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Abstract

In a living organism, tens of thousands of genes are expressed and interact with each other to 

achieve necessary cellular functions. Gene regulatory networks contain information on regulatory 

mechanisms and the functions of gene expressions. Thus, incorporating network structures, 

discerned either through biological experiments or statistical estimations, could potentially 

increase the selection and estimation accuracy of genes associated with a phenotype of interest. 

Here, we considered a gene selection problem using gene expression data and the graphical 

structures found in gene networks. Because gene expression measurements are intermediate 

phenotypes between a trait and its associated genes, we adopted an instrumental variable 

regression approach. We treated genetic variants as instrumental variables to address the 

endogeneity issue. We proposed a two-step estimation procedure. In the first step, we applied the 

LASSO algorithm to estimate the effects of genetic variants on gene expression measurements. In 

the second step, the projected expression measurements obtained from the first step were treated as 

input variables. A graph-constrained regularization method was adopted to improve the efficiency 

of gene selection and estimation. We theoretically showed the selection consistency of the 

estimation method and derived the L∞ bound of the estimates. Simulation and real data analyses 

were conducted to demonstrate the effectiveness of our method and to compare it with its 

counterparts.
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1 | INTRODUCTION

The last few decades have witnessed a rapid growth of biotechnology, which generates 

enormous amounts of genetic and genomics data aimed at improving our knowledge of 

complex traits. In quantitative trait loci (QTL) mapping studies, genotypic and phenotypic 

data are combined to infer the genetic architecture of a complex trait (Lander and Botstein, 

1989). In expression QTL (eQTL) mapping studies, gene expression measurements and 

genotypes are combined, with gene expression measurements treated as quantitative traits, to 

understand the genetic basis of gene expression (Jansen and Nap, 2001). By unifying the two 

frameworks, integrative genetical genomics analysis combines phenotype, genotype, and 

gene expression data to obtain novel knowledge regarding the genetic basis of gene 

expression measurements and to provide novel insights into gene functions (Schadt et al., 

2005). In addition, it is a powerful tool to dissect different gene actions such as causal, 

independent, and reactive gene action modes (Schadt et al. 2005). Recent developments in 

Gaussian graphical models (GGM) have further facilitated the discovery of gene regulatory 

networks using gene expression data (Meinsharsen and Bühlmann, 2006; Friedman et al., 

2008). Built upon the GGM framework, covariate-adjusted GGM have been developed to 

combine genotypes and gene expression measurements to improve gene network inferences 

(Yin and Li, 2011; 2013; Cai et al., 2013). Recently, integrative modeling and testing 

methods combining phenotypes, genotypes, and gene expression measurements were 

proposed to improve the power of statistical testing (eg, Huang et al., 2014; Zhao et al., 

2014). As more genomic data become available, integrative analyses of multisource genomic 

data could provide more comprehensive pictures of biological systems, offering 

opportunities for personalized medications and treatments.

Regression models have been the standard means to model the relationships between 

phenotypes and gene expression measurements. Because of the high costs of obtaining 

expression data from large numbers of samples, the sample size is typically smaller than the 

number of gene expression measurements. To address this issue, various regularization 

methods have been developed to achieve variable selection and estimation. From the 

biological perspective, the phenotypic response of interest and gene expression 

measurements are often influenced by common external confounders. These confounders are 

usually unobservable and cannot be explicitly modeled. Hence, their effects on the responses 

are usually placed in the error term. As such, the exogeneity condition in which the 

predictors and the error are uncorrelated, is violated when building a regression model. 

Consequently, the estimators obtained by the ordinary least squares method are not 

consistent. To overcome the endogeneity issue (ie, the predictors and errors are correlated) in 

a high-dimensional regression, Lin et al. (2015) developed a penalized instrumental variable 

(IV) regression model. Genetic variants are used as IVs because they are independent of 

external confounders, and they affect the phenotypic traits through gene expression 

measurements. The difficulties associated with the high dimensionality of genotypes and 

gene expression measurements are handled by regularization methods, such as the LASSO-

type regressions.

