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Abstract

Distributed architectures for efficient processing of streaming data are increasingly critical to 

modern information processing systems. The goal of this paper is to develop type-based 

programming abstractions that facilitate correct and efficient deployment of a logical specification 

of the desired computation on such architectures. In the proposed model, each communication link 

has an associated type specifying tagged data items along with a dependency relation over tags 

that captures the logical partial ordering constraints over data items. The semantics of a 

(distributed) stream processing system is then a function from input data traces to output data 

traces, where a data trace is an equivalence class of sequences of data items induced by the 

dependency relation. This data-trace transduction model generalizes both acyclic synchronous 

data-flow and relational query processors, and can specify computations over data streams with a 

rich variety of partial ordering and synchronization characteristics. We then describe a set of 

programming templates for data-trace transductions: abstractions corresponding to common 

stream processing tasks. Our system automatically maps these high-level programs to a given 

topology on the distributed implementation platform Apache Storm while preserving the 

semantics. Our experimental evaluation shows that (1) while automatic parallelization deployed by 

existing systems may not preserve semantics, particularly when the computation is sensitive to the 

ordering of data items, our programming abstractions allow a natural specification of the query 

that contains a mix of ordering constraints while guaranteeing correct deployment, and (2) the 

throughput of the automatically compiled distributed code is comparable to that of hand-crafted 

distributed implementations.
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1 Introduction

Modern information processing systems increasingly demand the ability to continuously 

process incoming data streams in a timely manner. Distributed stream processing 

architectures such as Apache Storm [28], Twitter’s Heron [38, 56], Apache Spark Streaming 

[27, 58], Google’s MillWheel [5], Apache Flink [19, 25] and Apache Samza [26,47] provide 

platforms suitable for efficient deployment of such systems. The focus of the existing 

systems has been mainly on providing high throughput, load balancing, load shedding, fault 

tolerance and recovery. Less developed, however, is a semantics for streaming computations 

that enables one to reason formally about the correctness of implementations and distributed 

deployments with respect to a specification, even in the presence of disorder in the input. 

This is especially important because–as we will discuss in section 2–parallelization and 

distribution can cause spurious orderings of the data items, and it is therefore necessary to 

have a formal way of reasoning about these effects. The goal of this paper is to develop 

high-level abstractions for distributed stream processing by relying on a type discipline that 

is suitable for specifying computations and that can be the basis for correct and efficient 

deployment.

Physically, streams are linearly ordered, of course, and computations consume one item at a 

time. However, this is only one of many possible logical views of streaming data. Indeed, 

assuming a strict linear order over input items is not the ideal abstraction for computation 

specification, for two reasons. First, in an actual implementation, there may be no 

meaningful logical way to impose a linear ordering among items arriving at different 

processing nodes. Second, for many computations it suffices to view the input logically as a 

relation, that is, a bag of unordered data items. Such lack of ordering often has 

computational benefits for optimization and/or parallelization of the implementation. 

Between linear ordering at one extreme and lack of ordering at the other we have the large 

space of partial orders and capturing these orders is the main focus of our type discipline.

We use partially ordered multisets (pomsets), a structure studied extensively in concurrency 

theory [48]. Pomsets generalize both sequences and bags, as well as sequences of bags, bags 

of sequences, etc., and we have found them sufficient and appropriate for our formal 

development. To specify the types that capture these partial orders as well as a logical type-

consistent semantics for stream computations, we model–inspired by the definition of 

Mazurkiewicz traces [44] in concurrency theory–input and output streams as data traces. We 

assume that each data item consists of a tag and a value of a basic data type associated with 

this tag. The ordering of items is specified by a (symmetric) dependency relation over the set 

of tags. Two sequences of data items are considered equivalent if one can be obtained from 

the other by repeatedly commuting two adjacent items with independent tags, and a data 

trace is an equivalence class of such sequences. A data-trace type is given by a tag alphabet, 

a type of values for each tag, and a dependency relation.

For instance, when all the tags are mutually dependent, a sequence of items represents only 

itself, and when all the tags are mutually independent, a sequence of items represents the bag 

of items it contains. A suitable choice of tags along with the associated dependency relation, 
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allows us to model streams with a rich variety of logical ordering and synchronization 

characteristics. As another example, consider a system that implements key-based 
partitioning by mapping a linearly ordered input sequence to a set of linearly ordered sub-

streams, one per key. To model such a system the output items corresponding to distinct keys 

should be unordered. For this purpose, we allow the output items to have their own tags 

along with a dependency relation over these tags, and a sequence of outputs produced by the 

system is interpreted as the corresponding data trace. This representation can be easily 

presented programmatically and is also easily related to physical realizations.

While a system processes the input in a specific order by consuming items one by one in a 

streaming manner, it is required to interpret the input sequence as a data trace, that is, 

outputs produced while processing two equivalent input sequences should be equivalent. 

Formally, this means that a stream processor defines a function from input data traces to 
output data traces. Such a data-trace transduction is the proposed semantic model for 

distributed stream processing systems, and is a generalization of existing models in literature 

such as acyclic Kahn process networks [36, 39] and streaming extensions of database query 

languages [15, 40]. Our formal model is described in section 3.

In section 4 we propose a programming model where the overall computation is given as an 

acyclic dataflow graph, where every communication link is annotated with a data-trace type 
that specifies the ordering characteristics of the stream flowing through the link. In order to 

make the type annotation easier for the application developer, we restrict our framework to 

data-trace types that have two features: (1) the traces contain linearly ordered periodic 

synchronization markers for triggering the output of blocking operations and forcing 

progress (similar to the punctuations of [40] or the heartbeats of [50]), and (2) the data items 

of traces are viewed as key-value pairs in order to expose opportunities for key-based data 

parallelism. To ensure that each individual computational element of the dataflow graph 

respects the data-trace types of its input and output channels, we provide a set of operator 
templates for constraining the computation appropriately. For example, when the input data-

trace type specifies that the items are unordered, their processing is described by a 

commutative monoid (a structure with an identity element and an associative, commutative 

binary operation), which guarantees that the output is independent of the order in which the 

items are processed.

When a programmer uses these typed abstractions to describe an application, she secures the 

global guarantee that the overall computation has a well-defined semantics as a data-trace 

transduction, and therefore its behavior is predictable and independent of any arbitrary data 

item interleaving that is imposed by the network or the distribution system (Theorem 4.2). 

Moreover, the operator templates allow for data parallelism that always preserves the 

semantics of the original specification (Theorem 4.3, Corollary 4.4).

We have implemented data-trace types, operator templates and typed dataflow DAGs in Java 

as an embedded domain-specific language. Our system compiles the specification of the 

computation into a “topology” [29] that can be executed using Storm (see section 5). In 

section 6 we present an experimental evaluation where we address the following questions: 

(1) Is the code that our framework generates as efficient as a handcrafted implementation? 
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(2) Does our framework facilitate the development of complex streaming applications? To 

answer the first question, we used a slight variant of the Yahoo Streaming Benchmark [35] 

and compared a generated implementation (that we built using our typed abstractions) 

against a handcrafted one. The experimental results show very similar performance. This 

provides evidence that our approach does not impose a computational overhead, while 

offering guarantees of type correctness, predictable behavior, and preservation of semantics 

when data parallelism is introduced. To address the second question, we consider a 

significant case study on prediction of power usage. This case study is inspired by the 

DEBS’14 Grand Challenge [22], which we adapted to incorporate a more realistic prediction 

technique based on machine learning. This application requires a mix of ordering constraints 

over data items. Our system automatically deals with low-level ordering and 

synchronization, so our programming effort was focused on the power prediction itself.

2 Motivation

Many popular distributed stream processing systems–such as Storm [28, 54], Heron [38, 56] 

and Samza [26, 47]–allow the programmer to express a streaming computation as a dataflow 

graph, where the processing performed by each node is described in a general-purpose 

language such as Java or Scala. During compilation and deployment, this dataflow graph is 

mapped to physical nodes and processes.

