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Abstract

Integrative structure determination is a powerful approach to mapping the structures of biological 

systems, with implications for our understanding of cellular biology and drug discovery. Here, we 

provide a Primer to introduce the researcher to the theory and methods of integrative approaches, 

relying on examples to illustrate the practice and challenges involved. These guidelines are 

intended to aid the researcher in applying integrative structural methods to systems of their interest 

and thus take advantage of this rapidly evolving field.

Introduction

Our understanding of biological macromolecular systems comes from gathering sufficient 

information about them from experiments and prior models. Depictions of the spatial and 

temporal arrangements of these systems are especially helpful in formulating hypotheses 

about their function and evolution. This mindset is often summarized by two quotes: 

“structure without function is a corpse; function without structure is a ghost” (Vogel and 

Wainwright, 1969); and, “nothing in biology makes sense except in the light of evolution” 

(Dobzhansky, 1973).

Historically, X-ray crystallography and NMR spectroscopy allowed us to determine atomic 

structures of smaller systems, such as single proteins. Larger systems were depicted at a 

correspondingly coarser granularity, commensurate to the data used (eg, electron or light 

microscopy images). Now, we are trying to map systems consisting of hundreds of 

macromolecules (eg, nuclear pore complexes, centrosomes), which nevertheless need to be 

depicted at a high level of detail. Moreover, we wish to describe the dynamics of these 

systems as they assemble, disassemble, function, and undergo regulation via interactions 

with other such systems. These descriptions also have to be sufficiently informative to allow 

us to modulate their functions, both to further study their mechanisms and for therapeutic 

interventions. It is here that traditional structure determination methods can fall short, thus 

creating a need for different approaches.
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Fortunately, one such approach already exists and has a long track record of success: 

integrative structural biology (Figure 1). In integrative approaches, disparate information, 

potentially at different scales, is synthesized into a common view of a system. The 

motivation behind the integrative approach is deceptively simple: namely, any system is 

described best (ie, most accurately, precisely, completely, and efficiently) by using all 

available information about it; in other words, if information about a system is available, 

why not use it! The integrative approach constructs a depiction of a system by 

simultaneously combining information from multiple sources, including varied experimental 

methods (Table 1) and prior models (physical theories, statistical analyses, and other 

models).

Integrative approaches actually date back to the very beginning of structural biology, and in 

a spectacular fashion: one of the first integrative structural models was that of the double 

helix of DNA (Franklin and Gosling, 1953; Watson and Crick, 1953). It was possible to 

generate a model of DNA that elegantly explained how genetic information is stored and 

propagated from one generation to the next, by combining information about its chemical 

composition, its stoichiometry, the complementarity of its component nucleotides, and X-ray 

fiber diffraction data about its helical geometry. None of these individual considerations 

were sufficient on their own; only together did they result in an informative model. The 

concept of integrating different types of data then moved through a series of methodological 

milestones towards the current formalization, as reviewed previously (Alber et al., 2007a; 

Alber et al., 2008; Joseph et al., 2017; Sali et al., 2015).

Integrative modeling as an optimization problem

To introduce how integrative structure determination methods work, it is helpful to first 

describe modeling approaches in general (“while it may be hard to live with generalization, 

it is inconceivable to live without it” (Gay, 2002)); these modeling approaches include all 

structure determinations based primarily on experimental data (such as X-ray 

crystallography), computational predictions (such as comparative modeling), and even 

manual models (such as sketching of schematic diagrams). A “model” in this sense is a 

depiction of a system or process of interest that is useful for rationalizing the existing 

information and for making predictions about outcomes of future experiments. Thus, 

modeling is the process of converting input information about a system into a model of the 

system. All modeling methods share a common design principle: among all possible models, 

they aim to find those models whose computed properties match the input information (eg, 

structures whose interatomic distances and dihedral angles match those determined by NMR 

spectroscopy). Critically, modeling should also include the propagation of the uncertainty of 

the input information and modeling into the uncertainty of the model; this goal is achieved 

directly and robustly by producing a sample of all single models sufficiently consistent with 

the input information, not only the “best” single model (eg, the ensemble of structures found 

in a Protein Data Bank (PDB) entry for an NMR-derived structure, each one of which 

sufficiently satisfies the original data).

Modeling in general is best seen as an optimization in which input information can be used 

in five different ways, guided by maximizing the accuracy and precision of the model while 
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remaining computationally feasible: (i) representing components of a model with some 

variables, (ii) scoring a model for its consistency with input information, (iii) searching for 

good-scoring models, (iv) filtering models based on input information, and (v) validating the 

resulting models. We now discuss each one of these ways in turn.

First, information can be used to define the representation of a model (Box 1 ). The 

representation specifies the variables whose values will be determined by modeling, based 

on input information. For an artist, this is the medium of art - whether to paint, sculpt, or 

photograph. For a structural biologist, the representation of a model first specifies the 

components of the system (eg, atoms, coarse-grained particles, and subunits in a complex), 

including their copy numbers. Next, it specifies the component coordinates that are fit to the 

input information (eg, their positions, orientations, and conformations). It also specifies if 

multiple structural states (eg, for heterogeneous samples) or trajectories (eg, for dynamic 

systems) need to be modeled. Finally, the representation of a model can also include 

auxiliary variables that are fit to the input information (eg, weights of different types of data 

and other parameters of the scoring function). The representation is generally selected based 

on the amount and type of information available (eg, a ~30 Å resolution EM density alone 

does not justify using an atomic representation), the purpose of the model (eg, questions 

about enzymatic mechanism generally require atomic structures), and computational 

feasibility (eg, a rigid representation of subunits in molecular docking enables a systematic 

search for the binding mode). For difficult modeling problems, a decision about the 

representation is often critical and can present a fall at the first hurdle, such as trying to 

squeeze out atomic positions from a low-resolution electron microscopy map and a dash of 

optimism.

Second, information can be used to construct and compute a value of a scoring function. The 

scoring function quantifies the degree of a match between a tested model and the input 

information, for example whether a distance in a model satisfies input information that we 

actually have about the distance, such as a Nuclear Overhauser Effect or chemical cross-link 

observation. The most common scoring function is a weighted sum of spatial restraints; each 

restraint is a function of the deviation of the computed property of a model from its 

measurement. Consequently, the greater this deviation, the less consistent is the model with 

the input information - and the worse the score. Optimization of the score then produces 

models that satisfy the encoded information as well as possible; a good-scoring model is a 

model that sufficiently satisfies input information by some definition (see “good-scoring 

models” in Box 3). Examples of spatial restraints include a potential energy function from a 

molecular mechanics force field, upper distance bounds in NMR spectroscopy, target 

functions in X-ray crystallography, and a correlation coefficient between a model and an 

electron microscopy map. The most objective scoring function is a Bayesian posterior model 

density, in which data likelihoods act as spatial restraints and noise models are effectively 

their weights (Box 2).

Third, information can be used to constrain the model search space. Given information that 

your keys were most likely lost in your house, you can focus your search to the house, 

without completely excluding other areas, just in case. Although rarely computationally 

feasible, the best search is a systematic enumeration of a defined search space, going 
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through every possible model one by one with sufficient granularity. In practice, other 

methods, such as stochastic sampling via a Monte Carlo scheme (Allen and Tildesley, 1989; 

Metropolis, 1953), are often used. As an example, when modeling the quaternary structure 

of a complex, information that a certain domain spans the membrane can be used to 

constrain that domain’s position only to the membrane during sampling (Alber et al., 2007a; 

Alber et al., 2007b).

Fourth, some information can be used for filtering good-scoring models after they are 

produced by searching. Such use is often the case for information that is computationally 

expensive to incorporate into a scoring function, which is commonly evaluated thousands or 

millions of times during sampling. An example is using a negative-stain electron microscopy 

class of a binary complex to filter out all but those molecular docking solutions whose 2D 

projections match the negative-stain electron microscopy class (Fernandez-Martinez et al., 

2016; Fernandez-Martinez et al., 2012; Shi et al., 2014; Velazquez-Muriel et al., 2012).

Fifth, some information can be used only to validate the good-scoring models, without 

changing or filtering them. Just like scoring and filtering, validation also depends on 

assessing a degree of consistency between a model and some information not used to 

compute the model. An example is testing whether or not a site-directed mutagenesis 

phenotype is consistent with a model (eg, whether or not a mutation in a predicted catalytic 

site actually kills the function in an experiment).