Using genetic variants as IVs for causal inference, termed Mendelian randomization, has 

been extensively studied in the literature; see Lawlor et al. (2008) for a review. IV regression 
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has been a popular tool in econometric studies. The classical two-stage least squares 

estimation method works only for low-dimensional instruments, in the sense of consistency 

(Chao and Swanson, 2005). Recent advancements in high-dimensional penalized regression 

open a door for high-dimensional IV regression in which the number of instruments can be 

larger than the sample size while assuming sparsity in the regression coefficients, to name a 

few, such as the penalized generalized method of moments (Caner, 2009; Fan and Liao, 

2014) and the Dantzig selector-type penalized regression (Gautier and Tsybakov, 2011), as 

well as the recent method proposed by Lin et al. (2015) dealing with high dimensionality for 

both covariates and instruments simultaneously.

In fact, the model by Lin et al. (2015) assumes a causal model as proposed by Schadt et al. 

(2005). By projecting gene expression measurements into the genetic space, the projected 

expressions carry the effects of relevant genetic variants. Thus, the selected genes have 

meaningful biological interpretations compared with those selected without the projection. 

However, genes tend to function in complicated networks to accomplish their joint tasks 

(Davidson and Levin, 2005). Thus, gene expression measurements belonging to the same 

network (eg, a pathway) tend to be correlated. When gene expression measurements are 

considered in a regression model, such correlation information should be used when 

selecting important genes. Although the problem of variable selection in a high-dimensional 

regression setup has been intensively studied, many methods fail for correlated variables. 

Several methods have been developed to solve LASSO’s problem of tending to select only 

one variable from a group of highly correlated ones. Zou and Hastie (2005) proposed the 

elastic net method to achieve a grouping effect, which states “the coefficients of a group of 

highly correlated variables tend to be equal (up to a change of sign if negatively correlated).” 

According to Lemma 2 and Theorem 2 in their paper, if a strictly convex penalty is applied, 

then the higher the correlation of two variables, the smaller the upper bound of the distance 

of the estimated coefficients of the two variables. If the correlation is almost zero, then the 

two estimated coefficients are almost the same (except a minus sign if negatively correlated).

Li and Li (2008) later proposed a network-constrained method that takes advantage of the 

correlation information, namely network information, when performing variable selection. 

They introduced a Laplacian matrix and L2 penalty to address issues introduced by 

correlations among variables. They applied L2 norm to the pairwise differences of the 

coefficients of the correlated variables to achieve a grouping effect, and obtained theoretical 

results similar to those of Zou and Hastie (2005). Simulation results showed that their 

method works better than elastic net in cases where prior knowledge on graphical structures 

is available. Li and Li (2010) proposed a modified penalty function that takes into account 

the sign differences to encourage the absolute values of the coefficients of the connected 

variables to shrink toward the same value. Huang et al. (2011) proposed a sparse Laplacian 

shrinkage method and proved its oracle property.

Motivated by Li and Li (2008), in this paper we propose a two-step procedure to achieve 

variable selection and estimation under an IV regression framework by incorporating gene 

regulatory network structures. By adopting graphical structures as prior knowledge, we aim 

to address the problem of high correlations between genes in a pathway to achieve better 

variable selection and estimation results. Our proposed method involves a multivariate 
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multiresponse linear model to project gene expression measurements into the genetic space. 

Under the assumption that each gene is only controlled by a few genetic variants, we apply 

the LASSO algorithm to estimate the coefficient matrix. Since genetic variables are 

independent of the error terms, the projected expression values are not correlated with the 

error terms. The projected values are then used in the second-stage estimation in which gene 

network structures are incorporated. We propose a graph-constrained regularization method 

to achieve variable selection and estimation. Assuming that certain graphical structures on 

gene expression measurements can be obtained either by biological experiments or by 

statistical estimation, two penalties (LASSO and graph-constrained penalties) are applied. 

The graph-constrained penalty is used to encourage the shrinking coefficients of a pair of 

connected variables in a network toward the same value, thus achieving a grouping effect. 

We theoretically evaluate the selection consistency, assuming the “graphical irrepresentable 

condition” and establish the upper bound of the estimates. Extensive simulation studies are 

conducted to evaluate the selection performance under different conditions. The utility of the 

method is further demonstrated by a case study.

This paper is organized as follows. In Section 1, we introduce the IV model and the two-step 

estimation method. Theoretical results are presented in Section 2. Simulations and real data 

analyses are given in Section 3 and 4, respectively, followed by a discussion in Section 5. All 

of the technical proofs, additional simulations and real data analyses are provided in three 

Supporting Information files.