As a simple example, suppose that we want to process a stream of sensor measurements and 

calculate every 10 seconds the average of all measurements seen so far We assume that the 

sensor generates the data items in increasing timestamp order, but the time series may have 

missing data points. The processing pipeline consists of three stages: (1) Map deserializes 

the incoming messages and retains only the scalar value and timestamp (i.e., discards any 

additional metadata), (2) LI performs linear interpolation to fill in the missing data points, 

and (3) Avg computes the average historical value and emits an update every 10 seconds.

The above pipeline can be programmed conveniently in Storm by providing the 

implementations of each node Map, LI, Avg and describing the connections between them.

The implementation described previously exposes pipeline parallelism, and thus suggests a 

multi-process or distributed execution where each stage of the pipeline computes as an 

independent process. In the case where the sensor produces messages at a very high rate, the 

computationally expensive deserialization stage Map becomes a bottleneck. In order to deal 

with such bottlenecks, Storm provides a facility for data parallelism by allowing the 

programmer to explicitly specify the creation of several parallel instances of the Map node. 

It handles automatically the splitting and balancing of the input stream across these 

instances, as well as the merging of the output streams of these instances.
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The problem, however, with this data parallelization transformation is that it does not 
preserve the semantics of the original pipeline. The issue is that the linear interpolation 

stage LI relies on receiving the data elements in increasing order of timestamps. 

Unfortunately, when Storm merges the output streams of the two Map instances it introduces 

some arbitrary interleaving that may violate this precondition. This introduces 

nondeterminism to the system that causes the outputs to be unpredictable and therefore not 

reproducible without modifications to the computation.

Typically, a practical way to deal with these problems is to generate sequence numbers and 

attach them to stream elements in order to recover their order later (if they get out of order). 

However, this increases the size of data items. Moreover, it imposes a linear order, even in 

cases where a partial order is sufficient. For example, synchronization markers can be used 

to impose a partial order more efficiently than attaching sequence numbers. In general, many 

such practical fixes make the programs harder to debug, maintain, and modify correctly and 

thus less reliable.

In contrast, in order to facilitate semantically sound parallelization transformations and 

eliminate behaviors that rely on spurious ordering of the data items, our approach relies on 

data-trace types that classify the streams according to their partial ordering characteristics. 

For example, we can declare that the connection from Map to LI is “linearly ordered”, and 

this would indicate that the parallelization transformation of the previous paragraph is not 

sound because it causes the reordering of data items flowing through that channel. 

Alternatively, the implementation LI could be replaced by a new implementation, denoted 

Sort-LI, that can handle a disordered input by sorting it first according to timestamps. Then, 

the connection channel between Map and Sort-LI can be declared to be “unordered”, which 

enables sound data parallelization for the Map stage. Assuming that all connections are 

typed, the problem now arises of whether the computation nodes are consistent with these 

input/output partial ordering types. We propose later in section 4 a way of structuring the 

code for each node according to a set of templates, so that it respects the types of its input/

output channels.

3 Types for Data Streams

We will introduce a semantic framework for distributed stream processing systems, where 

the input and output streams are viewed as partial orders [13]. Under this view, finite 

prefixes of streams are represented as data traces, and they are classified according to their 

ordering characteristics using types. The input/output behavior of a stream processing 

system is modeled as a data-trace transduction, which is a monotone function from input 

traces to output traces.

3.1 Data Traces

We use data traces to model streams in which the data items are partially ordered. Data 

traces generalize sequences (data items are linearly ordered), relations (data items are 

unordered), and independent stream channels (data items are organized as a collection of 

linearly ordered subsets). The concatenation operation and the prefix order on sequences can 

be generalized naturally to the setting of data traces.
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A data type A = (Σ, (Tσ)σ∈Σ) consists of a potentially infinite tag alphabet Σ and a value type 

Tσ for every tag σ ∈ Σ. The set of elements of type A, or data items, is equal to {(σ, d) ∣ σ ∈ 
Σ and d ∈ Tσ}, which we will also denote by A. The set of sequences over A is denoted as 

A*. A dependence relation on a tag alphabet Σ is a symmetric binary relation on Σ. We say 

that the tags σ, τ are independent (w.r.t. a dependence relation D) if (σ, τ) ∉ D. For a data 

type A = (Σ, (Tσ)σ∈Σ) and a dependence relation D on Σ, we define the dependence relation 

that is induced on A by D as {((σ, d), (σ′, d′)) ∈ A × A ∣ (σ, σ′) ∈ D}, which we will also 

denote by D. Define ≡D to be the smallest congruence (w.r.t. sequence concatenation) on A* 

containing {(ab, ba) ∈ A* × A* ∣ (a, b) ∉ D}. Informally, two sequences are equivalent w.r.t. 

≡D if one can be obtained from the other by repeatedly commuting adjacent items with 

independent tags.

Example 3.1. Suppose we want to process a stream that consists of sensor measurements 

and special symbols that indicate the end of a one-second interval. The data type for this 

input stream involves the tags Σ = {M, #}, where M indicates a sensor measurement and # is 

an end-of-second marker. The value sets for these tags are TM = Nat (natural numbers), and 

T# = Ut is the unit type (singleton). So, the data type A = (Σ, TM, T#) contains measurements 

(M, d), where d is a natural number, and the end-of-second symbol #.

The dependence relation D = {(M, #), (#, M), (#, #)} says that the tag M is independent of 

itself, and therefore consecutive M-tagged items are considered unordered. For example, (M, 

5) (M, 5) (M, 8) # (M, 9) and (M, 8) (M, 5) (M, 5) # (M, 9) are equivalent w.r.t. ≡D.

A data-trace type is a pair X = (A, D), where A is a data type and D is a dependence relation 

on the tag alphabet of A. A data trace of type X is a congruence class of the relation ≡D. We 

also write X to denote the set of data traces of type X. Since the equivalence ≡D is a 

congruence w.r.t. sequence concatenation, the operation of concatenation is also well-

defined on data traces: [u] · [v] = [uv] for sequences u and v, where [u] is the congruence 

class of u. We define the relation ≤ on the data traces of X as a generalization of the prefix 

partial order on sequences: for data traces u and v of type X, u ≤ v iff there are u ∈ u and v 
∈ v s.t. u ≤ v (i.e., u is a prefix of v). The relation ≤ on data traces of a fixed type is a partial 

order. Since it generalizes the prefix order on sequences (when the congruence classes of ≡D 

are singleton sets), we will call ≤ the prefix order on data traces.

Example 3.2 (Data Traces). Consider the data-trace type X = (A, D), where A and D are 

given in Example 3.1. A data trace of X can be represented as a sequence of multisets (bags) 

of natural numbers and visualized as a partial order on that multiset. The trace corresponding 

to the sequence of data items (M, 5) (M, 7) # (M, 9) (M, 8) (M, 9) # (M, 6) is visualized as:

where a line from left to right indicates that the item on the right must occur after the item 

on the left. The end-of-second markers # separate multisets of natural numbers. So, the set 

of data traces of X has an isomorphic representation as the set Bag(Nat)+ of nonempty 
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sequences of multisets of natural numbers. In particular, the empty sequence ε is represented 

as ∅ and the single-element sequence # is represented as ∅ ∅.

A singleton tag alphabet can be used to model sequences or multisets over a basic type of 

values. For the data type given by Σ = {σ} and Tσ = T there are two possible dependence 

relations for Σ, namely ∅ and {(σ, σ)}. The data traces of (Σ, T, ∅) are multisets over T, 

which we denote as Bag(T), and the data traces of (Σ, T, {(σ, σ)}) are sequences over T.

Example 3.3 (Multiple Input/Output Channels). Suppose we want to model a streaming 

system with multiple independent input and output channels, where the items within each 

channel are linearly ordered but the channels are completely independent. This is the setting 

of (acyclic) Kahn Process Networks [36] and the more restricted synchronous dataflow 

models [18, 39]. We introduce tags ΣI = {I1,…, Im} for m input channels, and tags Σ0 = {01,

…, 0n} for n output channels. The dependence relation for the input consists of all pairs (Ii, 

Ii) with i = 1,…, m. This means that for all indexes i ≠ j the tags Ii and Ij are independent. 

Similarly, the dependence relation for the output consists of all pairs (0i, 0i) with i = 1,…, n. 

