to beminimal, we pooled data fromall spec-
imens of a species. We then generated a convex hull that encapsulated
all possible elbow and manus angles. To facilitate comparison of
these shapes across species, we converted all convex hulls into Coe
objects (12) and then used elliptical Fourier analysis (49) to quantify
outline shapes without the use of homologous landmarks. Because
we sought to test hypotheses of extensionROMshape, we first standard-
ized all outlines to the same size and location using generalized Pro-
crustes analysis (50). Elliptical Fourier coefficients that described
>95% of shape variance across species were retained for further analy-
ses involving extension ROM. The area of each extension ROM shape
was also computed by taking the total area of occupation in the elbow
angle × manus angle plots.

Bending capability was defined as the combined capability to elevate
or depress the hand-wing at the manus joint, evaluated at each point of
extension ROM. For each species, elevation (positive) and depression
(negative) (both on Z axis) were simultaneously plotted in 3D against
elbow angle (X axis) and manus angle (Y axis). To encapsulate the
ROM, an a-hull [3D generalization of a convex hull (51)] was fit to
the data (fig. S3). To describe, visualize, and compare bending capa-
bilities across species, the vertices of each a-hull were extracted and
then separated according to whether they corresponded to elevation
or depression. We fit regularized neural networks (52, 53) to each set
of vertices to resolve the relationship between elevation (or depres-
sion) capability and wing extension (elbow angle and manus angle,
jointly). Thismethodnot only guards against potential outliers resulting
from digitization error (amounting to a low-pass filter) but also allows
for the interpolation of data missing at any point within the exten-
sion ROM. Each regularized neural network was trained and then
9 of 14



SC I ENCE ADVANCES | R E S EARCH ART I C L E
cross-validated within its dataset following amachine-learning framework
using the Caret package (54). In cases where datasets were too sparse to
use regularized neural networks, locally estimated scatterplot smoothing
(LOESS), or linear models were used. Last, bending capability was
determined by summing the predictions of elevation and depression
from trainedmodels for every point of extension ROM. Two keymetrics
were collected: (i) bending capacity at full extension (the combined ability
to elevate or depress the wing when it is fully extended) and (ii) maxi-
mum value of bending capacity (the highest value of bending capacity
achieved regardless of wing extension).

Twisting capability follows a similar definition to that of bending
capability. The combined capability to pronate or supinate the hand-
wing was evaluated at each point of extension ROM. All methods of
a-hull and model fitting follow the above. Twisting capability across
extensionROM, including its value at full extension andmaximumvalue,
was computed in a similar fashion.

Wing shape was quantified via a method akin to that used to quan-
tify extension ROM.We first standardized all wing shape Coe objects to
the same size and location using generalized Procrustes analysis (50). To
standardize wing orientation, the distalmost tip of the wing was set as
the “principal point” (49). Elliptical Fourier coefficients that described
>95% of shape variance across species were retained for further analyses
involving wing shape.

Multivariate analyses of shape
We used pPCA (13) to ordinate and facilitate comparison among spe-
cies’ extension ROMs and wing shapes. Elliptical Fourier coefficients
from each dataset were used as the raw data for each pPCA. In each
case, we allowed the extent of phylogenetic signal (Pagel’s l) to, first,
be measured directly from the data (using either the maximum clade
credibility tree from our BEAST analyses or one of the 1000 posterior
distribution trees) and, second, to be used to inform the pPCA (13). For
the extension ROM pPCAs, we found the resulting principal compo-
nents to be invariant to phylogeny (all l nearly zero; eigenvectors and
values all identical); further analyses were carried out using the maxi-
mum clade credibility tree only.

Hypothesis testing of flight behavior and body mass on
range of motion or wing shape via phylogenetic mixed models
To determine how extension ROM or wing shape vary according to
flight behavior, body mass, or phylogenetic history, we used a phyloge-
netic Bayesian generalized linear mixed model approach via the
MCMCglmm package in R (55). This allowed us to determine the
extent to which fixed effects (flight behavior, bodymass, and/or their
interaction) explained variance among principal components of
extension ROM or wing shape. In all cases, phylogenetic history was
used to inform the covariance matrix of the random effects (identity
matrix). For computational simplicity, only the maximum clade credi-
bility tree was used. We used priors for the random effect and residual
variances corresponding to an inverse-Wishart distribution (V = 1 and
nu = 5 × 10−4) (56) and used the default uninformative priors for the
fixed effects.