2 | STATISTICAL METHODS AND ESTIMATION

2.1 | Motivation and the model

Let Y= (Y1,…,Yn)T,X = (X1,…,Xn)T, and G=(G1,…,Gn)T denote n independent and 

identically distributed phenotypes, gene expression measurements, and genotypes, 

respectively, where Yi is a scalar, Xi = (Xi1,…, Xip)T is a p-dimensional vector of gene 

expression measurements, and Gi = (Gi1,…,Giq)T is a q-dimensional vector of genetic 

variants. In this work, we assume that both p and q could be large, and we are interested in 

selecting important genes (X) that could explain the variation in Y. Thus, a natural model is 

the following linear model:

Y = Xβ + η, (1)

where β = (β1,…,βp)T is a coefficient vector and η = (η1,…,ηn)T is an error vector with ηi ~ 

N (0, σ22).

Model (1) is a valid model only when X and η are independent, as defined by classical linear 

model theory. In practice, there are often unobservable external confounders that can affect 

both Y and X simultaneously. For example, living conditions or diet can affect both gene 

expression measurements and phenotypic traits, and their effects are typically difficult to 

quantify. Such unobservable factors are termed as latent variables (denoted by E). Because E 
are typically unobservable in practice, their effects are rendered into the error term in model 

(1). As such, the least squares estimates of β will not be consistent. To illustrate the concept, 

let us consider a simple regression model Y = βX + η(X) assuming that E affects both Y and 
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X. Because the error term η depends on X, Dy/dX = β + dη(X)/dX, which indicates that 

using the ordinary least squares regression will not give consistent estimates for β unless d 
η(X)/ dX = 0, that is, η(X) is independent of X.

To obtain consistent estimators for β Wright (1928) introduced the IV model. As argued in 

Lin et al. (2015), the genetic variableG is a natural choice for the IV, because it affects Y 
only through X (by the central dogma) and is independent of E (by the nature of meiosis). To 

address the endogeneity issue and achieve selection consistency for β, Lin et al. (2015) 

introduced a high-dimensional IV regression model. In addition to model (1), the following 

second-stage model is assumed:

X = GΓ + ϵ, (2)

where Γ = (Γ1,…,Γp) is a q × p coefficient matrix, and ϵ = (ϵ1,…,ϵn)T is an error matrix such 

that ∈i
T , ηi

T
 are i.i.d. p +1 dimensional random variables following a multivariate normal 

distribution N(0, Σ). We write Σ =
Σ11 Σ12
Σ21 σ22

, where Σ11 represents the covarince matrix of 

ϵi,and Σ12 = Σ21
T  represents the covariance between ϵi and ηi

Assuming that G affects Y only through X (the causal model defined in Schadt et al., 2005) 

and that E affects both X and Y, the relationship among genotype, gene expression, and 

phenotype, as described in Equations (1) and (2) is presented in Figure 1. Lin et al. (2015) 

proposed a penalized IV regression variable selection framework to achieve selection 

consistency for β.

Because genes function in networks to accomplish joint tasks, thus, ignoring the correlated 

gene network structures could lead to inconsistent selection results and the potential to miss 

important genes. To improve the selection performance and take advantage of the correlation 

among predictors to obtain better estimators, we propose a network-constrained 

regularization method under the high-dimensional IV regression framework.

2.2 | Estimation of genetic effects

Under the assumption that only a few genetic variants influence gene expression 

measurements, the coefficient matrix Γ is assumed to be sparse. Under model (2), we apply 

the LASSO algorithm for each gene expression to estimate the genetic effects. The 

estimation issue can be formulated as the following p optimization problem:

Γ j = arg min
Γ j

1
2n X j − GΓ j

T X j − GΓ j + λ j Γ j 1
, (3)

where λj, j = 1,…,p are tuning parameters,∥·∥1 refers to the L1,…, norm, and Xj = (X1j,…, 

Xnj)T, j =1,…,p. The estimate of Γ is denoted as Γ = Γ1, …, Γp . Similar to Friedman et al. 

(2007) and Friedman et al. (2010), we applied cross-validation to select λj, j = 1,…,p, using 

the default method in the R package glmnet.
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2.3 | Network-constrained regularization

Once we obtain an estimate of the coefficient matrix Γ, we determine the fitted values of X 

using X = GΓ, which can also be viewed as the projected values of X in the Gr space. We 

then substituted in the X second X step to select important X variables that carry the effects 

of G on the response Y.