Assume that the value types associated with the input tags are T1, …, Tm, and the value 

types associated with the output tags are U1, …, Un. The sets of input and output data traces 

are (up to a bijection) T1
∗ × ⋯ × Tm

∗  and U1
∗ × ⋯ × Um

∗  respectively.

3.2 Data-String Transductions

In a sequential implementation of a stream processor the input is consumed in a sequential 

fashion, i.e. one item at a time, and the output items are produced in a specific linear order. 

Such sequential semantics is formally described by data-string transductions, which we use 

as a precursor to defining data-trace transductions.

Let A and B be data types. A data-string transduction with input type A and output type B 
is a function f : A* → B*. A data-string transduction f : A* → B* describes a streaming 

computation where the input items arrive in a linear order. For an input sequence u ∈ A* the 

value f(u) gives the output items that are emitted right after consuming the sequence u. In 

other words, f(u) is the output that is triggered by the arrival of the last data item of u. We 

say that f is a one-step description of the computation because it gives the output increment 
that is emitted at every step.

The lifting of a data-string transduction f : A* → B* is the function f̄ : A∗ B∗ that maps a 

sequence a1a2 … an ∈ A* to f̄ (a1a2…an) = f (ε) ⋅ f (a1) ⋅ f (a1a2)⋯ f (a1a2…an). In particular, 

the definition implies that f̄ (ε) = f (ε). That is, f̄  accumulates the outputs of f for all prefixes 

of the input. Notice that f̄  is monotone w.r.t. the prefix order: u ≤ v implies that f̄ (u) ≤ f̄ (v)
for all u, v ∈ A*. The lifting f̄  of a data-string transduction f describes a sequential 

streaming computation in a different but equivalent way. For an input sequence u ∈ A* the 

value f̄ (u) is the cumulative output of the computation as the stream is extended item by 

item.
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Example 3.4. Suppose the input is a sequence of natural numbers, and we want to define the 

transformation that outputs the current data item if it is strictly larger than all data items seen 

so far. We model this as a data-string transduction f : Nat* → Nat*, given by f(ε) = ε and

f (a1…an − 1an) =
an, if an > ai for all i = 1, …, n − 1;

ε, otherwise.

The table below gives the values of f and f̄  on input prefixes:

current item input history f output f̄  output

ε ε ε

3 3 3 3

1 3 1 ε 3

5 3 1 5 5 3 5

2 3 1 5 2 ε 3 5

Notice that f̄ (3152) = f (ε) ⋅ f (3) ⋅ f (31) ⋅ f (315) ⋅ f (3152).

3.3 Data-Trace Transductions

Data-trace transductions are useful for giving the meaning (semantics) of a stream 

processing system. Consider the analogy with a functional model of computation: the 

meaning of a program consists of the input type, the output type, and a mapping that 

describes the input/output behavior of the program. Correspondingly, the semantics for a 

stream processing systems consists of: (1) the type X of input data traces, (2) the type Y of 

output data traces, and (3) a monotone mapping β : X → Y that specifies the cumulative 

output after having consumed a prefix of the input stream. The monotonicity requirement 

captures the idea that output items cannot be retracted after they have been omitted. Since β 
takes an entire input history (data trace) as input, it can model stateful systems, where the 

output that is emitted at every step depends potentially on the entire input history.

We have already discussed how (monotone) functions from A* to B* model sequential 

stream processors. We will now introduce the formal notion of consistency, which captures 

the intuition that a sequential implementation does not depend on the relative order of any 

two elements unless the stream type considers them to be relatively ordered.

Definition 3.5 (Consistency). Let X = (A, D) and Y = (B, E) be data-trace types. We say that 

a data-string transduction f : A* → B* is (X, Y)-consistent if u ≡D v implies that 

f̄ (u) ≡E f̄ (v) for all u, v ∈ A*.

Let f ∈ A* → B* be a (X, Y)-consistent data-string transduction. The function β : X → Y, 

defined by β([u]) = [ f̄ (u)] for all u ∈ A*, is called the (X, Y)-denotation of f.

Definition 3.6 (Data-Trace Transductions). Let X = (A, D) and Y = (B, E) be data-trace 

types. A data-trace transduction with input type X and output type Y is a function β : X → 
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Y that is monotone w.r.t. the prefix order on data traces: u ≤ v implies that β(u) ≤ β(v) for all 

traces u, v ∈ X.

Definition 3.5 essentially says that a data-string transduction f is consistent when it gives 

equivalent cumulative outputs for equivalent input sequences. It is shown in [13] that the set 

of data-trace transductions from X to Y is equal to the set of (X, Y)-denotations of all (X, 

Y)-consistent data-string transductions.

Example 3.7 (Deterministic Merge). Consider the streaming computation where two 

linearly ordered input channels are merged into one. More specifically, this transformation 

reads items cyclically from the two input channels and passes them unchanged to the output 

channel. Recall from Example 3.3 that the set of input data traces is essentially T* × T*, and 

the set of output data traces is essentially T*. The data-trace transduction merge : T* × T* 

→ T* is given by:

merge(x1…xm, y1…yn) =
x1 y1…xm ym, if m ≤ n;

x1 y1…xn yn, if m > n .

Example 3.8 (Key-Based Partitioning). Consider the computation that maps a linearly 

ordered input sequence of data items of type T (each of which contains a key), to a set of 

linearly ordered sub-streams, one per key. The function key : T → K extracts the key from 

each input value. An input trace is represented as an element of T*. The output type is 

specified by the tag alphabet K, value types Tk = T for every key k ∈ K, and the dependence 

relation {(k, k) ∣ k ∈ K}. So, an output trace is represented as a K-indexed tuple, that is, a 

function K → T*. The data-trace transduction partitionkey : T* → (K → T*) describes the 

partitioning of the input stream into sub-streams according to the key extraction map key: 

partitionkey(u)(k) = u∣k for all u ∈ T* and k ∈ K, where u∣k denotes the subsequence of u that 

consists of all items whose key is equal to k. The implementation of partitionkey can be 

modeled as a data-string transduction f : T* → (K × T)*, given by f(ε) = ε and f(wx) = 

(key(x), x) for all w ∈ T* and x ∈ T.

Although the computation of aggregates (e.g., sum, max, and min) is meaningful for 

unordered input data (i.e., a bag), if the bag is given as a stream then it is meaningless to 

produce partial aggregates as the data arrives: any partial aggregate depends on a particular 

linear order for the input items, which is inconsistent with the notion of unordered input. 

Therefore, for a computation of relational aggregates in the streaming setting we require that 

the input contains linearly ordered markers that trigger the emission of output (see [40] for a 

generalization of this idea). The input can then be viewed as an ordered sequence of bags 

(each bag is delineated by markers), and it is meaningful to compute at every marker 

occurrence the aggregate over all items seen so far. Our definition of data-trace transductions 

captures these subtle aspects of streaming computation with relational data.

Example 3.9. Suppose that the input stream consists of unordered natural numbers and 

linearly ordered markers #. Consider the computation that emits at every occurence of # the 

maximum of all numbers seen so far. More specifically, the input type is given by Σ = {σ, 

τ}, Tσ = Nat, Tτ = Ut (unit type), and D = {(σ, τ), (τ, σ), (τ, τ)}. So, an input data trace is 

Mamouras et al. Page 9

Proc ACM SIGPLAN Conf Program Lang Des Implement. Author manuscript; available in PMC 2019 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



essentially an element of Bag(Nat)+, as in Example 3.2. The streaming maximum 

computation is described by the data-trace transduction smax : Bag(Nat)+ → Nat*, where 

for a sequence of bags B1… Bn, smax(B1… Bn) := max(B1) max(B1 ⋃ B2) … max(B1 ⋃ B2 

⋃ ⋯ ⋃ Bn–1). In particular, the output does not include the bag of items Bn since the last 

occurrence of #. The implementation of smax is modeled as a data-string transduction f : 
(Nat ⋃ {#})* → Nat*, which outputs at every # occurrence the maximum number so far. 

That is, f(ε) = ε and

f (a1…an) =
ε if an ∈ Nat;

max of{a1, …, an} {#}, if an = # .

for all sequences a1a2 … an ∈ (Nat ⋃ {#})*.