Becausewe had amultivariate response, we first used power analyses
to determine the extent towhich all principal components could be used
(56). These analyses indicated that each interspecific dataset of 61 species
was sufficient (power, 0.8) for analysis of threemultivariate axes, given the
number of fixed effects to be tested and approximate effect sizes. Hence,
fixed and random effects were regressed against the first three principal
components of the extension ROM or wing shape pPCAs.
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For each dataset (extension ROM or wing shape), the following
models were fit

fPC1;PC2;PC3g
e

1
fPC1;PC2; PC3g

e

M
fPC1;PC2;PC3g

e

F
fPC1;PC2; PC3g

e

F þM
fPC1;PC2; PC3g

e

F �M

where {PC1, PC2, PC3} are the first three principal component axes
of either the extension ROM or wing shape pPCA, M is natural log–
transformed body mass, and F is flight behavior grouping. The first
listed model corresponds to a null case where neither flight behavior
nor body mass explains meaningful variation in principal compo-
nent scores.

Although deviance information criteria (DIC) values were com-
puted for each model, we opted to not use this metric as our sole crite-
rion for model selection for two reasons. First, DIC has been identified
to haveweak theoretical justification and reduced predictive power (57).
Second, we observed in our results that, occasionally, the most complex
model was selected, but effects were poorly estimated (extremely large
credible intervals for multiple fixed effects).

To guard against the selection of overly complex models, we used a
cross-validation approach to model selection. For each model, folds of
six species’ data were each held out as a “test” set, whereas data from the
other 55 species were used for “training.”Ourmethod of cross-validation
is robust to the issues related to phylogenetic data (58) because the entire
61-taxon maximum clade credibility tree was used to inform random
effects of theMCMCglmmmodels, thereby accounting for phylogenetic
structure in both training and test datasets. Point estimates (maxi-
mum a posteriori estimates of principal component scores) for both
training and test datasets were then generated from each model using
the predict.MCMCglmm() function, and their associated mean squared
errors (MSEs)were then computed. Although theMSEs of training data
were informative to assess goodness of model fit, only the MSEs of test
data were used to determine the best performing model (59). The
conditional R2 of each model was also calculated (60) to aid in the de-
scription of goodness of fit. Information on model fits is available in
table S2, and specific information on best-fitting models is available
in table S3.

For eachMCMCmodel, 10 separate chains of 45,000 iterations were
run, with a burn-in of 4500 and thinning interval of 39. Within each
chain, the ESS of each parameter was ~1000. This procedure yielded
autocorrelation values ≤ 0.10 between retained iterations. To assess
convergence among chains, we used the Gelman-Rubin diagnostic
procedure (61) and determined that the upper 95% confidence limit
for the Gelman-Rubin statistic was ≤1.02 in every case.

We calculated Cohen’s f 2 (21) to determine the effect sizes of fixed
effects (table S4). This process was carried out iteratively using themax-
imum clade credibility tree or one of the 1000 sampled posterior
distribution trees. The f 2 of each fixed effect was calculated as

f 2b ¼
Vnull�Vab

Vnull
� Vnull�Va

Vnull

1� Vnull�Vab
Vnull

where f 2b is the f
2 specifically for the effect of interest,Vnull is the residual

variance of a nullmodel with only the intercept and random effects,Vab

is the residual variance of a model that includes all fixed and random
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effects, andVa is the residual variance of themodel that includes all fixed
effects except the effect of interest. In addition, the extent of phylogenet-
ic signal (Pagel’s l) in each model was calculated as

l ¼ Varp
Varp þ Varr

where Varp is the phylogenetic (random effect) variance, andVarr is the
residual variance (62, 63).

To determine how linkage trajectories, as well as the relationship
between linkage trajectory and wing aspect ratio, vary according to
our principal factors of interest, we again implemented Bayesian
generalized linear mixed models (via MCMCglmm). Model fitting
was followed by cross-validation for model selection and effect size
estimation. Because these models were fit to univariate response varia-
bles (linkage trajectory or wing aspect ratio), we instead used inverse-
gammadistributed priors with shape and scale of 0.02 for randomeffect
and residual variances. For each model, 10 separate chains of 15,000
iterations were run, with a burn-in of 1500 and thinning interval of
13, resulting in ESS for parameters ~1000.