To adjust for the effects of correlations among gene expression measurements in a network 

on gene selection, we consider the following optimization problem under a network-

constrained penalized regression framework (Li and Li, 2008):

β = arg min
β

1
2n ∑

i = 1

n
Y i − ∑

j = 1

p
Xi jβ j

2
+ pλ, α(β) , (4)

pλ, α(β) = λ α ∑
j = 1

p
β j + 1 − α

2 ∑
k t

rkt βk − sktβt
2 , (5)

where rkt represents the weight of the correlation strength between two variables, skt = 

sign(rkt),λ>0 and α ∈ [0, 1] are tuning parameters, and k~t indicates that the rth and tth 

nodes are correlated, that is, rkt ≠0.function in Equation (5) includes two penalties that are 

used to select variables and to handle the problems of correlations, while encouraging the 

coefficients of two correlated variables to shrink to the same value, achieving grouping 

effect.

We apply the coordinate descent algorithm to solve the optimization problem. We first center 

the response variable Y and standardize X j, j = 1, …, p. Taking the first derivative with 

respect to βh, h ∈ {1,…,p}:

∂
∂βh

1
2n ∑

i = 1

n
Yi − ∑

j = 1

p
Xi jβ j

2
+ pλ, α(β) = − 1

n ∑
i = 1

n
Yi − ∑

j ≠ h
Xi jβ j − λ(1 − α) ∑

h ∼ j
rh jβ j

+ 1 + λ(1 − α) ∑
h ∼ j

rh j βh + λα
βh
βh

.

Setting

∂
∂βh

1
2n ∑

i = 1

n
Yi − ∑

j = 1

p
Xi jβ j

2
+ Pλ, α β = 0,

we obtain the solution as

S (1/n)∑i = 1
n Y i − ∑ j ≠ h Xi jβ j βh =

+λ(1 − α)∑h ∼ j rh jβ j, λα)
1 + λ(1 − α)∑h ∼ j rh j

. (6)
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Similar to Friedman et al. (2007) and Friedman et al. (2010), we set λmax = max j X j, Y /nα

and λmin = θλmax, where θ = 0.001, and construct a sequence of K values of λ, decreasing 

from λmax to λmin on the log scale, to run a grid search to find the optimal λ. We use cross-

validation to choose the tuning parameters λ and α.

Based on the theorem in the next section, we can calculate the maximum λ such that all the 

β coefficients are shrunk to zeros. This provides an upper bound of the search space for the 

tuning parameter and reduces the search space of λ In practice, we choose λ by cross-

validation (CV) or Bayesian information criterion (BIC) method for preset values of λ. 

Since the λ goes to 0, we can set λ denser for smaller values than large ones, for example 

using the log-space function in R. As we adopted the coordinate decent (CD) algorithm, we 

can calculate the solution path from large to small λ’s. The CD algorithm warms up for the 

first several λ’s which can speed up the calculation.

2.4 | Theoretical results

The selection consistency for the on-step network-constrained penalization method has been 

studied (Li and Li, 2008; 2010). However, the consistency property for the proposed two-

stage estimation has not been established. In fact, given the estimation error from the first 

step, the establishment of selection consistency is not trivial. Here, we present the theoretical 

results on the variable selection and estimation for the proposed high-dimensional IV 

regression model. We adopt the notations used in Lin et al. (2015). For a matrix 

A, A 1 = max j∑t ai j  and A ∞ = maxt∑ j ai j  For a vector α, a matrix A, and index sets I 

and J, αI and AIJ denote the subvector and the submatrix. Jc denotes the complement of J 
and |J| denotes the number of elements in J. We define the restricted eigenvalue for the 

matrix An×m and 1≤s≤m by

κ(A, s) = min
J ≤ s

min
δ ≠ 0

δJC 1 ≤ 3 δJ 1

Aδ
2

/ n δJ 2 .

Let r = max1 ≤ j ≤ p  supp  Γ j  ,s=supp(β), s = |S| and σmax = max1 ≤ j ≤ pσ j ,where supp(.) is 

the supportive set. We assume Γ 1 ≤ M1 and β 1 ≤ M2 for some positive constants M1 and 

M2 We write the penalty function in (5) as pλ, α(β) = λ α∑ j = 1
p β j + (1 − α)βTLβ/2 , where

= μ1∑ j = 1
p β j + μ2βTLβ

μ1 = λα and μ2 = λ (1 − α)/2. L represents a nonnegative definite matrix equipped with the 

graphical information. We assume ||Lβ||∞ <CL, for some constant CL and define 

C = (GΓ)TGΓ/n, ϕ = CSS + 2μ2LSS
−1

∞ and b0 = minJ ∈ S β j . To control the estimation 

errors in the first and second steps, the following conditions are imposed:

(C1) κ(G, r) ≥ κ for some κ > 0.