4 Type-Consistent Programming

Complex streaming computations can be naturally described as directed acyclic graphs 
(DAGs), where the vertices represent simple operations and the edges represent streams of 

data. Such a representation explicitly exposes task and pipeline parallelism, and suggests a 

distributed implementation where every vertex is an independent process and inter-process 

communication is achieved via FIFO channels.

The semantic framework of section 3, which includes the notions of data-trace types and 

data-trace transductions, will serve a dual purpose. First, it will allow us to give a formal 

denotational semantics for streaming computation DAGs that respect the input/output stream 

types. Second, it will enable reasoning about equivalence and semantics-preserving 

transformations, such as data parallelization. We will focus here on a subset of data-trace 

types that emphasizes two crucial elements that are required by practical streaming 

computations: (1) a notion of synchronization markers, and (2) viewing the data items as 

key-value pairs in order to expose opportunities for data parallelization.

The synchronization markers can be thought of as events that are periodically generated by 

the input sources. The period is configurable and can be chosen by the application 

programmer depending on the time-granularity requirements of the computation (e.g. 1 

msec, 1 sec, etc). The purpose of the markers is similar to the punctuations of [40] or the 

heartbeats of [50]. They are used for triggering the output of nonmonotonic operations (e.g., 

the streaming aggregation of Example 3.9) and making overall progress, as well as for 

merging streams in a predictable way by aligning them on corresponding markers. These 

synchronization markers are always assumed to be linearly ordered, and they occur in order 

of increasing timestamp.

We define two kinds of data-trace types for streams of key-value pairs: unordered types of 

the form U(K, V), and ordered types of the form O(K, V). For a set of keys K and a set of 

values V, let U(K, V) denote the type with alphabet K ⋃ {#}, values V for every key, values 

Nat for the # tag (i.e., marker timestamps), and dependence relation {(#, #)} ⋃ {(k, #), (#, k) 

∣ k ∈ K}. In other words, U(K, V) consists of data traces where the marker tags # are linearly 

ordered and the elements between two such tags are of the form (k, v), where k ∈ K and v ∈ 
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V, and are completely unordered. We define O(K, V) similarly, with the difference that the 

dependence relation also contains {(k, k) ∣ k ∈ K}. That is, in a data trace of O(K, V), 

elements with the same key are linearly ordered between # markers, but there is no order 

across elements of different keys.

A transduction DAG is a tuple (S, N, T, E, →, λ) which represents a labelled directed 

acyclic graph, where: S is the set of source vertices, T is the set of sink vertices, N is the set 

of processing vertices, E is the set of edges (i.e., connections/channels), → is the edge 
relation, and λ is a labelling function. The function λ assigns: (1) a data-trace type to each 

edge, (2) a data-trace transduction to each processing vertex that respects the input/output 

types, and (3) names to the source/sink vertices. We require additionally that each source 

vertex has exactly one outgoing edge, and each sink vertex has exactly one incoming edge.

Next we define the denotational semantics of a transduction DAG G with source vertices 

S1,…, Sm and sink vertices T1, …, Tn. Suppose that ei is the unique edge emanating from 

the source vertex Si (for i = 1, …, m), and ēi is the unique edge leading to the sink vertex Ti 

(for i = 1, …, n). The graph G denotes a data-trace transduction, where the set of input traces 

is (up to a bijection) ∏i = 1
m λ(ei) and the set of output traces is (up to a bijection) ∏i = 1

n λ(ēi). 

Given an input trace, we will describe how to obtain the output data trace (representing the 

entire output history of G on this input trace). We will gradually label every edge e of the 

DAG with a data trace u(e). First, label every edge emanating from a source vertex with the 

corresponding input trace. Then, consider in any order the processing vertices whose 

incoming edges have already been labeled. For such a vertex n, apply the data-trace 

transduction λ(n) to the input traces and label the outgoing edges with the corresponding 

output traces. After this process ends, the output is read off from the data traces which label 

the edges that point to sinks.

Example 4.1 (Time-Series Interpolation). Consider a home IoT system where temperature 

sensors are installed at a residence. We wish to analyze the sensor time series to create real-

time notifications for excessive energy loss through the windows. The sensor time series 

sometimes have missing data points, and therefore the application requires a preprocessing 

step to fill in any missing measurements using linear interpolation. We assume that the 

sensors first send their measurements to a hub, and then the hub propagates them to the 

stream processing system. The stream that arrives from the hub does not guarantee that the 

measurements are sent in linear order (e.g., with respect to a timestamp field). Instead, it 

produces synchronization markers every 10 seconds with the guarantee that all elements 

with timestamps < 10·i have been emitted by the time the i-th marker is emitted. That is, the 

i-th marker can be thought of as a watermark with timestamp 10·i. The input stream is a data 

trace of U(Ut, M), where M is the type of measurements (id, value, ts) consisting of a sensor 

identifier id, a scalar value value, and a timestamp ts. This is a transduction DAG that 

describes the pre-processing computation:
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The vertex HUB represents the source of sensor measurements, and the vertex SINK 

represents the destination of the output stream. ID is the type of sensor identifiers, and V is 

the type of timestamped values (value, ts). The processing vertices are described below:

• The stage Join-Filter-Map (JFM) joins the input stream with a table that indicates 

the location of each sensor, filters out all sensors except for those that are close to 

windows, and reorganizes the fields of the input tuple.

• Recall the guarantee for the synchronization markers, and notice that it implies 

the following property for the input traces: for any two input measurements that 

are separated by at least one marker, the one on the left has a strictly smaller 

timestamp than the one on the right. The sorting stage SORT sorts for each 

sensor the measurements that are contained between markers.

• The linear interpolation stage LI considers each sensor independently and fills in 

any missing data points.

We have described informally the data-trace transductions JFM, SORT and LI. The 

transduction DAG shown earlier denotes a data-trace transduction U(Ut, M) → O(ID, V).

The computation performed by a processing node is given in a structured fashion, by 

completing function definitions of a specified operator template. Table 1 shows the three 

templates that are supported, which encompass both ordered and unordered input streams. 

Each operator is defined by a sequential implementation, which we describe informally 

below. This means that each operator can be modeled as a data-string transduction. It can 

then be proved formally that these data-string transductions are consistent w.r.t. their input/

output data-trace types (Definition 3.5). It follows that each operator that is programmed 

according to the template conventions has a denotation (semantics) as a data-trace 

transduction of the appropriate type.

OpStateless:

The simplest template concerns stateless computations, where only the current input event—

not the input history—determines the output. The programmer fills in two function 

definitions: (1) onItem for processing key-value pairs, and (2) onMarker for processing 

synchronization markers. The functions have no output (the output type is Ut, i.e. the unit 

type) and their only side-effect is emitting output key-value pairs to the output channel by 

invoking emit(outputKey, outputValue).

OpKeyedOrdered:

Assuming that the input is ordered per key, this template describes a stateful computation for 

each key independently that is order-dependent. The programmer fills in three function 

definitions: (1) initialState for obtaining the initial state, (2) onItem for processing a key-

value pair and updating the state, and (3) onMarker for processing a synchronization marker 

and updating the state. The functions have output S, which is the type of the data structure 

for representing the state. As for stateless computations, the functions allow the side-effect 

of emitting output key-value pairs to the output channel. This template requires a crucial 

restriction for maintaining the order for the output: every occurrence of emit must preserve 
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the input key. If this restriction is violated, e.g. by projecting out the key, then the output 

cannot be viewed as being ordered.

OpKeyedUnordered:

Assuming that the input is unordered, this template describes a stateful computation for each 

key independently. Recall that the synchronization markers are ordered, but the key-value 

pairs between markers are unordered. To guarantee that the computation does not depend on 

some arbitrary linear ordering of the key-value pairs, their processing does not update the 

state. Instead, the key-value pairs between two consecutive markers are aggregated using the 

operation of a commutative monoid A: the programmer specifies an identity element id(), 

and a binary operation combine() that must be associative and commutative. Whenever the 

next synchronization marker is seen, updateState is used to incorporate the aggregate (of 

type A) into the state (of type S) and then onMarker is invoked to (potentially) emit output. 