An occasional criticism of integrative structural modeling is that it produces “only a model, 

and I don’t even know what it means”. But this judgement is rash, because every structure is 

a model, each one of which is computed based on some information as outlined above. In 

other words, if it is not understood how a structure is determined, there is a tendency to call 

it a model rather than a structure; it also tends to be called a model when the expected 

uncertainty is relatively high or even unknown (eg, when the uncertainty of data is not 

known). Hence, this Primer: it makes no fundamental difference if the molecular model is 

computed “only” from X-ray crystallography data, “only” from electron microscopy particle 

images, or from some combination of varied data, so long as the uncertainty of the model is 

properly quantified and taken into account when interpreting the model (Schneidman-

Duhovny et al., 2014). If anything, because integrative modeling can take all the available 

information into account, integrative structures are in principle more accurate, precise, and 

complete than structures based on only a subset of information (Lasker et al., 2010; Lasker 

et al., 2009). Every piece of data, regardless of its precision, is useful if it is not over-

interpreted.

An Illustrative Example: Integrative structure determination of the nuclear pore complex

The existing toolbox (Table 2) has already successfully produced integrative structures for a 

large number of complex systems, all of which were refractory to traditional methods of 

structural biology (Figure 1). For convenience, however, we focus mainly on one illustrative 

example: the yeast nuclear pore complex (NPC), structures for which have been solved using 

integrative structural techniques. Biologically, the NPC encapsulates many of the challenges 

presented individually by other assemblies. The NPC is a large (50 – 100 MDa) octagonally 

symmetric cylindrical macromolecular assembly, consisting in yeast of ~500 copies of 30 
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different structured and intrinsically disordered proteins collectively termed nucleoporins 

(Alber et al., 2007a; Alber et al., 2007b; Beck and Hurt, 2017; Knockenhauer and Schwartz, 

2016). Embedded in the nuclear envelope, it is the only known conduit for trafficking 

between the nucleoplasm and cytoplasm, mediating the active exchange of a large range of 

select proteins and RNAs. As such, the NPC interfaces with the nucleoplasm, cytoplasm, 

and both the membrane and perinuclear cisterna of the nuclear envelope. Thus, it directly 

interacts with enormously diverse macromolecules, including transmembrane and lumenal 

nuclear envelope proteins, cytoplasmic proteins, chromatin and nuclear proteins, and 

ribonucleoproteins. These associations can exist in a large dynamic range, from ultrafast 

(such as with transported macromolecules) to ultrastable (such as between scaffold 

components in the NPC) (Baade and Kehlenbach, 2018; Beck and Hurt, 2017; De Magistris 

and Antonin, 2018; Knockenhauer and Schwartz, 2016; Raices and D’Angelo, 2012). It is 

this diversity that also presents a string of formidable challenges to traditional structure 

determination approaches, as the NPC is by nature huge, flexible, heterogeneous in shape 

and composition, and highly dynamic (Beck and Hurt, 2017; Knockenhauer and Schwartz, 

2016). Thus, we chose by necessity to solve structures for its subcomplexes and the entire 

NPC assembly using integrative approaches.

The five ways of converting input information into a model, outlined above, are conveniently 

described as an iterative four stage process (Figure 2): (i) gathering input information; (ii) 

converting input information into system representation and spatial restraints; (iii) searching 

for models that satisfy the restraints; and (iv) validating the model. Next, we describe these 

four stages, as applied primarily to the NPC.

Stage 1: Information gathering

Ideally, we aim to collect all the kinds of information, at a sufficient depth and granularity, 

necessary to solve our structure at the highest precision (ie, smallest uncertainty). Practically 

speaking though, and particularly for difficult biological problems, methodological 

limitations mean that we often do not have the luxury of using the data we would like to 

have, but only the data that we can actually obtain. Nevertheless, there is still some 

flexibility available, in terms of deciding between which methods will give the most “bang 

for buck”, that is, the most useful information for modeling per unit effort.

For NPCs, the ideal information might be an X-ray crystallographic dataset for an entire 

native purified or reconstituted assembly. However, as indicated above, the nature of the 

assembly precludes gathering such information, at least for the moment. So, what 

information can we collect that would be most useful? This decision should be a continuing 

dialog between the experimentalists and modelers. In our first effort to solve an NPC 

structure, almost two decades ago, the available technologies were significantly more 

limiting than today in terms of both the amount and precision of the information; cryo-

electron tomography maps had resolutions of ~100 Å (Akey and Radermacher, 1993; Beck 

et al., 2004; Hinshaw et al., 1992; Yang et al., 1998), and few atomic structures of 

nucleoporins were available (Brohawn et al., 2009). These limitations in turn set a bound on 

the precision of the first structure published in 2007 (Figure 3) (Alber et al., 2007b).
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An important benefit of integrative structure determination is that it facilitates the use of 

information from experiments that have generally not been used for structure determination. 

As a case in point, for our first coarse NPC structure, one such class of data were affinity 

capture experiments. In these assays, nucleoporins are genomically tagged with an affinity 

handle, allowing them to be copurified with subsets of other nucleoporins whose identity is 

then usually determined using mass spectrometry. Such experiments had been used with 

great success to identify other nucleoporins and even infer nearest neighbors (Grandi et al., 

1993; Grandi et al., 1995a; Grandi et al., 1995b; Siniossoglou et al., 1996), but they had not 

been interpreted as formal spatial restraints that could be used to compute a structure. 

Nevertheless, these data could in fact be used as restraints; each affinity capture result, 

which we termed a “composite”, defined the composition of a sample of one or more 

complexes that share the tagged protein. Thus, a model can be scored for consistency with 

this data by ascertaining whether or not it contains at least one of the possible complexes 

implied by the composite (Alber et al., 2007a; Alber et al., 2008). However, because each 

composite carries relatively little spatial information, the experimentalists were challenged 

to produce a large number of different composites, densely covering all the nucleoporins. In 

other examples of input information, combined experimental and bioinformatic information 

defined transmembrane regions in three nucleoporins, allowing us to restrain those regions 

to the NPC’s pore membrane; sequence-based definition of domains and analytical 

ultracentrifugation of the nucleoporins informed the degree to which they were spherical 

versus elongated, giving us an approximate shape and size for every nucleoporin; and 

immunoelectron microscopy provided axial and radial distributions of the nucleoporins, 

albeit with a high uncertainty corresponding to approximately a third of the size of the NPC. 

Finally, once enough information had been gathered, integrative modeling allowed us to 

convert it into the molecular architecture of the complete assembly (Alber et al., 2007b). 

These examples illustrate how integrative modeling facilitates generating and using more 

information, and thus solving harder structure determination problems (Alber et al., 2007a; 

Alber et al., 2008; Sali et al., 2015).

With the coarse molecular architecture of the NPC in hand, we embarked on improving it by 

gathering additional and higher resolution data for higher resolution representations of 

nucleoporins and for more accurate and precise modeling of their configuration in the whole 

assembly (Figure 3A). An impressive repertoire of nucleoporin atomic structures was 

produced by X-ray crystallography and NMR spectroscopy, via the Protein Structure 

Initiative and sterling efforts from many groups (reviewed in refs. (Brohawn et al., 2009; 

Knockenhauer and Schwartz, 2016)). In addition, we determined the integrative structures of 

Pom152, Nup133, the heptameric Nup84 outer ring complex, and the cytoplasmic Nup82 

export platform (Fernandez-Martinez et al., 2016; Kim et al., 2014; Shi et al., 2014; Upla et 

al., 2017). These integrative structures were informed by two additional types of data. First, 

we required that a good model had a projection whose shape matched 2D negative-stain 

electron microscopy class averages (Fernandez-Martinez et al., 2012; Velazquez-Muriel et 

al., 2012). Second, we also required that a good model reproduced the distances implied by 

chemical cross-links, detected through cross linking - mass spectrometry (XL-MS) (below).