Gao et al. Page 7

Biometrics. Author manuscript; available in PMC 2019 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(C2) C
ScS

+ 2μ2L
ScS

CSS + 2μ2LSS
−1

∞
< 1 − α,  where α is a constant and 0 < α < 1.

Remark 1. We allow p,q,r,s, and κ to depend on the sample size n. Part of our derivation is 

based on the theorem of the estimation and prediction loss of Γ established in Lin et al. 

(2015). To obtain the selection consistency and the L∞ bound, we impose an assumption on 

GΓ which is similar to the irrepresentable condition in Zhao and Yu (2006).

Remark 2. (C1) is used to ensure that we can obtain a good estimate at the first stage. (C2) 

requires that the predictors correlated with the response and those that do not relate to the 

response are not highly correlated. This is the graphical irrepresentable condition for group 

lasso. Like the argument in Zhao and Yu (2006), (C2) requires the “regression coefficients” 

of the irrelevant covariates on the relevant covariates be less than 1. In Lemma 1 of the 

Supporting Information File, we prove that condition (C2) holds for the sample covariance 

matrix of X with a smaller α. Using these, we establish the following theorem on the 

selection consistency of β

Theorem 1. If the regularization parameters in the first step are selected as 

λ j = Cσ j × (log p + log q)/n and satisfy 16ϕrsλmax 2M1 + λmax /κ2 ≤ 0.5α/(4 − α) where 

C > 2 2 and λmax = max1 ≤ j ≤ pλ j the regularization

parameters in the second step are selected as μ1 = C0/κ × r(log p + log q)/n and 

μ2CL ≤ (α(16 − 3α)/4(4 − α)(8 − 3α))μ1,where C0 = c0M1max σp + 1, M2σmax  with c0,> 0,b0 

has a lower bound

b0 > 2(4 − α)
8 − 3α ϕ 8 − α

2(4 − α) μ1 + 2μ2CL ,

and further assume that (C1) and (C2) hold, then with a probability of at least1− c1 (pq)−c2, 

where c1, c2 > 0, β obtained from (6) satisfies

sign (β) =  sign (β), βS − βS ∞ ≤
16(4 − α)ϕC0

(8 − 3α)2κ

r(log p + log q)
n .

The proof of the theorem is given in the Supporting Information Appendices.

3 | SIMULATION

We conducted extensive simulation studies to evaluate the finite sample performance of the 

proposed method. Here, we closely followed the simulation setup proposed in Lin et al. 

(2015), but imposed certain correlation structures on genes to show the impact of network 

structures on variable selection and estimation. We simulated a total of p variables of gene 

expression and considered three group structures on β with five variables in each group. 

Within each group, the variables are correlated. The strength of the correlation was 

controlled by the number of effective SNPs they had in common. Two groups of variables 
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had nonzero coefficients and the third group had zero coefficients. The rest of the p − 15 

variables had zero coefficients and had no graph structure, that is, 

β = β1, …, β55
, β6, …, β105

, 0, …, 05, 0, …, 0p − 15
T

. Simulating a structured group with zero 

coefficients was done for comparison purposes. Two simulation scenarios were considered. 

In scenario 1, we set all of the nonzero coefficients to 0.5 (ie,βk = 0.5 for k = 1,…, 10), 

while in scenario 2,βk ~ U (0.5, 1) for k = 1,…,10. Again, the two scenarios were for the 

purpose to compare the robustness of the method.

For the covariance matrix cov ∈ , η = Σ =
Σ11 Σ12
Σ21 σ22

 the ith row and jth column entry in Σ11 

was set to be (0.2)|i − j| for i,j = 1,…,p, and σ22=1. To correlate η and the 15 X variables with 

a graph structure, we set the 15 entries in the last columns of Σ12 as 0.23 and the rest as 0. 

Then we simulated (ϵ, η) ~ Np+1(0, Σ). For simplicity,G was generated by sampling from a 

Bernoulli distribution with success probability 0.5, even though a multinomial distribution 

with three genotypic categories for an additive genetic model can be assumed.