The behavior onItem may depend on the last snapshot of the state, i.e. the one that was 

formed at the last marker. The functions onItem and onMarker are allowed to emit output 

data items (but not markers), but the rest of the functions must be pure (i.e., no side-effects).

Table 2 shows how some streaming computations (which are based on the setting of 

Example 4.1) can be programmed using the operator templates of Table 1. The first example 

is the stateless computation joinFilterMap, which retains the measurements of temperature 

sensors that are placed near windows. The second example is the per-sensor ordered stateful 

computation linearInterpolation, which fills in the missing data points of a sensor time series 

by performing linear interpolation. The last example is the persensor unordered (between 

markers) stateful computation that takes the average of the measurements between markers 

and reports the maximum over all the averages so far.

Theorem 4.2. Every streaming computation defined using the operator templates of Table 1 

is consistent w.r.t. its input/output type (see Definition 3.5).

Proof. We will prove the case of the OpKeyedUnordered template, since it is the most 

interesting one, and we will omit the rest. A template OpKeyedUnordered<K, V, L, W, S, 
A> describes a data-string transduction f : A* → B*, where:

A = (K × V) ∪ ({#} × Nat) B = (L × W) ∪ ({#} × Nat)

This data-string transduction was informally described earlier and is defined operationally 

by the pseudocode shown in Table 3. The streaming algorithm of Table 3 maintains a per-

key store and also tracks the state that should be given to keys that have not been 

encountered yet.

We write M for the memory of the streaming algorithm of Table 3. The function next: M × A 
→ M describes how the algorithm updates its memory every time it consumes an element. 

We also write next: M × A* → M to denote the function that describes how the algorithm 

updates the memory after consuming a sequence of elements. If a1, a2 ∈ A are key-value 

pairs, then we have a1a2 ≡ a2a1. It is easy to see that next(m, a1a2) = next(m, a2a1) for every 

m ∈ M. If the items a1 and a2 have the same key, then the property holds because of the 
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associativity and commutativity of combine. If the items a1 and a2 have different keys, then 

the property holds because different keys cause the modification of disjoint parts of the 

memory. It follows by an inductive argument (on the construction of ≡) that next(m, u) = 

next(m, v) for all m ∈ M and u, v ∈ A* with u ≡ v.

Suppose now that out : M × A → B* gives the output generated by the algorithm when it 

consumes a single element. We lift this function to out: M × A* → B* as follows: out(m, ε) 

= ε and out(m, ua) = out(m, u) · out(next(m, u), a) for all m ∈ M, u ∈ A* and a ∈ A. The 

crucial observation is that for every key-value item (k, v) ∈ (K × V), the value out(m, (k, v)) 

depends only on the part of memory that holds the state for k, which we denote by 

m[k].state. Moreover, this part of the memory does not get modified when key-value pairs 

are processed. For memories m1, m1 ∈ M and key k, we write m1 ≡k m2 when m1[k].state = 

m2[k].state. Our previous observations can be written as m1 ≡k m2 ⇒ out(m1, (k, v)) = 

out(m2, (k, v)) and m ≡k′ next(m, (k, v)) for all m, m1, m2 ∈ M, all k, k′ ∈ K, and every v ∈ 
V. For key-value pairs a1, a2 ∈ (K × V) we have that

out(m, a1a2) = out(m, a1) ⋅ out(next(m, a1), a2) ∈ (L × W)∗

out(m, a2a1) = out(m, a2) ⋅ out(next(m, a2), a1) ∈ (L × W)∗

and by virtue of the properties discussed previously we obtain that out(m, a1a2) ≡ out(m, 

a2a1). By an inductive argument on the construction of ≡, we can generalize this property to: 

out(m, u) ≡ out(m, v) for every memory m ∈ M and all sequences u, v ∈ A* with u ∈ v.

In order to establish the consistency property we have to show that: u ≡ v implies f̄ (u) ≡ f̄ (v)
for all u, v ∈ A*. We have that f̄ (u) = out(m0, u), where m0 is the initial memory for the 

algorithm. From u ≡ v and earlier results we conclude that 

f̄ (u) = out(m0, u) ≡ out(m0, v) = f̄ (v). □

The templates of Table 1 define data-trace transductions with only one input channel and 

output channel. The operation merge, which we denote by MRG or M, combines several 

input streams into one by aligning them on synchronization markers and taking the union of 

the key-value pairs that are in corresponding blocks. We consider two variants of merge, 

which we will not distinguish notationally. The first one has unordered input channels with 

the same input keys and values, i.e. MRG : U(K, V)×⋯× U(K, V) → U(K, V). The second 

variant of merge has ordered input channels with pairwise disjoint sets of input keys K1, K2,

…, Kn, so we write MRG : O(K1, V )×⋯× O(Kn, V) → O(K1 ⋃⋯⋃ Kn, V).

To enable parallelization, we also need to consider operations that split one input stream into 

several output streams. The round-robin splitter, denoted RR : U(K, V) → U(K, V)×⋯× 

U(K, V), sends every input key-value pair to one output channel by cycling through them 

and sends a synchronization marker to all output channels. The hash-n splitter, denoted 

HASH or H : U(K, V) → U(K0/n, V)×⋯× U(Kn–1/n, V) sends a key-value pair (k, v) with k 
∈ Ki/n with the i-th output channel where Ki/n = {k ∈ K ∣ hash(k) = i (mod n)}. We write Ki 

instead of Ki/n when no confusion arises. As for the round-robin splitter, H sends a 
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synchronization marker to all output channels. The ordered version H : O(K, V) → O(K0, 

V)× ⋯ × O(Kn–1, V) behaves similarly.

In order to convert an unordered trace of type U(K, V) to an ordered trace of O(K, V), we 

also consider the sorting data-trace transduction SORT< : U(K, V) → O(K, V). The 

transformation SORT< uses the linear order < to impose a total order for every key 

separately on the key-value pairs between synchronization markers. Even when the stream 

source is ordered, the parallelization of intermediate processing stages can reorder the key-

value pairs between markers in an arbitrary way. So, if a later stage of the processing 

requires the original ordered view of the data, SORT< must be applied immediately prior to 

that stage.

The templates of Table 1 not only enforce the data-trace type discipline on the input and 

output channels, but they also expose explicitly opportunities for parallelization and 

distribution. Computations that are described by the templates OpKeyedOrdered and 

OpKeyedUnordered can be parallelized on the basis of keys, and stateless computations can 

be parallelized arbitrarily.

Theorem 4.3 (Semantics-Preserving Parallelization). Let β : U(K, V) → U(L, W), γ : O(K, 

V) → O(K, W), and δ : U(K, V) → U(L, W) be data-trace transductions that are 

implemented using the OpStateless, OpKeyedOrdered, and OpKeyedUnordered templates, 

respectively. Then, we have:

MRG ≫ β = (β‖⋯‖β) ≫ MRG
γ = HASH ≫ (γ‖⋯‖γ) ≫ MRG
δ = HASH ≫ (δ‖⋯‖δ) ≫ MRG

SORT = HASH ≫ (SORT‖⋯‖SORT) ≫ MRG

where ≫ denotes streaming composition and ∥ denotes parallel composition [13]:

f : X Y g:Y Z
f ≫ g: X Z

f : X Y g:Z W
f ‖g: X × Z Y × W

Proof. First, we observe that all the considered data-trace transductions are well-typed by 

Theorem 4.2. We will only give the proof for the equation involving β, since the other cases 

are handled similarly. For simplicity, we ignore the timestamps of the # markers. We can 

view the traces of U(K, V) as nonempty sequences of bags of elements of K × V (recall 

Example 3.2), i.e. U(K, V) = Bag(K×V)+. Since β is implemented by the template 

OpStateless, there is a function out: (K × V) → Bag(L×W) that gives the output of β when 

it processes a single key-value element. Then, we have β(B) = ⋃(k, v) ∈ Bout(k, v) and 

β(B1B2…Bn) = β(B1)β(B2)… β(Bn) for all B, B1,…, Bn ∈ Bag(K × V). Assuming we have 

m input channels, we obtain:
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((β‖⋯‖β) ≫ MRG)(B11…B1n, …, Bm1…Bmn)
= MRG(β(B11…B1n), …, β(Bm1…Bmn))
= MRG(β(B11)…β(B1n), …, β(Bm1)…β(Bmn))
= (β(B11) ∪ … ∪ β(Bm1))…(β(B1n) ∪ … ∪ β(Bmn))
= β(B11 ∪ … ∪ Bm1)…β(B1n ∪ … ∪ Bmn)
= β((B11 ∪ … ∪ Bm1)…(B1n ∪ … ∪ Bmn))
= (MRG ≫ β)(B11…B1n, …, Bm1…Bmn)

using elementary properties of β and of MRG. So, we conclude that MRG ≫ β = (β ∥ ⋯ ∥ β) 

≫ MRG. □

We say that a data-trace transduction f : U(K, V) → U(K, V)×⋯×U(K, V) is a splitter if f ≫ 
MRG : U(K, V) → U(K, V) is the identity function on data traces (identity transduction). 