For analysis of linkage trajectories, the following models were fit

AM
e

AE

AM
e

AE þM
AM

e

AE þ F
AM

e

AE þM þ F
AM

e

AE þM þ F þM : AE

AM
e

AE þ F þ F : AE

AM
e

AE þM þ F þ F : AE

AM
e

AE þM þ F þM : AE þ F : AE

where AM is natural log–transformed manus angle, AE is natural log–
transformed elbow angle,M is natural log–transformed bodymass, and
F is flight behavior grouping. The first listedmodel corresponds to a null
case where neither flight behavior nor body mass explains meaningful
variation in linkage trajectories. Subsequent models include bodymass,
flight behavior, and/or each of their interactive effects with elbow
extension. Information onmodel fits is available in table S2, and specific
information on best-fitting models is available in table S3.

For analysis of wing aspect ratio, a similar suite of models was fit

AR
e

AM

AR
e

AM þM
AR

e

AM þ F
AR

e

AM þM þ F
AR

e

AM þM þ F þM : AM

AR
e

AM þ F þ F : AM

AR
e

AM þM þ F þ F : AM

AR
e

AM þM þ F þM : AM þ F : AM

where AR is natural log–transformed wing aspect ratio, AM is natural
log–transformed manus angle, M is natural log–transformed body
mass, and F is flight behavior group. In each of these models, the AM

term represents wing extension according to the linkage trajectory;
although both AM and AE describe the motion path achieved by the
linkage system, we avoided using both angles in the above models
because of their high degree of correlation with each other. Instead,
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AM was chosen simply because it showed consistently stronger rela-
tionships to AR. The first listed model corresponds to a null case
where neither flight behavior nor body mass explains meaningful
variation in how wing extension along linkage trajectories affects wing
aspect ratio. Information on model fits is available in table S2, and spe-
cific information on best-fitting models is available in table S3.

To determine how bending or twisting capabilities vary according to
our principal factors of interest, we again used Bayesian generalized
linear mixedmodels (albeit via a simpler approach due to the reduction
in species measured). We used inverse-gamma distributed priors with
shape and scale of 0.02 for random (phylogenetic) effect and residual
variances. For each model, 10 separate chains of 15,000 iterations were
run, with a burn-in of 1500 and thinning interval of 13, resulting in ESS
for parameters ~1000.We first comparedmodels to assess howwell body
mass variation explained trends in the reduction of bending or twisting
capability at full wing extension compared to its maximum value

C
e

S
C
e

SþM

whereC represents bending or twisting capability, S denotes the state
(a categorization of value at full extension versus maximum value), and
M is natural log–transformed mass. The effect size of body mass was
thereafter assessed viaCohen’s f 2, iteratively across varying phylogenies.

We then fitmodels to assess howwell flight behavior group (after con-
trolling for body mass) explained the same trends in bending or twisting
capacity. To ensure adequate statistical power (56), we restricted our
analyses to flight behavior groups inwhich five ormore speciesweremea-
sured (amounting to an analysis of 21 species across four flight groups)

C
e

S
C
e

SþM
C
e

Sþ F
C
e

SþM þ F

again, where C represents bending or twisting capability, S denotes the
state (a categorization of value at full extension versus maximum value),
M is natural log–transformed mass, and F is flight behavior group.
Informationonmodel fits is available in table S2, and specific information
on best-fitting models is available in table S3.

For all best-fitting Bayesian generalized linear mixed models, we
computed standardized effects (estimated marginal means) for inter-
cept and/or slope effects for each fixed effect (64). We computed these
standardized effects not only to help summarize the effects of our prin-
cipal factors of interest but also to test linear contrasts among these
predictors (Fig. 3).

How accurately data predict flight behavior
To assess how well extension ROM, wing shape, or body mass could
be used to predict species’ flight behavior group, we used phylogenetic
flexible discriminant analyses (16). Here, the dependent variablewas the
set of nine flight behavior groups. A separate analysis was carried out for
extension ROM, wing shape, and body mass datasets. For the analyses
involving extension ROM and wing shape, scores from principal com-
ponents that accounted for 95% of the parent dataset’s variance were
used as predictors. For the analysis using bodymass, valueswere natural
log–transformed before being used as predictors. Across all analyses, we
used two types of sensitivity analyses of prediction performance. First,
themaximumclade credibility tree alongwith 1000 posterior distribution
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trees was each used to inform the discriminant analysis. Because we
found the analysis invariant to phylogeny, only the maximum clade
credibility tree was used thereafter. Second, species’ data were jack-
knifed: In each of 61 iterations, a single species was held out and dis-
criminant axes were informed by data from the other 60 species.
Prediction performance was then determined by the proportion of cor-
rect entries in each resulting confusion matrix. To determine how well
each empirical dataset performed against random chance, we addition-
ally randomized rows within each dataset and reran all discriminant
analyses along with phylogenetic sensitivity analyses. Cohen’s k, a mea-
sure of effect size in empirical versus randomperformance (17), was then
computed for each iteration of this sensitivity analysis using the formula