To simulate X, we generated the coefficient matrix Γ first. As mentioned earlier, the graph 

structure in X was controlled by the number of commonly shared G variables. The more they 

had in common, the stronger the correlation between them. We assumed the number of 

common SNPs to be 3, 4, or 5 to achieve different correlation strengths. The corresponding 

coefficients in Γ were set to be independent realizations from U (0.75, 1). Here each column 

of Γ was a coefficient vector corresponding to an expression variable. For the rest of the 

columns of Γ corresponding to the X variables without a structure, five nonzero entries from 

each column were randomly selected and their values were independently sampled from U 
([−1, −0.75] ∪ [0.75, 1]). Then we generated X and Y using X = ΓG +ϵ and Y= βTX +η.

We considered both low- and high-dimensional situations in our simulation. In the low-

dimensional case, we set p = 100, q = 100 and varied n from 200 to 1400 when both p and q 
were fixed. In the high-dimensional case, we set p = 600, q = 600, and n = 300. We 

compared our method, IV regression with graph-constrained regularization (denoted as 

IVGC), with the method proposed by Lin et al. (2015), which was an IV regression only 

model (denoted as IV). The measurements we used to evaluate and compare different 

methods and setups were the numbers of correctly estimated nonzero coefficients (true 

positive), β − β 2 (estimation loss), n−1/2 X(β − β) 2 (model error), and Matthews 

correlation coefficient 

(MCC = (TP × TN − FP × FN)/ (TP + FP)(TP + FN)(TN + FP)(TN + FN)) where TP = true 

positive, TN = true negative, FP = false positive, and FN = false negative. TN was defined as 

the number of correctly estimated zero coefficients; FP was defined as the number of 

incorrectly estimated nonzero coefficients; and FN was defined as the number of incorrectly 

estimated zero coefficients. The greater the MCC value, the better the variable selection 

performance. The reason that we chose model error instead of prediction error is explained 

in Lin et al. (2015). We used cross-validation to choose the penalty tuning parameters. For 

each case, we ran 200 replications, and reported the sample means and standard errors.
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Table 1 shows the results for the low-dimensional situation with n = 600. As introduced in 

the simulation setup, the greater the number of shared SNPs (numSNP in the table), the 

stronger the correlation between the expression variables. IVGC had smaller estimation and 

model errors in the two scenarios at different β values. For TP, both IVGC and IV performed 

similarly when numSNP was 3 or 4 (weak correlation compared to with numSNP = 5). 

When numSNP increased to 5, IVGC had a higher TP rate than IV. IV implemented a 

LASSO penalty that only randomly picks one among the correlated variables. Introducing a 

graph-constrained penalty achieved the selection consistency when graphical structures are 

present. For MCC, IVGC and IV had quite similar performances, although IVGC had a 

slightly larger MCC. In general, IVGC performed better compared with IV in both variable 

selection and estimation.

We also varied the sample size n but fixed p and q. The results are shown in Figure 2. Both 

methods performed better as the sample size increased. IVGC completely dominated IV in 

terms of estimation loss and model error. In addition, IVGC had a slightly larger MCC value 

compared with that of IV. Both methods performed quite similarly in terms of TP, especially 

when n was large. A detailed comparison can be found in Table 2, along with the standard 

errors given in the parentheses.

Table 3 shows the results in the high-dimensional situations. The observed patterns were 

similar to those found in the low-dimensional cases. In general, IVGC performed as well as, 

or better, than IV.

We also did additional simulations as suggested by the reviewers. Due to space limit, we 

rendered those additional simulations into Supporting Information File 1. Specifically, we 

did additional simulations to check the robustness of the method by reducing the regression 

effect size, compared the performance of IVGC with on-stage LASSO, and with IV by 

mimicking real situations, evaluated the impact of ignoring IVs and the impact on false 

positive control by imposing a network structure on null genes. We also simulated data 

assuming a high correlation (ρ= 0.8) between the X variables and checked the impact of the 

correlation on the second-stage estimation and selection. The results were reported in Table 

S6. Compared to Table 2 results (ρ= 0.2), no large difference was observed, indicating that 

the first-stage LASSO algorithm is generally safe to apply even though there are strong 

correlations among the X variables. After regressing each X variable against the G variables, 

the correlations among the fitted values X are largely determined by the G variables they 

share in common.