Informally, a splitter splits (partitions) the input stream into several output streams. The data-

trace transductions RR and H (defined earlier) are splitters. If SPLIT is a splitter, then 

Theorem 4.3 implies that for stateless β, β = SPLIT ≫ (β ∥ ⋯ ∥ β) ≫ MRG.

The processing pipeline for the sensor input stream of Example 4.1 can be parallelized. 

Figure 1 shows two equivalent processing graphs, where every stage of the pipeline is 

instantiated two times. The input for the JFM stage is partitioned in a round-robin fashion, 

and the input for the SORT and LI stages is partitioned based on the key (sensor identifier). 

All the vertices of the graph have a formal denotational semantics as data-trace transductions 

(Theorem 4.2), which enables a rigorous proof of equivalence for the DAGs of Example 4.1 

and Figure 1. The top graph of Figure 1 is obtained from the graph of Example 4.1 by 

applying the parallelizing transformation rules of Theorem 4.3. The bottom graph of Figure 

1 is obtained from the top one using the transformation rules of the following table:

Each box above shows two equivalent transduction DAGs. These rules are specialized to two 

input channels and three output channels for the sake of easy visualization. They extend in 

the obvious way to an arbitrary number of input and output channels. The bottom right graph 

of the table is equivalent to the identity transduction when the number of output channels is 

equal to the number of input channels, because HASHn : O(Ki/n, V) → O(K0/n, V)×⋯× 

O(Kn–1/n, V) sends the entire input stream to the i-th output channel.

Mamouras et al. Page 16

Proc ACM SIGPLAN Conf Program Lang Des Implement. Author manuscript; available in PMC 2019 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Corollary 4.4 (Correctness of Deployment). Let G be a transduction DAG that is built using 

the operator templates of Table 1. Any deployment of G, regardless of the degree of 

parallelization, is equivalent to G.

Proof. The idea of the proof is that every deployment can be obtained from the original 

description G of the computation by applying a sequence of semantics-preserving 

transformation rules on specific subgraphs. This requires examining several cases. We will 

limit this proof to one case that illustrates the proof technique, and we will omit the rest 

since they can be handled with very similar arguments. First of all, we observe that the 

original graph G (and every graph obtained via transformations) has a denotational 

semantics in terms of data-trace transductions (Theorem 4.2). Let us examine the case of a 

subgraph of the form β ≫ γ, where β is programmed using OpStateless and γ is 

programmed using OpKeyedUnordered. Let SPLIT be an arbitrary splitter, which means that 

SPLIT ≫ MRG is the identity transduction. Using the equations of Theorem 4.3 we can 

obtain the equivalent SPLIT ≫ (β ∥ β) ≫ MRG ≫ HASH ≫ (γ ∥ γ ∥ γ) ≫ MRG. Using the 

transformation rules for “reordering MRG and HASH” mentioned earlier, we obtain:

Finally, each subgraph β ≫ HASH is fused into a single node β; HASH, and similarly each 

subgraph MRG ≫ γ is fused into MRG; γ. These fusion transformations can be easily 

checked to be semantics-preserving. □

5 Implementation in Apache Storm

In the previous section we proposed an abstraction for describing a distributed streaming 

computation as a transduction DAG, where each processing element is programmed using 

one of three predefined templates. This principled manner of defining computations enforces 

a data-trace type discipline that disallows operations which depend on a spurious ordering of 

the data items. Additionally, it enables a number of equivalence-preserving parallelization 

transformations.

We have implemented a compilation procedure that converts a transduction DAG into a 

deployment plan for the distributed streaming framework Storm [28, 54]. In Storm, a 

computation is structured as a DAG (called topology) of source vertices called spouts and 

processing/sink vertices called bolts. Each vertex (bolt or spout) may be instantiated 

multiple times, across different physical nodes or CPU threads. In such settings, the 

connections between vertices specify a data partitioning strategy, which is employed when 

the vertices are instantiated multiple times. These connections are called groupings in 

Storm’s terminology, and the most useful ones are: (1) shuffle grouping, which randomly 

partitions the stream in balanced substreams, (2) fields grouping, which partitions the stream 

on the basis of a key, and (3) global grouping, which sends the entire stream to exactly one 

instance of the target bolt. We refer the reader to [29] for more information on the 

programming model of Storm.
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Figure 2 shows a concrete example of programming a transduction DAG (and thus 

obtaining a Storm topology) using our framework. In this example, the user first describes 

the data source using an Iterator object and converts it to a Source vertex. Then, the operator 

vertices are described using the templates OpStateless and OpKeyedUnordered. A 

transduction DAG is represented as a DAG object, which exposes methods for adding new 

vertices and edges. For example, the method call dag.addOp(op, par, v1, v2, …) adds the 

vertex op to dag with the parallelism hint par, and it also adds edges from the vertices v1, v2,

… to op. Finally, dag.getStormTopology() performs all necessary checks for type 

consistency and returns a StormTopology object that can be passed to Storm for deployment 

on the cluster.

Our framework ensures that the data-trace types of input, output and intermediate streams 

are respected. The compilation procedure automatically constructs the glue code for 

propagating synchronization markers throughout the computation, merging input channels, 

partitioning output channels, and sorting input channels to enforce a per-key total order on 

the elements between markers. We use Storm’s built-in facilities for the parallelization of 

individual processing vertices, but we have replaced Storm’s “groupings” because they 

inhibit the propagation of the synchronization markers. For efficiency reasons, we fuse the 

merging operator (MRG) and the sorting operator (SORT) with the operator that follows 

them in order to eliminate unnecessary communication delays.

We chose Storm as the deployment platform because (1) it is a widely adopted “pure 

streaming” system that is used for many industry workloads, (2) it naturally exposes 

parallelism and distribution, and (3) it is extensible. Due to its similarity to alternative 

systems, it would not be difficult to compile transduction DAGs into topologies for these 

other platforms.

6 Experimental Evaluation

In this section we experimentally evaluate our data-trace type-based framework. We address 

two questions:

• Can our system generate code that is as efficient as a handcrafted 

implementation, while automatically adapting to whatever levels of parallelism 

are available?

• Does our framework facilitate the development of complex streaming 

applications?

To answer the first question, we used an extension of the Yahoo Streaming Benchmark [21]. 

We compared an implementation generated using our framework against a hand-tuned one. 

To address the second question, we consider a significant case study: the Smart Homes 

Benchmark [22] used in the Grand Challenge of the DEBS 2014 conference, which we have 

modified to include a more realistic power prediction technique based on a machine learning 

model.

Our focus in the experiments is to determine how well stream applications scale. To do this, 

we used the following experimental setup: We ran our implementation on top of Storm on a 
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cluster of several virtual machines. Each virtual machine has 2 CPUs, 8 GB of memory, and 

8 GB of disk each and runs CentOS 7. Across multiple trials and configurations, we 

measured maximum throughput for each configuration.

Yahoo Streaming Benchmark.