With a more detailed representation of the NPC components in hand, two experimental 

technological advances enabled us to solve the 3D jigsaw puzzle of how these components 

Rout and Sali Page 6

Cell. Author manuscript; available in PMC 2020 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fit together into a much more precise NPC depiction. The first is the dramatic improvements 

in cryo-electron microscopy, which needs no further explanation here, having revolutionized 

structural biology in the last few years (Callaway, 2015; Danev and Baumeister, 2017; 

Murata and Wolf, 2018; Wells and Marsh, 2018). These improvements allowed us to 

produce a ~28 Å density map of the entire NPC. The second is XL-MS, where substantial 

improvements in MS sensitivity have allowed investigators to identify large numbers of 

residues in peptides from a protein or complex that can be chemically cross-linked together, 

so setting an upper limit on the native distance between those residues based on the length of 

the cross-linker (Fischer et al., 2013; Gingras et al., 2007; Lauber et al., 2012; Leitner et al., 

2012a; Leitner et al., 2012b; Leitner et al., 2010; Rappsilber, 2012; Sinz, 2006; Walzthoeni 

et al., 2013). These improvements allowed us to generate ~3100 unique cross-links in the 

entire NPC. We also adopted several complementary experimental methods to 

unambiguously establish the NPC’s composition and stoichiometry. Finally, together with 

the vastly improved models of NPC components and other information almost entirely 

distinct from that used for the first coarse structure, integrative modeling was able to 

produce a significantly more detailed structure of the NPC (Figure 3A) (Kim et al., 2018).

Any output structure will only be as good as its input information (“garbage in, garbage 

out”). We still needed a physical sample suitable for application of the new technologies 

discussed above, as previous methods to isolate NPCs were time-consuming and 

cumbersome, limiting throughput. We thus adapted our affinity capture approaches to 

rapidly and gently isolate preparations of entire native NPCs that were suitable for higher 

throughput electron microscopy and XL-MS analyses. The quality of samples for analysis is 

clearly crucial and integrative (or indeed any other) structural approaches cannot materialize 

a precise structure from low quality starting material. Even so, there are clear limitations to 

most samples that must be removed from their native environments for analysis. For the 

NPC, we remain aware that depletion of chromatin, pore membrane, and a cloud of 

accessory factors during the purification may have changed the structure compared to its 

completely native state(s).

More information can generally improve a representation of the system, its model, and the 

uncertainty estimate. Thus, most structures are a work in progress, especially if initially 

determined at lower resolution. It is often easy to overlook some valuable information that 

could have improved the precision of the structure. For example, we did not use our own 

new NMR structure (Upla et al., 2017) of an Ig domain in the pore membrane nucleoporin 

Pom152 for assigning the folds of the other Pom152 domains, as publicly available 

threading web servers could not consider our new structure at the time. This resulted in a 

lower precision structural model of Pom152 that lacked high resolution representation of a 

tenth Ig domain (Hao et al., 2018); simply updating our modeling with an atomic 

representation of this domain can result in an improved model of the entire Pom152 (Figure 

3B). Thus, a structure and its validation should be continuously refined to reflect the data 

and modeling methods that are available at any given moment in time. Importantly, the 

structure should not be overinterpreted beyond its uncertainty, so that the key functional and 

evolutionary conclusions survive any adjustments in its depiction as new data and modeling 

methods become available (cf, improving the precision of the Pom152 model has 

nevertheless not altered our overall interpretation of the NPC structure (Kim et al., 2018)).
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Stage 2: Converting input information into system representation and spatial restraints

As mentioned already, information from the first stage can be parsed in two ways at this 

second stage - into either a system representation or restraints. Deciding how to use input 

information for modeling is a point of much communication and synergy between the 

experimentalists and modelers, to make sure that input information is optimally interpreted.

Defining the representation of the modeled system is a non-automated task that depends on 

the available information, the experience of the researcher, and trial-and-error (Box 1); in 

particular, the granularity of representation should be commensurate with the amount and 

precision of information. The representation must also facilitate (i) answering biological 

questions of interest, (ii) constructing an accurate and efficiently computed scoring function 

to quantify the consistency of a model with the input information, and (iii) sampling of 

alternative models (Viswanath and Sali, 2019).

The goal of the first integrative structure determination of the NPC was to map the single 

static coarse configuration of the component nucleoporins, commensurate with the 

information available at the time (Alber et al., 2007a; Alber et al., 2007b). Thus, we used a 

coarse-grained representation of the nucleoporins: each nucleoporin was represented either 

by a single bead whose radius depended on the number of residues in its sequence or a 

flexible string of a small number of beads corresponding to individual sequence domains. In 

the absence of atomic structures or comparative models for most of the constituent 

nucleoporins, these representations were informed primarily by sequence comparisons to 

delimit individual domains and ultracentrifugation to inform the globularity of the shape. 

Subsequently, as X-ray, NMR, and integrative structures of the nucleoporins and their 

subcomplexes were determined (Knockenhauer and Schwartz, 2016), we were able to use 

these structures either as rigid or somewhat flexible pre-determined shapes during their 

computational assembly into the structure of the entire NPC (Kim et al., 2018). In addition, 

we incorporated information about the nuclear envelope by representing it as a rigid layer of 

defined shape, size, and thickness that helps to organize the nucleoporins.

Spatial restraints are defined based on a subset of input information, considering the 

uncertainty in this information as much as possible, and then summed into the scoring 

function. For the most recent NPC structure, the restraints relied on chemical cross-links, the 

cryo-electron microscopy density map, immuno-electron microscopy localizations, excluded 

volume considerations, sequence connectivity, the shape of the pore membrane, and 

sequence-based membrane localizations (eg, the nuclear envelope can only be spanned by 

transmembrane regions in a fraction of nucleoporins). Definition of the resulting restraints 

from different types of data was facilitated by the use of a multi-scale representation of the 

NPC components; for example, chemical cross-links restrained distances between pairs of 

residues, while membrane localizations constrained entire domains to the membrane (Kim et 

al., 2018).

An advantage of integrative approaches is that they can include any information about 

flexible or even completely unstructured regions, such as intrinsically disordered regions 

(IDRs) in proteins, although they cannot be seen in X-ray and electron microscopy density 

maps. This advantage is an important consideration, because significant IDRs are found in as 
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much as a third of eukaryotic proteins and play fundamental and diverse roles in protein 

interactions and regulation (Oldfield and Dunker, 2014; Sharma et al., 2015; Uversky, 2017). 

IDRs make up one-fifth of the yeast NPC’s mass and are critical to its structural integrity 

and transport functionality (Fischer et al., 2015; Kim et al., 2018; Knockenhauer and 

Schwartz, 2016). Thus, being able to depict these regions as flexible strings of beads was 

another benefit to choosing the integrative structure determination route.

The scoring function allows us to account for uncertainties and mistakes in input 

information, but the same cannot be said of representation. That is, information that is used 

for representation must be highly certain, while scoring function can readily incorporate 

uncertain information. For example, an incorrect stoichiometry or assuming an incorrect 

rigid protein shape will result in an incorrect representation that is in turn likely to result in 

incorrect models. In contrast, a cross-linking dataset with some incorrect cross-links can still 

be used successfully via appropriate cross-linking restraints and soft thresholds in the 

scoring function. Fortunately for the experimentalist, the majority of the input information is 

usually used to formulate the scoring function, and near perfection is only required for a 

subset of information going towards the representation.

Potential problems with converting input information into representation and scoring can be 

illustrated by the considerations needed when modeling a generic, pan-species version of the 

system based on data about the system from different species. Using data from different 

species to model a single structure is clearly appropriate only if the differences in 

composition, stoichiometry, and structure between the species are smaller than the 

uncertainties in the data. For example, NPCs from different organisms can have very 

different stoichiometries, morphologies, and even compositions. The average human NPC is 

approximately twice the mass of that from yeast, and also substantially differs in the 

composition and arrangement of its more peripheral complexes as well conformations of its 

components (Alber et al., 2007b; Kim et al., 2018; Kosinski et al., 2016; Mosalaganti et al., 

2018; Ori et al., 2013). Exemplifying these pitfalls, a recent generic model meant to 

represent “the” NPC scaffold, generated by amalgamation of human and fungal data (Lin et 

al., 2016), is thus not an accurate representation of either a fungal or human NPC.

Stage 3: Searching for models that satisfy the restraints

The purpose of the third stage is to find a sample of all models that are sufficiently 

consistent with input information, as quantified by the scoring function. If a Bayesian 

scoring function is used (Box 2), the goal of sampling methods is to accurately sample the 

posterior model density. The search for good-scoring models is often achieved by a 

stochastic sampling of alternative structures, avoiding the biases and limitations intrinsic to 

searches for good-scoring models by humans. The sampling must be done at a precision that 

is higher than needed for interpreting the models. Potentially, the sampling can be made 

more efficient by limiting or guiding it based on a subset of input information (cf, the 

“search for keys”, above). For example, the search for good-scoring NPC structures relied on 

a stochastic Monte Carlo scheme that benefited from being constrained to solutions with the 

8-fold rotational symmetry of the NPC, an essentially universal feature of the assembly. 