4 | REAL DATA APPLICATIONS

We applied our method to a human liver cohort data set to show the utility of the method. 

The data contain genotypes, gene expression measurements, and pheno types of enzyme 

activities and can be downloaded from the Sage Bionetworks’ synapse platform using 

Synapse ID syn4499. For details of the data set, please refer to Schadt et al. (2008) and Yang 

et al. (2010). The phenotypes are enzyme activity measurements of Cytochrome P450.
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There are 170 individuals measured for 18 556 gene transcripts, 449 699 SNPs, and some 

covariates such as gender and age. There are a total nine enzyme activity measures and we 

focused on CYP2E1 in our analysis. It was the only measure to pass the Shapiro-Wilk 

normality test (P > 0.1) after a log-transformation. We regressed the log-transformed 

CYP2E1 over the covariates gender and age, and used the covariate-adjusted responses for 

the following analysis.

SNPs with a genotyping call rate of less than 90% or a minor allele frequency of less than 

5% were removed from the data set, leaving 312 082 SNPs. Here, we focused on the KEGG 

pathway “Metabolism of Xenobiotics by Cytochrome P450” (hsa00980) to select important 

genes associated with CYP2E1 activity. There were 76 genes in this pathway (see the 

Supporting Information File for a full list) and 70 were mapped to our data set. We fit a 

linear regression model for each gene transcript to select the top 1000 SNPs according to 

their marginal P values. Then, we fit a multiple regression model with the 1000 SNPs and 

estimated their coefficients using the LASSO algorithm. The fitted values for the 70 gene 

transcripts were obtained and the IVGC method was applied to select important genes. We 

obtained the graph structure of the 70 genes in this pathway from the KEGG pathway 

database using the R package KEGGgraph. The weight function was set as 1 if the two 

genes were connected in the pathway. Otherwise, it was set as zero. When the true graph 

structure or the network connectivity information can be accurately inferred from the data, 

we can adopt the actual correlation as the weight information. However, estimating the graph 

structure or the network information can be less reliable due to small sample size or gene 

expression measurement errors. Thus, using the edge information as 1 or 0 inferred from 

known biological pathways can be an alternative choice. Chang et al. (2018) suggested to 

use 1 or 0 as the edge weight information due to the uncertainty of estimating the weight. 

Stability selection (Meinsharsen and Bühlmann, 2010; Shah and Samworh, 2013) was 

applied to obtain a stable variable selection result. Each time we randomly selected 80% of 

the data to run our algorithm and the selection was repeated 100 times. Then, the percentage 

of selection for each gene was calculated as the selection rate. The higher the selection rate, 

the more important the gene’s effect on CYP2E1 activity. In addition to report the result by 

the stability selection, we also reported the prediction accuracy of the proposed method 

compared with the IV, the regular one-step LASSO estimation (1LASSO) and a two-stage 

elastic net algorithm without incorporating the graph information (EN). We did a leave-one-

out cross-validation, by using the n −1 data to train the model and then calculating the 

squared prediction error by Y−i − Y−i
2, where Y−i and Y−i are the original and the 

predicted response for the ith testing data, respectively. We repeated for all the n = 170 

observations and calculated the mean-squared prediction error (MSPE) by MSPE =∑n
i=1(Y−i 

−Ŷ−i)2/n. The MSPE for IVGC, IV,EN, and 1LASSO were 0.4909, 0.4974, 0.5212, and 

0.5015, respectively, indicating good prediction accuracy of the method incorporating the 

network information, although the difference is not very large.

Table 4 shows the top three genes selected using the IVGC, IV, and EN methods with a 

selection threshold πthr = 0.6, a suggested lower bound in the stability selection paper by 