The streaming benchmark of Yahoo [21] defines a stream of events that concern the 

interaction of users with advertisements, and suggests an analytics pipeline to process the 

stream. There is a fixed set of campaigns and a set of advertisements, where each ad belongs 

to exactly one campaign. The map from ads to campaigns is stored in a database. Each 

element of the stream is of the form (userId, pageId, adId, eventType, eventTime), and it 

records the interaction of a user with an advertisement, where eventType is one of {view, 

click, purchase}. The component eventTime is the timestamp of the event.

The basic benchmark query (as described in [21]) computes, at the end of each second, a 

map from each campaign to the number of views associated with that campaign within the 

last 10 seconds. For each event tuple, this involves an expensive database lookup to 

determine the campaign associated with the advertisement viewed. The reference 

implementation published with the Yahoo benchmark involves a multi-stage pipeline: (i) 

stage 1: filter view events, project the ad id from each view tuple, and lookup the campaign 

id of each ad, (ii) stage 2: compute for every window the number of events (views) 

associated with each campaign. The query involes key-based partitioning on only one 

property, namely the derived campaign id of the event.

To compare the effectiveness of our framework, we next re-implemented this analytics 

pipeline as a transduction DAG, where every processing vertex is programmed using a 

template of Table 1. This is shown in the top graph of Figure 3, where YItem is the type of 

input tuples and CID is the type of campaign identifiers. The system is configured so that the 

stream sources emit synchronization markers at 1 second intervals, i.e. exactly when the 

timestamps of the tuples cross 1 second boundaries. To evaluate our framework more 

comprehensively, we have implemented six queries:

• Query I: A single-stage stateless computation that enriches the input data items 

with information from a database (we use Apache Derby [24]).

• Query II: A single-stage per-key aggregation, where the intermediate results are 

persisted in a database.

• Query III: A two-stage pipeline that enriches the input stream with location 

information and then performs a per-location summarization of the entire stream 

history.

• Query IV: A re-implementation of the analytics pipeline of the original Yahoo 

streaming benchmark (see Figure 3).

• Query V: A modification of Query IV, where the percampaign aggregation is 

performed over non-overlapping windows (also called tumbling windows), 

instead of the overlapping (or sliding) windows of Query IV.
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• Query VI: A three-stage pipeline that performs a machine learning task. First, it 

enriches the stream with location information from a database. Then, it performs 

a per-user feature extraction (i.e., per-key aggregation). Finally, for every 

location independently it clusters the users periodically using a k-means 

clustering algorithm.

For every query, we have created a handwritten implementation using the user-level API of 

Apache Storm, as well as an implementation using our framework of data-trace 

transductions. Figure 4 shows the experimental comparison of the handcrafted 

implementations (blue line) and the data-trace-transduction-based implementations (orange 

line). We have varied the degree of parallelization from 1 up to 8 (shown in the horizontal 

axis), which correponds to the number of virtual machines assigned to the computation. The 

vertical axis shows the maximum throughput for each configuration. Observe that the hand-

written implementation and the generated implementation have similar performance.

The experiments reported in Figure 4 involve compute-heavy operators, but our observations 

also apply to computationally cheaper operators: our framework incurs a small performance 

penalty in the range of 0%-20%. In the results for Query I, the generated code is slightly 

more efficient than the handwritten code (by 10%-15%). This is because we use a routing 

mechanism that balances the load in a way that minimizes the communication cost, whereas 

Storm balances the load more evenly across the replicated nodes but incurs a slightly higher 

communication cost. Overall, we conclude that our framework achieves good performance

—despite the higher-level specification and additional typing requirements in the 

transduction-based code.

Case Study: Smart Homes Benchmark.

To examine the suitability of our framework for more expressive stream processing 

applications, we consider a variant of the benchmark used for the “Smart Homes” Internet of 

Things (IoT) competition of the DEBS 2014 conference [22]. In this benchmark, the input 

stream consists of measurements produced by smart power plugs. A smart plug is connected 

to a wall power outlet, and then an electrical device is connected to the plug. This allows the 

plug sensors to measure quantities that are relevant to power consumption. The deployment 

of these smart plugs is done across several buildings, each of which contains several units. A 

smart plug is uniquely identified by three numbers: a building identifier, a unit identifier 

(which specifies a unit within a building), and a plug identifier (which specifies a plug 

within a unit). For simplicity, we assume here that the plugs only generate load 

measurements, i.e. power in Watts. More specifically, every stream event is a tuple with the 

following components: (i) timestamp: timestamp of the measurement, (ii) value: the value 

of the load measurement (in Watts), (iii) plugId: identifier that specifies the plug, (iv) 

unitId: identifier that specifies the unit, (v) buildingId: identifier that specifies the building. 

A plug generates roughly one load measurement for every 2 seconds, but the measurements 

are not uniformly spaced. There can be gaps in the measurements, as well as many 

measurements for the same timestamp.

We implement a load prediction pipeline in the framework of data-trace transductions. The 

load prediction is separate for each device type (A/C unit, lights, etc.). The diagram of 
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Figure 5 is a transduction DAG implementing the computation: (i) JFM (join-filter-map): 

Join the input stream with information regarding the type of electrical device connected to a 

plug and retain only a subset of device types. Reorganize the fields of the tuple, separating 

them into a plug key (plugId) of type Plug and a timestamped value of type VT. (ii) SORT: 

For every plug key, sort the input items (between consecutive markers) by timestamp. (iii) 

LI: For every plug key, fill in missing data points using linear interpolation. (iv) Map: 

Project every input key (a Plug identifier) to the kind of device it is connected to. (v) SORT: 

For every device type, sort the input items (between consecutive markers) according to their 

timestamp. (vi) AVG: Compute the average load for each device type by averaging all data 

items with the same key (device type) and timestamp. (vii) Predict: For every device type 

and every input value (there is exactly one value per second), predict the total power 

consumption over the next 10 minutes using the features: current time, current load, and 

power consumption over the past 1 minute. A decision/regression tree is used for the 

prediction (REPTree of [32]), which has been trained on a subset of the data.

Figure 6 shows that by varying the degree of parallelism (number of virtual machines) the 

computation scales up linearly. As before, we conducted the experiment on a cluster of 

virtual machines (each with 2 CPUs, 8 GB memory, and 8 GB disk). We conclude from 

these results that our framework indeed can scale out to high levels of concurrency, even for 

complex operations such as machine learning inference over streams. Overall, our 

experiments have demonstrated that our framework can express the complex computations 

required in both enterprise and IoT streaming applications, and that it can generate an 

efficient implementation comparable to hand-coded solutions.

7 Related Work

Our programming model is closely related to dataflow computation models. It is a 

generalization of acyclic Kahn process networks (KPNs) [36]. A KPN specifies a finite 

number of independent linearly ordered input and output channels, and consists of a 

collection of processes, where each process is a sequential program that can read from its 

input channels and write to its output channels. Synchronous Dataflow [18, 30, 39, 53] is a 

special case of KPNs, which has been used for specifying and parallelizing streaming 

programs primarily in the embedded software domain. In a synchronous dataflow graph, 

each process reads a fixed finite number of items from the input channels and also emits a 

fixed finite number of items as output. We accommodate a finite number of independent 

input or output streams, but also allow more complicated dependence relations on the input 

and output. In particular, viewing the input or output stream as a bag of events is not possible 

in KPNs or their restrictions.

There is a large body of work on streaming database query languages and systems: Aurora 

[2] and its successor Borealis [1], STREAM [15], CACQ [42], TelegraphCQ [20], CEDR/

StreamInsight [7, 17], and System S [33]. The query language supported by these systems 

(for example, CQL [15]) is typically an extension of SQL with constructs for sliding 

windows over data streams. This allows for rich relational queries, including set-

aggregations (e.g. sum, max, min, average, count) and joins over multiple data streams, but 

requires the programmer to resort to user-defined functions in another language for richer 
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computations such as machine learning classification. A precise semantics for how to deal 

with out-of-order streams has been defined using punctuations (a type of synchronization 

markers) [37, 40, 41, 55]. The partial ordering view supported by data-trace transductions 

gives the ability to view a stream in many different ways: as a linearly ordered sequence, as 

a relation, or even as a sequence of relations. This provides a rich framework for classifying 

disorder, which is useful for describing streaming computations that combine relational with 

sequence-aware operations. Our implementation supports at the moment only a specific kind 

of time-based punctuations (i.e., periodic synchronization markers), but our semantic 

framework can encode more general punctuations. Extending relational query languages to 

partially ordered multisets has been studied in [31], though not in the context of streaming.