k ¼ po � pe
1� pe

where po was the prediction performance when empirical data were
used, and pe was the prediction performance for when randomized data
were used.

In vivo kinematic data collection and analyses
To determine how cadaveric range ofmotion relates to in vivo flight, we
recorded wing kinematics from two species: pigeons (C. livia; n = 1;
mass, 613 g) and zebra finches (T. guttata; n = 4; masses, 16 to 17 g).
We obtained all birds from breeders and housed them in cages with ad
libitum access to seedmix and water under 12-hour/12-hour light/dark
cycle. All husbandry and data collection procedures were approved by
the Animal Care Committee of the University of British Columbia.

To capture changes in wing shape during flight, up to five points
were marked on the dorsal surface of one wing on each bird.We placed
a 4-mm-diameter, removable, highly reflective marker at each point to
allow for data capture at 240 frames/s via a five-camera tracking system
(OptiTrack; NaturalPoint Inc.). Marker placement followed that in our
cadaveric study (fig. S2) except the following: (i) Because of difficulties
in visualizing the shoulder during flight, point 1 was placed midway
along the length of the humerus instead of at the humeral head. (ii) Be-
cause of difficulties inmarker visualization, point 5 was not used during
zebra finch trials, and accordingly, wing twist was not assessed for this
species. Eachmarkerweighed 0.0287 g, resulting in 0.1435 g addedmass
for the pigeon and 0.1148 g added mass for zebra finches. These added
masses amount to ~0.03 and ~0.72% of body mass, respectively.

Weallowed the pigeon to fly in an arenawith dimension of 118 inches
by 73 inches by 55 inches, whereas zebra finches flew in a smaller
cage with dimensions of 40 inches by 15.5 inches by 14 inches. During
all flight trials, we provided seed ad libitum. For each bird, all data
collection occurred within 15 to 30 min of wing marking and release
within the flight arena or cage.

Range ofmotion in extension and bending (both species) and twisting
(pigeon only)were then calculated for each species via similarmethods to
those inour cadaveric study.Weobtaineddataonly from frames inwhich
all markers were visible. While analyzing zebra finch flights, we pooled
data from all four individuals. We then determined whether any of the
angular data recorded in vivo for each species fell outside the correspond-
ing range of motion a-hulls we established with cadavers via the
inashape3d() function in the alphashape3d package (51).

Phylogenetic signal
Phylogenetic signal was measured for all studied traits using Blomberg’s
k (22) and is summarized in table S5. For all univariate traits, measure-
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ments spanned at least two orders of magnitude and were therefore
natural log–transformed before analyses except for maximum twisting
capability and maximum bending capability. Three multivariate traits
were analyzed using Adam’s generalized k statistic (kmult), which is
interpreted in the same way as Blomberg’s k and is also robust to cer-
tain issues in evaluating phylogenetic signal in multidimensional data
(23). Two of these traits (extension ROM and wing shape) were ana-
lyzed using their respective Procrustes-aligned shape sets. For the third
(flight behavior), we computed kmult on the 61 × 12 flight behavior
(binary) matrix.

For all measurements of signal, we ran two types of sensitivity analy-
ses. In the first analysis, data were jackknifed: A single species’ trait value
was iteratively removed, and signalwas recomputed via the influ_physig()
function in the R package sensiPhy (65). For ease of understanding,
only the maximum clade credibility tree was used. In the second anal-
ysis, we varied phylogeny using 1000 trees from the posterior
distribution of our BEAST runs to determine the sensitivity of signal
to topology. To allow for kmult to be used instead of its univariate coun-
terpart, we wrote customized versions of both the influ_physig() and
tree_physig() functions; see influ_physig_kmult() and tree_physig_
kmult() functions available in our Figshare repository.
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