Optionally, the sampling can be followed by filtering the good-scoring models from 
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sampling based on some information not used for representation, scoring, or sampling. Such 

filtering may be useful when using the corresponding information for scoring is 

computationally costly. Using information only for filtering, however, requires that the 

sampling generates solutions consistent with the filter even in the absence of the 

corresponding information from the scoring function considered during sampling. Notably, 

not all existing modeling methods aim to find a representative sample of all good-scoring 

solutions, thus vastly overestimating the precision of their solutions. A good example of this 

pitfall is when modeling is done in one’s head, which assumes one can think of all possible 

models, even though in reality many unimagined models will simply go unexplored. 

Computer-assisted sampling and estimates of sampling precision can avoid such biases 

(Viswanath et al., 2017b).

A large variety of sampling methods have been developed. Enumeration of all possible 

solutions at a sufficiently high precision is an ideal sampling method, as it ensures no 

solution is missed (Lasker et al., 2012; Lasker et al., 2009), but it is generally not feasible for 

large systems with many degrees of freedom that need to be sampled finely. Efficient and 

well-known methods for local refinement of structures include conjugate gradients and 

steepest descent (Press et al., 2007). Often, however, the structural sampling does not benefit 

from knowing a starting structure that is close to the correct model, and thus stochastic 

sampling methods need to be employed. A large variety of such methods have been 

developed over the years, including many versions of Monte Carlo simulated annealing, 

replica exchange, Gibbs sampling, and Hamiltonian Monte Carlo (Betancourt, 2017). For 

stochastic sampling methods, it is imperative that tests of thoroughness of structural 

sampling are performed (below) (Viswanath et al., 2017b).

Stage 4: Validating a structural model

To avoid overinterpretation of a model, it is essential that a model is validated. Formal model 

validation can follow five steps: (i) selecting the models for validation; (ii) estimating 

sampling precision; (iii) estimating model precision; (iv) quantifying the degree to which a 

model satisfies the information used to compute it; and (v) quantifying the degree to which a 

model satisfies relevant information not used to compute it. It is anticipated that the nascent 

worldwide PDB effort on integrative methods will refine and implement a set of specific 

procedures for these steps and apply them to every integrative structure during its deposition 

into the PDB (Vallat et al., 2018), as is already the case for traditional atomic structures 

(Henderson et al., 2012; Montelione et al., 2013; Read et al., 2011; Trewhella et al., 2013; 

Young et al., 2017).

In the first step, we select sufficiently good-scoring models produced by sampling for 

validation (the ensemble). For example, a good-scoring model may be defined as a sampled 

model that satisfies all restraints or sets of restraints within their own uncertainties (eg, we 

may require that the correlation coefficient between a model and the electron microscopy 

density map is at least 0.8 and that a model violates at most 4% of chemical cross-links). If 

no such models were produced, we need to reconsider various aspects of modeling: perhaps 

the input information was not as precise as presumed, representation of the system was not 
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sufficiently flexible (eg, too coarse-grained or too few states in a multi-state model), or 

sampling was insufficient.

In the second step, the sampling precision can be estimated for stochastic sampling methods 

by splitting the ensemble of models into two independent sets, followed by quantifying the 

difference between the two sets. The sampling precision can then be defined as this 

difference, in a similar fashion to that used for estimating the resolution of electron 

microscopy density maps (van Heel and Schatz, 2005). It is important that we properly 

estimate the sampling precision (uncertainty), because clearly only the features of the model 

larger than the sampling precision are well estimated (Viswanath et al., 2017b), just as 

traditional microscopy can only map features larger than the resolution of the microscope. 

When using stochastic sampling methods, sampling precision may often be increased simply 

by increasing the number of independently computed models. High sampling precision is 

necessary but not sufficient for exhaustive sampling (Gelman and Rubin, 1992; Viswanath et 

al., 2017b).

In the third step, model uncertainty (precision) is estimated. The most explicit description of 

model uncertainty is provided by the set of all models that are sufficiently consistent with 

the input information (ie, the ensemble). Model precision can be quantified by the variability 

among the models in the ensemble; in the end, the ensemble can be described by one or 

more representative models and their uncertainties. For example, good-scoring NPC models 

cluster in a single cluster with a root-mean-square fluctuation of ~9 Å, quantifying the 

average degree of uncertainty; importantly, the uncertainty is not distributed evenly across 

the ensemble, such that some regions were determined at a higher precision than 9 Å and 

others at a significantly lower precision; thus, even features larger than this estimate should 

be interpreted with some caution.

It is often convenient if the ensemble structures are clustered based on their structural 

similarity. As a result, only a structure representative of each major cluster can potentially be 

used for interpretation. Many clustering methods exist, varying in terms of the criterion used 

to quantify a similarity between two structures (eg, distance root-mean-square deviation 

between structure coordinates that avoids the need for structure superposition (Koehl, 2001)) 

as well as a method for converting such pairwise similarities into clusters (Hastie, 2001); the 

clustering generally also depends on an arbitrary threshold parameter that determines how 

many clusters are produced. Minor clusters with few structures might be ignored, especially 

if the scoring function approximates a Bayesian posterior model density (Viswanath et al., 

2017a). In our own work (eg, (Kim et al., 2018; Viswanath et al., 2017b)), we often rely on a 

threshold-based clustering, where the threshold specifies the maximum distance between a 

cluster centroid and a model in the cluster (Daura et al., 1999); the clustering threshold is 

selected such that the number of major clusters is minimized for parsimony, while also 

requiring that their precision is worse than the sampling precision yet sufficient for 

interpreting the models.

The model uncertainty reflects both the actual heterogeneity of the physical sample and the 

uncertainties in the input information, representation, scoring for sampling, sampling itself, 

and scoring for filtering. It is difficult to deconvolve from each other the impact of these 
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different uncertainties on the model uncertainty; in general, only the total model uncertainty 

is reported. The uncertainty of how to represent the model in particular is often not 

considered, but can be large and have a major impact on the model uncertainty. For example, 

it is often possible to explain the small-angle X-ray scattering (SAXS) profile of a protein in 

solution within its uncertainty by a single or a small number of structures, even when the 

actual sample is disordered, because the large number of degrees of freedom in the model 

relatively easily result in a good fit to the data, given the relatively small amount of the data 

and its relatively large uncertainty (Carter et al., 2015). A mistake in representation is often 

not recoverable (eg, when a protein subunit structure is incorrectly assumed to be rigid 

during modeling a structure of a complex).

As an aside, the accuracy (error) of a model is defined as the deviation of the model from the 

truth; the accuracy is therefore not knowable when modeling systems without known 

structures (in benchmarking, reference answers are of course known by design). In contrast, 

model precision can be estimated. A conservative assumption is that accuracy is no better 

than model precision. If model error is larger than its estimated uncertainty, the model is 

incorrect; correspondingly, a model can be deemed correct if its error is within its 

uncertainty.

In the fourth step, the model is assessed by quantifying the degree to which it satisfies the 

information used to compute it. For example, the correlation coefficient between our recent 

NPC structure and the electron microscopy density map that helped compute the structure is 

higher than 0.92; less than 10% of chemical cross-links are violated; and less than 5% of 

bead overlaps are larger than the standard deviation of the harmonic excluded volume 

restraint (Kim et al., 2018).

The fifth step represents perhaps the most convincing test of model validity. In this step, a 

model is tested against relevant information that was not used to compute it. For example, 

one can perform a jackknifing test consisting of repetitively omitting a random subset of 

chemical crosslinks, recomputing the model, and comparing these models against the 

omitted cross-links, to validate both the model and the cross-links (Brunger et al., 1993). 