A number of distributed stream processing engines, such as Samza [26, 47], Storm [28, 54], 

Heron [38, 56], Mill-Wheel [5], Spark Streaming [27, 58], and Flink [19, 25], have achieved 

widespread use. Spark Streaming and Flink support SQL-style queries or, equivalently, 

lower-level operations roughly corresponding to the relational algebra underlying SQL. 

Apache Beam [6, 23] is a programming model that provides relational and window-based 

abstractions. The other stream engines provide much lower-level abstractions in which the 

programmer writes event handlers that take tuples, combine the data with windows, and emit 

results. As with the manually coded Storm implementation used in our experiments, this 

provides great power but does not aid the programmer in reasoning about correctness. Naiad 

[45] is a general-purpose distributed dataflow system for performing iterative batch and 

stream processing. It supports a scheme of logical timestamps for tracking the progress of 

computations. These timestamps can support the punctuations of [40] and deal with certain 

kinds of disorder, but they cannot encode more general partial orders. Systems such as Flink 

[19, 25] and Naiad [45] support feedback cycles, which we do not consider here due to the 

semantic complexities of cycles: they require a complex denotational model involving 

continuous functions, as in KPNs [36].

Prior work has considered the issue of semantically sound parallelization of streaming 

applications [34, 49]. The authors of [49] observe that Storm [28, 54] and S4 [46] perform 

unsound parallelizing transformations and propose techniques for exploiting data parallelism 

without altering the original semantics of the computation. Our framework addresses similar 

issues, and our markers have a similar role to the “pulses” of [49]. Our approach, however, is 

based on a type-based discipline for classifying streams and a denotational method for 

proving the preservation of semantics.

8 Conclusion

We have proposed a type discipline for classifying streams according to their partial ordering 

characteristics using data-trace types. These types are used to annotate the communication 

links in the dataflow graph that describes a streaming computation. Each vertex of this typed 

dataflow graph is programmed using a pre-defined set of templates, so as to ensure that the 

code respects the types of the input and output channels. We have implemented this 

framework in Java and we have provided an automatic procedure for deployment on Apache 

Storm. We have shown experimentally that our framework can express complex 
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computations required in IoT streaming applications, and that it can produce efficient 

implementations comparable to hand-coded solutions.

A direction for further work is to enrich the set of type-consistent templates with common 

patterns. For example, our templates can already express sliding-window aggregation, but a 

specialized template for that purpose would relieve the programmer from the burden of re-

discovering and re-implementing efficient sliding-window algorithms (e.g., [16, 51, 52, 57]). 

Other avenues for future research are to extend the compilation procedure to target 

streaming frameworks other than Storm, and to automatically perform optimizations that 

exploit the underlying hardware.

The StreamQRE language [43] (see also [10]) consists of a set of programming constructs 

that allow the combination of streaming computations over linearly-ordered data with static 

relational operations (i.e., over unordered data). A promising direction for future work is to 

generalize the language to the setting of partially ordered data streams. StreamQRE is based 

on a notion of regular stream transformations [8, 9] that admit efficient space-bounded 

implementations [11, 12, 14], which is a crucial property for applications in resource-

constrained environments [3, 4]. It would be interesting to investigate whether a similar 

notion of regularity can be formulated for the data-trace transductions that we consider here.
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CCS Concepts • Information systems → Data streams; Stream management; • 
Theory of computation → Streaming models; • Software and its engineering → 
General programming languages.
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Figure 1. 
A transduction DAG that is equivalent to the one of Example 4.1 and allows data 

parallelism.
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Figure 2. 
An extended programming example.
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Figure 3. 
QUERY IV: Transduction DAG for a variant of the Yahoo Streaming Benchmark [21], and its 

deployment on Storm with parallelization 2 and 3 for the processing vertices Filter-Map and 

Count(10 sec) respectively.
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Figure 4. 
Queries inspired by the Yahoo Streaming Benchmark. The orange (resp., blue) line shows 

the throughput of the transduction-based (resp., handcrafted) implementation. The horizontal 

(resp., vertical) axis shows the number of machines (resp., throughput in million tuples/sec).
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Figure 5. 
Transduction DAG for a variant of the Smart Home Benchmark [22] of DEBS 2014, and its 

deployment on Storm.
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Figure 6. 
SMART HOMES - ENERGY PREDICTION: The horizontal (resp., vertical) axis shows the level of 

parallelization (resp., throughput in million tuples/sec).
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Table 1.

Operator templates for data-trace transductions.

U(K, V): unordered key-value pairs between markers
O(K, V): for every key, ordered values between markers

Type parameters: K, V, L, W
OpStateless: transduction U(K, V) → U(L, W)
Ut onItem(K key, V value) { }
Ut onMarker(Marker m) { }

Type parameters: K, V, W, S
OpKeyedOrdered: transduction O(K, V ) → O(K, W)
S initialState() { }
S onItem(S state, K key, V value) { }
S onMarker(S state, K key, Marker m) { }
// Restriction: Output items preserve the input key.

Type parameters: K, V, L, W, S, A
OpKeyedUnordered: transduction U(K, V) → U(L, W)
A in(K key, V value) { }
A id() { } // identity for combine
A combine(A ×, A y) { } // associative, commutative
S initialState() { }
S updateState(S oldState, A agg) { }
Ut onItem(S lastState, K key, V value) { }
Ut onMarker(S newState, K key, Marker m) { }
// Restriction: in, id, combine, initialState, and
// updateState are all pure functions.
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Table 2.

Examples of data-trace transductions.

M = { id: ID, scalar: Float, ts: Int }
V = { scalar: Float, ts: Int }

joinFilterMap: OpStateless U(Ut, M) → U(ID, V)
Ut onItem(Ut key, M value) {
    if (location(value.id) = "window")
        emit(value.id, (value.scalar, value.ts))
}
Ut onMarker(Marker m) { }

linearInterpolation: OpKeyedOrdered O(ID, V) → O(ID, V)
Precondition: items arrive in order of increasing timestamp
V initialState() { return nil }
V onItem(V state, ID key, V value) {
    if (state == nil) then // first element
        emit(key, value)
    else // not the first element
        Float x = state.scalar
        Int dt = value.ts - state.ts
        for i = 1 … dt do
            Float y = x + i * (value.scalar - x) / dt
            emit(key, (y, state.ts + i))
    return value
}
V onMarker(V state, ID key, Marker m) { return state }

maxOfAvgPerID: OpKeyedUnordered U(ID, V) → U(ID, V)
AvgPair = { sum: Float, count: Nat }
AvgPair in(ID key, V value) { return (value.scalar, 1) }
AvgPair id() { return (0.0, 0) }
AvgPair combine(AvgPair x, AvgPair y) {
    return (x.sum + y.sum, x.count + y.count)
}
Float initialState() { return -infinity }
Float updateState(Float oldState, AvgPair agg) {
    return max(oldState, agg.sum / agg.count)
}
Ut onItem(Float lastState, ID key, V value) { }
Ut onMarker(Float newState, ID key, Marker m) {
    emit(key, (newState, m.timestamp - 1))
}
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Table 3.

Implementation of OpKeyedUnordered.

R = { agg: A, state: S } // record type
Map<K, R> stateMap = ∅ // state map
S startS = initialState() // state when key is first seen
next(K key, V value) { // process data item
    R r = stateMap.get(key)
    if (r == nil) then // first time key is seen
        r = { agg = id(), state = startS }
        onItem(r.state, key, value)
    r.agg = combine(r.agg, in(key, value))
    stateMap.update(key, r)
}
next(Marker m) { // process marker
    for each (key, r) in stateMap do:
        r.state = updateState(r.state, r.agg)
        r.agg = id()
        stateMap.update(key, r)
        onMarker(r.state, key, m)
    startS = updateState(startS, id())
    emit(m)
}
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