This test is even more powerful when some information is used only for validation. For 

example, we took advantage of omitting the vast majority of the 2007 NPC data from the 

most recent structure determination of the NPC, allowing us to use this data as well as the 

2007 NPC topology map to validate the 2018 structure (Kim et al., 2018) (Figure 3A).

The integrative approach is unique in providing an especially strong test of model validity: 

when the structure is consistent with multiple types of data that were collected 

independently for physically different samples using different methods, the odds of artefacts 

are reduced compared to structures relying on a single type of information. An example of 

such an artefact are the false depictions of the NPC’s organization that have arisen from 

reliance on biologically irrelevant intermolecular contacts in protein crystals (Debler et al., 

2008; Hsia et al., 2007).

Lastly, even the input data themselves can be validated with respect to each other, via a 

structural model based on these data. A piece of data can be inconsistent with a model, and 
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thus with other data, when a mistake in model representation, scoring, or sampling is made. 

More precisely, data can be violated when the model is represented with too few degrees of 

freedom, data is compared against the model too stringently, or the sampling fails to find an 

existing good-scoring model. As an example of a representational error, a violation of a 

chemical cross-link may occur when a rigid subunit in a complex is not allowed to relax, or 

a single-state instead of multi-state representation is used (as is required when one or more 

physical samples from which the data are derived contain a mixture of structures). As an 

example of a scoring error, a violation may also be declared when the data are presumed to 

be less uncertain (noisy) than they actually are. There are no general protocols for 

deconvolving possible reasons for a given mismatch between data and a model, although the 

Bayesian approach shows most promise in this regard (Box 2). Remedies include modeling 

with alternative representations, scoring functions, and sampling schemes, which in turn 

often results in a more varied ensemble of good-scoring models and thus an increased 

estimate of model uncertainty. Most usefully, additional experiments may shed light on the 

homogeneity of the physical sample(s) and noise in the data. It may be appropriate to 

discard some data under the explicit assumption that the omitted data applies to non-

interesting states or that it is too noisy, although tacitly omitting a subset of data only 

because a model does not fit it is perhaps one of the worst errors a scientist can make.

Validation is thus key to the iterative nature of the integrative structure determination process 

(Figure 2), such that the experimentalist and modeler synergize on data and model until 

consistency among all datasets and the final structure is obtained.

Biological insights from validated structures

The synergistic dialog between experimentalist and modeler continues as validation 

becomes interpretation, with a subjective but informed consideration of whether or not the 

structure makes sense in light of current knowledge. If not, the iterative process of 

information gathering and modeling must continue. After validation is satisfactory, we then 

move to biological interpretation of our structure.

Ultimately, the true worth of any structure is how informative it is about architectural 

principles of the modeled system, its assembly and disassembly, its function (ie, interactions 

with other systems), regulation and modulation of its function, and evolutionary 

relationships. Even though integrative structures are often determined at resolutions lower 

than atomic, they can still be informative, or at least more informative than the data on 

which they are based. Once again, each structure must be interpreted biologically only 

within its precision. For example, being preoccupied by nanometer-scale features of the 100 

nm-diameter 2007 map would completely mistake its purpose primarily as a topological 

representation of the nucleoporin arrangements in the NPC.

An important tool in the interpretation of any structural model is its visualization and 

manipulation on a computer screen. However, most existing molecular viewers for atomic 

structures, such as those deposited in the PDB, are of limited utility, because integrative 

structures are often represented as ensembles of multi-scale models (with atomistic and 

coarse-grained representations), multi-state models (allowing for simultaneous multiple 

states), and ordered states (states related by time or other order) (Sali et al., 2015). 
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Fortunately, the ChimeraX visualization program (Goddard et al., 2018) was developed 

specifically to support integrative structural models stored in the common mmCIF file 

format upgraded for integrative models (Vallat et al., 2018). In addition to the models 

themselves, ChimeraX can also visualize a number of different datasets, such as density 

maps and chemical crosslinks, thus facilitating an assessment of how well the model fits the 

data.

Structures of the NPC and its subcomplexes from various organisms (Eibauer et al., 2015; 

Kim et al., 2018; Kosinski et al., 2016; Mosalaganti et al., 2018; von Appen et al., 2015) 

have led to a plethora of insights. For example, the overall architecture of the NPC as seen in 

our recent structure is evocative of the form and function of suspension bridges (Kim et al., 

2018) (Figure 3C). In both bridge and NPC, this architecture results in a strong and resilient 

structure capable of resisting external forces and forces from the enormous transport flux 

through the pore. Moreover, both structures serve a similar purpose, namely to provide a 

selective conduit across a barrier. In the NPC, the “roadway” is constructed from anchors 

that arrange a high density of docking sites lined from cytoplasm to nucleoplasm for cargo-

carrying transport factors to follow across the NPC’s central channel (Figure 3C). Future 

directions will add information about the dynamic behavior of these docking sites and the 

transport factors, to animate the process of nuclear transport and elucidate its detailed 

mechanisms. Another insight we obtained is that the entire scaffold of the NPC is made of 

nucleoporins that share their architecture with those of the major scaffold components of 

vesicle coating complexes, indicating a common evolutionary origin in a primordial 

“protocoatomer” (Alber et al., 2007b; Devos et al., 2004; Spang et al., 2017). Such coating 

complexes currently fall into two structurally distinct families (Dacks and Robinson, 2017; 

Faini et al., 2013). The fact that the NPC is comprised of representatives of both families 

suggests that these families evolved first, together with an already differentiated internal 

membrane system. Intriguingly, this pattern in turn implies that the NPC - and the nucleus as 

a whole as we know it – may have been among the last organelles to evolve on the path of 

eukaryotic cellular evolution, rather than being among the first as had been previously 

assumed (Kim et al., 2018).

The NPC is but one of a large number of structures solved by integrative methods that have 

been biologically highly informative (Figure 1). Highlights include: the complete structure 

of the mammalian mitochondrial ribosome large subunit, revealing how the 5S ribosomal 

RNA has become substituted by a tRNA, and showing how insights into unusual aspects of 

architectural reorganization can be garnered (Greber et al., 2014a); the complete structure of 

the 26S proteasome, showing how the lid structure is critical for recruiting and partially 

unfolding the substrate protein for subsequent proteolysis by the 20S core particle, thus 

showcasing how functional and catalytic insights can be achieved (Lasker et al., 2012); and 

visualizing how chromosomes are dynamically positioned in the nucleus and revealing the 

plasticity of genome structures, showing how integrative methods can be applied at different 

cellular spatial and temporal scales (Kalhor et al., 2011).

The integrative approach is not restricted to a particular granularity or size of the model. 

Indeed, the integrative structural solution of two smaller subcomplexes from the NPC, 

Nup82 (Fernandez-Martinez et al., 2016) and Nup84 (Shi et al., 2014), both around 650 kDa 
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in size, preceded our most recent solution of the entire NPC structure. Similarly, numerous 

moderately-sized protein structures have also been solved by integration of orthogonal 

structural data (cf, Figure 1). For example, supplementing data from NMR spectroscopy by 

additional data from SAXS experiments can produce larger and more accurate protein 

structure models than NMR spectroscopy on its own (Sunnerhagen et al., 1996). Thus, a 

flexible-domain structure refinement with both NMR and SAXS data allowed the solution of 

a structure for the 82 kDa Malate Synthase G enzyme (Grishaev et al., 2008). More recently, 

a combination of data from NMR spectroscopy, SAXS, and small-angle neutron scattering 

(SANS) was used to determine the structure for a 34 kDa ternary SXL, UNR, and msl-2 

mRNA complex (Hennig et al., 2013). Another elegant method uses augmented NMR 

NOESY-based restraints, which are often insufficient to calculate an accurate model, with 

evolutionary residue-residue couplings computed from multiple alignments of related 

protein sequences (Tang et al., 2015). The largest protein solved in this manner was the 41 

kDa E. coli maltose-binding protein, and the method is applicable to even larger systems 

(Huang et al., 2019).

Outlook

There is much still to be done to improve all aspects of computing, validating, visualizing, 

archiving, and disseminating integrative structures (Table 2). This task includes automating 

as much of the modeling process as possible. It would be particularly helpful to develop 

better methods for objectively finding optimal representations (Viswanath and Sali, 2019; 

Wagner et al., 2016), given the available input information, including methods for finding 

the number of different states in multi-state models and optimal coarse-graining. It is also 

necessary to formulate all conceivable types of structural information in terms of Bayesian 

data likelihoods, which will facilitate proper relative consideration of varied information 

during modeling. Modeling will further benefit from improving the efficiency of sampling 

methods and computing hardware, resulting in a more thorough search for good-scoring 

models, especially for large systems with many degrees of freedom. Most importantly, a 

rigorous and extensive validation pipeline for estimating the uncertainty in integrative 

structures is essential for their proper interpretation. Finally, the field will benefit from a 

community-wide set of standards for various aspects of integrative modeling, underpinned 

by an archive for integrative structures as well as the data on which they are based and the 

modeling protocols, as spearheaded by the nascent PDB-Development community resource 

(Burley et al., 2017; Vallat et al., 2018). PDB-Development will further strengthen 

integrative structural biology, by bringing together specialists in disparate experimental 

methodologies (Table 1), unified by their intent to iteratively and formally combine their 

data into as informative models of biomolecular systems as possible.

Improving various aspects of integrative modeling, as outlined above, will further expand its 

applications. It will become possible to obtain useful models of the larger systems, 

heterogeneous systems, and dynamic processes that actually typify the organization of cells. 

A particular strength of integrative modeling is its potential to use all information to 

compute models represented in any fashion, be it single static structures, mixtures of states, 

molecular networks, dynamic processes, systems of ordinary differential equations, and 

others. Indeed, the explicit inclusion of dynamic and state-dependent information into 

Rout and Sali Page 15

Cell. Author manuscript; available in PMC 2020 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



integrative approaches holds the promise of breathing life and movement into currently 

mostly static representations, and so visualize the processes that actually drive living cellular 

systems. As a result, it is conceivable that integrative modeling will play a key role in 

mapping entire cellular neighborhoods and even whole cells, thus bridging the gap between 

biophysical methods focused on molecules and optical microscopies focused on the meso-

scale organization of the cell.

As the toolbox of integrative structural biology continues to improve, it will be increasingly 

applied not only to discover the basic principles of biological systems, but also to drug 

discovery. As a result, it will allow us to rationally target larger systems, in addition to single 

proteins. While still largely untapped, the potential for using integrative approaches to 

translate from bench to bedside is surely among the most exciting new future directions open 

to the biomedical community (Singla et al., 2018).
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Box 1.

Molecular representation.

A structural model of a macromolecular assembly is defined by the relative positions and 

orientations of its components (eg, atoms, united atoms, residues, secondary structure 

elements, domains, subunits, and subcomplexes). Thus, the representation of a system is 

defined by all the structural variables that need to be determined based on input 

information, including the assignment of the system components to geometric objects 

such as points and spheres (Schneidman-Duhovny et al., 2014). An atomic representation 

can be coarsegrained by assigning unique subsets of atoms to higher level primitives (eg, 

beads and 3D Gaussians). Coarse-grained representations have proven useful, for 

example, in molecular dynamics simulations of lipid bilayers as well as structured and 

disordered proteins (Saunders and Voth, 2013). In our experience, selecting an 

appropriate representation is one of the most important decisions when performing 

integrative modeling, given the varied sparseness, noise, ambiguity, and resolution of the 

input datasets (Schneidman-Duhovny et al., 2014). An optimal representation facilitates 

accurate formulation of spatial restraints as well as efficient and complete sampling of 

good-scoring models, while still retaining sufficient detail without overfitting, so that the 

resulting models are maximally useful for subsequent biological analyses (Saunders and 

Voth, 2013; Schneidman-Duhovny et al., 2014; Viswanath and Sali, 2019).

While traditional structural biology methods usually produce a single atomic coordinate 

set, integrative models tend to be more complex in at least four respects (Sali et al., 

2015). First, a model can be multi-scale, coarse-graining different levels of structural 

detail by a collection of geometrical primitives (eg, points, spheres, tubes, Gaussians, and 

probability densities) (Grime and Voth, 2014). Thus, the same part of the system can be 

described with multiple representations or different parts of the system can be 

represented differently. Second, a model can be multi-state, specifying multiple discrete 

states of the system that are needed simultaneously to explain the input information (each 

state may differ in structure and/or composition) (Molnar et al., 2014; Pelikan et al., 

2009). Third, a model can also specify the order of states in time. This feature allows a 

representation of a multi-step biological process, a functional cycle (Diez et al., 2004), a 

kinetic network (Pirchi et al., 2011), or time evolution of a modeled system (eg, a 

molecular dynamics trajectory) (Bock et al., 2013). Finally, an ensemble of models is 

often provided to specify the uncertainty in the input information by including each 

model that on its own satisfies the input information within an acceptable threshold (eg, 

an ensemble of structures computed from a single NMR dataset). This aspect of the 

representation allows us to describe model uncertainty resulting from the incompleteness 

of input information; such ensembles are distinct from multiple states that represent 

actual variations in the structure, as implied by experimental information that cannot be 

accounted for by a single representative structure (Schneidman-Duhovny et al., 2014; 

Schroder, 2015). Thus, a generalized representation, already implemented in PDB-Dev 

(Burley et al., 2017; Vallat et al., 2018), allows us to encode an ensemble of multi-scale, 

multi-state, and time-ordered models.

Rout and Sali Page 25

Cell. Author manuscript; available in PMC 2020 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Box 2:

Bayesian inference for scoring alternative models.

This solution came from a man with no direct connection to the problems of molecular 

cell biology. Thomas Bayes was an eighteenth century Presbyterian minister, who in his 

later life spent a significant amount of his spare time considering the “Doctrine of 

Chances”, or probability theory. In essence, he understood that the probability of a model 

can be updated by iteratively considering additional information. For example, if “Happy 

Gallop” has won ten of his last twenty horse races, we tend to be ambivalent as to his 

chances of trotting to a comfortable win in his next race. However, what if one found out 

that when a particular jockey had ridden him, the horse won every one of those races - 

and that this jockey will be riding him in the next race? Then this information modifies 

upwards our estimate of him being first past the post. The corresponding formalization is 

Bayesian inference, a method of statistical inference in which Bayes’ theorem is used to 

update the probability for a hypothesis as more information becomes available. As a 

structural biology exemplar, if we observe a cross-link between two residues, one can 

take this observation explicitly into account in formulating the likelihood of the structure 

having a distance between these two residues that is less than the maximal length of the 

cross-linker (Molnar et al., 2014). When sufficient information is available, the structure 

can be determined with high precision. An elegant and insightful application of Bayesian 

inference was described for determining protein structures based on NMR data (Rieping 

et al., 2005).

Formally, the posterior probability of model M given data D and prior information I 
isp(M|D,I) α p(D|M,I) • p(M|I). The model, M, consists of a structure X and unknown 

parameters Y, such as noise in the data. The prior p(M|I) is the probability density of 

model M given I. The prior reflects information such as excluded volume, statistical 

potentials, and a molecular mechanics force field. The likelihood function p(D|M,I) is the 

probability density of observing data D given M and I, and can be defined as a product 

over the individual measurements, p(D|M,I) = Πi=1 N(di|fi(X),σi), where fi(X) is a 

forward model that predicts the data point di in D that would have been observed for 

structure X in an experiment without noise; N(di| fi (X),σi) is a noise model that 

quantifies the deviation between the predicted and observed data points. A Gaussian 

noise model is often used, N(di|fi(X),σi) α exp (−[di − fi(X)]2/2σi
2), where σi is the noise 

parameter in Y that can optionally be determined as part of the model. Finally, a 

Bayesian scoring function is defined as the negative logarithm of the posterior probability 

density: S(M) = –log p(M|D,I). In the Bayesian view, the output model is in fact best 

equated to the posterior model density that specifies a distribution of alternative single 

models Mwith varying probabilities, not a single model (although single representative or 

average models can always be proposed based on the posterior model density).

A key advantage of defining the posterior model density in a Bayesian fashion, compared 

to traditional least-squares-scoring functions, is that it allows for objective mixing of 

different types of information (ie, balancing varying uncertainties of varying input 

information), which is an essential requirement for integrative modeling. As a result, the 

output models tend to be more accurate, with more accurate estimates of their 
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uncertainty. A Bayesian approach allows us to quantify model uncertainty in a strict 

sense. Repeated nonlinear least-squares minimization may produce a diverse set of 

solutions, but its spread will mainly reflect the power of the optimizer. Another advantage 

is that we know how to deal with the nuisance parameters Y, whereas least-squares 

minimization needs to invoke additional recipes, such as cross-validation. The Bayesian 

approach is also relatively robust in terms of the specific parameterization of the 

representation of M. Finally, multiple choices about model representation and scoring 

function can in principle be quantified and compared using model selection criteria 

(Viswanath and Sali, 2019), such as the model evidence (Knuth et al., 2015).
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Box 3:

Glossary

Modeling: the process of converting input information into a model and its uncertainty.

Input information: experimental data and prior models used for computing a model.

Prior models: physical theories, statistical preferences, and other models (eg, X-ray 

structures and comparative models of subunits in a complex) used for computing a 

model.

Spatial restraint: a function that quantifies the degree of consistency between a model and 

a single piece of information; often expressed as the squared difference between the 

model and target value of some spatial feature, such as a distance in a traditional least-

squares approach, or as a data likelihood or prior in a Bayesian approach.

Scoring function: a function that quantifies the degree of consistency between a model 

and input information; often expressed as a weighted sum of spatial restraints in a 

traditional least-squares approach or as a posterior model density in a Bayesian approach.

Model representation: the set of variables whose values are determined by modeling 

based on the input information.

Representation precision: a descriptor of the detail in the representation of the structural 

model (eg, atomic models consist of atoms).

Sampling precision: granularity of sampling used to find models consistent with input 

information. Model accuracy or error: the deviation of the model from the “truth”.

Good-scoring model: a model that is sufficiently consistent with given information; for 

example, a model whose score is better than some threshold on the scoring function used 

for sampling, or a model that is within all error bars on the input data. In a truly Bayesian 

approach, there is in principle no need to consider only good-scoring models as each 

sampled model can be weighted by its posterior probability.

Ensemble of models: a sample of sufficiently good-scoring models.

Precision or uncertainty of a model or ensemble of models: a measure of variability of the 

ensemble of models.

Single-state model: a model that specifies a single structural state and value for any other 

parameter.

Multi-state model: a model that specifies two or more structural states in the samples 

used for determining input information and values for any other parameter.
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Figure 1: Examples of integrative structures.
See Table 3 for details on each structure.
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Figure 2: Description of the iterative integrative modeling workflow.
As illustrated, the four stages include: (1) gathering all available experimental data and prior 

information; (2) translating information into representations of assembly components and a 

scoring function for ranking alternative assembly structures; (3) sampling structural models; 

and (4) validating the model. In this example, representations of the components of a 

complex are based on models of its components. Some component representations are 

coarse-grained by using spherical beads corresponding to multiple amino acid residues, to 

reflect the lack of information and/or to increase efficiency of structural sampling. The 

scoring function consists of spatial restraints that are obtained from CX-MS experiments and 

a cryo-electron tomography density map. The sampling explores both the conformations of 

the components and/or their configuration, searching for those assembly structures that 

satisfy the spatial restraints as well as possible. The result is an ensemble of many good-

scoring models that satisfy the input data within acceptable thresholds. The sampling is then 

assessed for convergence, models are clustered, and evaluated by the degree to which they 

satisfy the input information used to construct them as well as omitted information. The 

protocol can iterate through the four stages until the models are judged to be satisfactory, 

most often based on their precision and the degree to which they satisfy the data. Finally, the 

models and data are deposited into PDB-Dev (https://pdb-dev.wwpdb.org) (Burley et al., 

2017; Vallat et al., 2018).
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Figure 3: Integrative structures of the yeast NPC.
(A) A comparison of the integrative NPC structures determined in 2007 (Alber et al., 2007b) 

and 2018 (Kim et al., 2018) illustrates how the integration of a larger amount of more 

precise data led in turn to a structure with a higher precision. (B) A comparison of two 

representative Pom152 models, without and with an atomic model of the first Ig domain 

(Hao et al., 2018; Upla et al., 2017), shows how consideration of additional information (ie, 

knowledge of an atomic structure of the first Ig domain (Ig0)) into the representation of a 

protein improves its model. (C) Insights into the architectural principles and functions of the 
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NPC. Five examples of analogous structural principles shared by an NPC and a suspension 

bridge are each illustrated by a specific color showing the features sharing these principles, 

in the NPC by panels showing three of the eight spokes of an NPC viewed from its axial 

center: (i) a firm anchor to a substrate (brown / orange), (ii) rigid supporting columns and 

segments (dark blue) that (iii) appear somewhat flexibly jointed to each other (purple), (iv) 

flexible connector cables that tie together all the structural elements (light blue), (v) 

collectively forming a transport pathway supporting a high density of trafficking routes 

(green).
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Table 1:
Example methods that are informative about a variety of structural aspects of 
biomolecular systems are listed.

3DEM, 3D electron microscopy; DEER, double electron-electron resonance; EPR, electron paramagnetic 

resonance; FRET, Foerster resonance energy transfer; HDex, hydrogen/deuterium exchange; NMR, nuclear 

magnetic resonance; SAS, small-angle scattering; XL-MS, cross linking - mass spectrometry.

Structural information Method

Stoichiometry MS, quantitative fluorescence imaging

Atomic structures of parts of the studied 
system

X-ray and neutron crystallography, NMR spectroscopy, 3DEM, comparative modeling, and 
molecular docking

3D maps and 2D images Electron microscopy and tomography

Atomic and protein distances NMR, FRET, and other fluorescence techniques; DEER, EPR, and other spectroscopic 
techniques; XL-MS, disulfide bonds detected by gel electrophoresis

Binding site mapping NMR spectroscopy, mutagenesis, FRET, and XL-MS

Size, shape, and distributions of pairwise 
atomic distances

SAS

Shape and size Atomic force microscopy, ion mobility mass spectrometry, fluorescence correlation 
spectroscopy, fluorescence anisotropy, analytical ultracentrifugation

Component positions Super-resolution optical microscopy, FRET imaging, immuno- electron microscopy

Physical proximity Co-purification, native mass spectrometry, XL-MS, molecular genetic methods, and gene/
protein sequence covariance

Solvent accessibility Footprinting methods, including HDex assessed by MS or NMR, and even functional 
consequences of point mutations

Proximity between different genome 
segments

Chromosome Conformation Capture

Propensities for different interaction modes Molecular mechanics force fields, potentials of mean force, statistical potentials, and sequence 
co-variation

Cell. Author manuscript; available in PMC 2020 May 30.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rout and Sali Page 34

Table 2:

Software resources for integrative modeling.

Program Functionality Web Site Reference

ISD Bayesian modeling based on NMR 
data

(Rieping et al., 2005)

IMP Integrative modeling integrativemodeling.org (Russel et al., 2012)

Rosetta Integrative modeling rosettacommons.org (Das and Baker, 2008)

ISDB Integrative modeling plumed.org (Bonomi and Camilloni, 2017)

power Integrative modeling lbm.epfl.ch/resources/ (Degiacomi and Dal Peraro, 2013)

cMNXL, Jwalk/
MNXL

Integrative modeling topf-group.ismb.lon.ac.uk/Software (Bullock et al., 2018a; Bullock et 
al., 2018b)

PyRy3D Integrative modeling genesilico.pl/pyry3d/ J. M. Kasprzak, M. Dobrychtop, J. 
Bujnicki

PGS Modeling genome structure github.com/alberlab/PGS (Hua et al., 2018)

TADBit Modeling genome structure sgt.cnag.cat/3dg/tadbit/ (Serra et al., 2017)

MDFF/NAMD Fitting of molecular models into EM 
maps using MD simulations

ks.uiuc.edu/Research/mdff (Trabuco et al., 2008)

ATSAS Integrative modeling using SAXS embl-hamburg.de/biosaxs (Franke et al., 2017)

iFoldRNA Integrative modeling of RNA iFoldRNA.dokhlab.org (Sharma et al., 2008)

HADDOCK Integrative modeling using docking 
and data derived restraints

haddock.science.uu.nl (Dominguez et al., 2003)

ATTRACT-EM Integrative modeling using docking 
and EM

attract.ph.tum.de (de Vries and Zacharias, 2012)

DireX Flexible fitting of EM maps with data 
derived distance restraints.

schroderlab.org/software/direx/ (Wang and Schroder, 2012)

MDFit MD based integrative smog- (Ratje et al., 2010)

modeling using EM maps server.org/SBMextension.html#mdfit

FPS Integrative modeling using FRET data www.mpc.hhu.de/en/software/
fps.html

(Kalinin et al., 2012)

XPLOR-NIH Structure determination using NMR 
data

nmr.cit.nih.gov/xplor-nih/ (Schwieters et al., 2018)

PatchDock Molecular docking by shape 
complementarity

bioinfo3d.cs.tau.ac.il/PatchDock/ (Schneidman-Duhovny et al., 2005)

iSPOT Structure determination using SAS, 
footprinting and docking

www.theyanglab.org/ispot/ (Hsieh et al., 2017)

BCL Various servers for integrative 
modeling

meilerlab.org/index.php/servers (Woetzel et al., 2011)

ChimeraX Model visualization rbvi.ucsf.edu/chimerax (Goddard et al., 2018)

VMD Model visualization ks.uiuc.edu/research/vmd (Humphrey et al., 1996)

Protein Model 
Portal

Portal to atomic models of proteins proteinmodelportal.org (Haas et al., 2013)

PDB-Development Archiving of integrative structures pdb-dev.wwpdb.org (Burley et al., 2017)
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Table 3:

Examples of integrative structures (shown in Figure 1).

System name Input data Accession Citation

INO80 17-Å resolution cryo-electron microscopy 
(EM) map, 212 intra-protein and 116 inter-
protein cross-links

(Tosi et al., 2013)

Polycomb Repressive Complex 2 
(PRC2)

21-Å resolution negative-stain EM map and 
~60 intra-protein and inter-protein cross-links (Ciferri et al., 2012)

1

Large subunit of the mammalian 
mitochondrial ribosome (39S)

4.9-Å resolution cryo-EM map and ~70 inter-
protein cross-links

4CE4
(Greber et al., 2014b)

2

RNA polymerase II transcription pre-
initiation complex

16-Å resolution cryo-EM map plus 157 intra-
protein and 109 inter-protein cross-links (Murakami et al., 2013)

3

Type III secretion system needle 19.5-Å resolution cryo-EM map and solid-state 
nuclear magnetic resonance (NMR) data

2LPZ
(Loquet et al., 2012)

4

Productive HIV-1 reverse 
transcriptase:DNA primer-template 
complex in the open educt state

Foerster resonance energy transfer (FRET) 
positioning and screening using a known 
HIV-1 reverse transcriptase structure

(Kalinin et al., 2012)
2

HIV-1 capsid protein Residual dipolar couplings and small-angle X-
ray scattering (SAXS) data

2M8L, 2M8N, 2M8P (Deshmukh et al., 

2013)
5

Human genome Tethered chromosome conformation capture 
and population-based modeling (Kalhor et al., 2011)

6

Drosophila genome Chromosome conformation capture and lamina 
DamID

(Li et al., 2017)

α-globin gene domain Chromosome Conformation Capture Carbon 
Copy (5C) (Bau et al., 2011)

7

Proteosomal lid Native mass spectrometry and 28 cross-links
(Politis et al., 2014)

8

ESCRT-I complex SAXS, double electron-electron transfer, and 
FRET

(Boura et al., 2011)

Actin together with the cardiac 
myosin binding protein C

Crystallographic and NMR structures of 
subunits and domains, with positions and 
orientations optimized against SAXS and 
small-angle neutron scattering data to reveal 
information about the quaternary interactions

(Whitten et al., 2008)
9

[ΨCD]2 Averaged cryo-electron tomography map, 
NMR

2L1F (Miyazaki et al., 2010)

Cyanobacterial circadian timing 
KaiB-KaiC complex

Hydrogen/deuterium exchange and collision 
cross-section data from mass spectrometry

(Snijder et al., 2014)

Pre-pore and pore conformations of 
the pore-forming toxin aerolysin

Cryo-EM data and molecular dynamics 
simulations

(Degiacomi et al., 

2013)
10

A segment of a pleurotolysin pore 
map (~11 Å resolution); an ensemble 
of conformations shows the 
trajectory of β-sheet opening during 
pore formation

Cryo-EM, X-ray crystal subunit structures, 
fluorescence spectroscopy, cross-linking

4V2T (Lukoyanova et al., 

2015)
11

Ternary complex of the iron-sulfur 
cluster assembly proteins desulfurase 
(orange) and scaffold protein Isu 
(blue) with a bacterial ortholog of 
frataxin (yellow)

NMR chemical shifts, SAXS, mutagenesis
(Prischi et al., 2010)

12

SAGA transcription coactivator 
complex

199 inter- and 240 intra-subunit cross-links, 
several comparative models based on X-ray 
crystal structures, and a transcription factor IID 
core EM map at 31 Å resolution

(Han et al., 2014)
13
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System name Input data Accession Citation

Bacterial (Thermus aquaticus) RNA 
polymerase-promoter open complex; 
subsequently validated by a crystal 
structure (Feng et al., 2016)

FRET Mekler, 2002 #400}

RNA ribosome-binding element 
from the turnip crinkle virus genome

NMR, SAXS, EM DOI: 10.6084/
m9.figshare.1295199 (Gong et al., 2015)

14

Complex between RNA polymerase 
II and transcription factor IIF

Deposited crystal structure of RNA 
polymerase II, comparative models of some 
domains in transcription factor IIF and 95 
intra-protein and 129 inter-protein cross-links

(Chen et al., 2010)
15

Human and yeast TFIIH XL-MS data, biochemical analyses, and 
previously published electron microscopy 
maps

(Luo et al., 2015)

40S-eIF1-eIF3 translation initiation 
complex

X-ray crystallography, EM, XL-MS (Erzberger et al., 2014)

ATP synthase membrane motor cryo-EM (~7.8 Å resolution), XL-MS, and 
evolutionary couplings

(Leone and Faraldo-

Gomez, 2016)
16

26S proteasome 67 inter-protein and 26 intra-protein chemical 
cross-links in combination with EM maps

5LN3 (Wang et al., 2017)

Ino80 insert domain bound to the 
Rbv1/Rvb2 dodecamer

12-Å resolution cryo-EM map, 226 chemical 
cross-links

(Zhou et al., 2017)

Core of the yeast spindle pole body 
(SPB)

in vivo FRET, SAXS, X-ray crystallography, 
EM, two-hybrid analysis

(Viswanath et al., 

2017a)
2

E6AP/UBE3A-E6-p53 enzyme-
substrate complex

XL-MS data of the complex with and without 
E6

PDBDEV_00000022, 
PDBDEV_00000023 (Sailer et al., 2018)

17

Nucleosome remodeler ISWI XL-MS, SAXS, protein-protein docking (Harrer et al., 2018)

Urease activation complex Mobility-mass spectrometry data (Eschweiler et al., 2018)

Chromosomal DNA organization Super-resolution microscopy methods 
OligoSTORM and OligoDNA-PAINT, Hi-C 
data

(Nir et al., 2018)
18

1
Figure panel reprinted from figure 11 of (Ciferri et al., 2012), used under the terms of the Creative Commons Attribution 3.0 license (https://

creativecommons.org/licenses/by/3.0/).

2
Figure panel obtained via personal communication and used with permission of the author.

3
Panel from Figure 5 of (Murakami et al., 2013). Reprinted with permission from AAAS.

4
Figure 3 reprinted by permission from Springer Nature Terms and Conditions for RightsLink Permissions Springer Nature Customer Service 

Centre GmbH: Nature “Atomic model of the type III secretion system needle.” Loquet A, Sgourakis NG, Gupta R, Giller K, Riedel D, Goosmann 
C, Griesinger C, Kolbe M, Baker D, Becker S, Lange A. Copyright Springer Nature Publishing AG (2012).

5
Figure 9 reprinted (adapted) with permission from (Deshmukh et al., 2013). Copyright (2013) American Chemical Society.

6
Figure 6 reprinted by permission from Springer Nature Terms and Conditions for RightsLink Permissions Springer Nature Customer Service 

Centre GmbH: Nature Biotechnology “Genome architectures revealed by tethered chromosome conformation capture and population-based 
modeling.” Kalhor R, Tjong H, Jayathilaka N, Alber F, Chen L. Copyright Springer Nature Publishing AG (2012).

7
Figure 4 reprinted by permission from Springer Nature Terms and Conditions for RightsLink Permissions Springer Nature Customer Service 

Centre GmbH: Nature Structural & Molecular Biology “The three-dimensional folding of the α-globin gene domain reveals formation of chromatin 
globules.” Baù D, Sanyal A, Lajoie BR, Capriotti E, Byron M, Lawrence JB, Dekker J, Marti-Renom MA. Copyright Springer Nature Publishing 
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