Meinsharsen and Bühlmann (2010). The three methods select the three genes with quite 

similar selection rate. Among the listed genes, gene CYP2E1 was selected in 100% of the 
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runs using the IVGC method compared with 99% for the IV and EN method. We expected 

that the gene would be selected every time because the response was a measure of the gene’s 

activity. The high selection rate indicated the robustness of our method when network 

information was incorporated. The three selected genes are functionally related to xenobiotic 

and human liver function. The CYP2E1 gene encodes an enzyme involved in the metabolism 

of drugs, hormones, and xenobiotic toxins (Wang et al., 2009). The EPHX1 (microsomal 

epoxide hydrolase) gene is a bifunctional protein showing in two distinct topologic 

orientations. The type 1 form plays a central role in hepatic metabolism of xenobiotics (Peng 

et al., 2015). The SULT2A1 gene encodes dehydroepiandrosterone sulfotransferase, which 

catalyzes the 3ʹ-phosphoadenosine 5ʹ-phosphosulfate-dependent sulfation of a large variety 

of steroids in human liver and adrenal tissue and is responsible for sulfation of bile acids in 

human liver (Comer et al., 1993). However, further biological validation is needed to discern 

the real relationships of these genes with the enzyme’s activity. A complete list of the genes 

in the pathway is given in Supporting Information 1. Figure 3 shows the full KEGG 

connectivity information of the 70 genes in this pathway and the extracted connectivity 

information for the top three genes shown in Table 4. The selected SNPs (eQTL) associated 

with each one of the three genes can be found in Table S0 in Supporting Information File 1, 

along with their chromosome location, genomic position, dbSNP_rsID, and gene symbol. 

We did not observe strong cis-acting effect.

We also picked another pathway in the KEGG database, the “Drug metabolism-cytochrome 

P450” pathway (hsa00982). This pathway contains a total of 72 genes (see https://

www.genome.jp/dbget-bin/www_bget?hsa00982 for a full list of the genes). Sixty-six genes 

were found in this dataset. We applied the proposed IVGC method and the IV and EN 

methods without network penalty. Table 5 shows the stability selection results. We listed the 

top 12 genes with a selection rate> 0.6 by using any one of the methods. Again, IVGC has 

the highest select rate for gene CYP2E1.

Overall, IVGC has higher selection rate than IV and EN without considering the graph 

information. The network plot of the 66 genes as well as the top 12 genes is shown in Figure 

4 using the R package KEGGgraph. From the right figure in Figure 4, genes CYP2D6 and 

CYP3A4 show relatively more connections than any other genes. By incorporating the graph 

information, the proposed two-stage IVGC method can robustly select these genes with high 

stability selection rates, while IV or EN did not. Similar pattern was observed for gene 

UGT1A5. This again demonstrates the advantage of incorporating the graph information in 

gene selection. Noted that the network structure for this pathway is very different from the 

“Metabolism of Xenobiotics by Cytochrome P450” pathway (hsa00980) analyzed before. 

All the top genes have been shown to have predominant expressions in adult human liver. 

The leave-one-out cross-validation prediction errors are 0.5057, 0.5089, and 0.5110 

corresponding to IVGC, IV, and EN, respectively. IVGC has the smallest prediction error 

among the three. The SNPs (eQTL) of each gene listed in Table 5 were reported in 

Supporting Information File 3. Again, we did not observe strong cis-acting eQTL. It is 

interesting to note that three genes located on chromosome 2, namely, UGT1A1, UGT1A5, 

and UGT1A19, share a large number of eQTL.

Gao et al. Page 12

Biometrics. Author manuscript; available in PMC 2019 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.genome.jp/dbget-bin/www_bget?hsa00982
https://www.genome.jp/dbget-bin/www_bget?hsa00982


We also analyzed additional 65 pathways randomly picked from different categories in the 

KEGG pathway database following the same procedure described in the paper. Due to space 

limit, we rendered the results to Supporting Information File 2. Among the 65 pathways 

analyzed, four pathways have zero genes passed the 0.6 selection rate threshold, implying a 

less important role of these pathways on CYP2E1 activity. Among the rest 61 pathways, 

IVGC has smaller prediction errors than IV and EN in 26 pathways. In many cases, the 

prediction errors of the three methods are quite similar. The results indicate that IVGC may 

not always perform the best in terms of prediction error. It also depends on the underlying 

pathway connectivity structure and the nature of the gene functional mechanism in a 

relationship to the activity of CYP2E1 enzyme. In most cases, when gene connectivity is 

relatively sparse, the gene stability selection rates of IVGC and IV are quite close. When 

gene connectivity is relatively dense, the gene stability selection rates of IVGC and EN are 

quite similar. This demonstrates the relative robustness of the IVGC method.

5 | DISCUSSION

Gene selection using computational tools is a cost and tim-efficient way to identify 

important genes for further biological validation. Thus, developing robust selection methods 

has been a central task to achieve this goal. Lin et al. (2015) proposed an IV regression 

framework to address the endogeneity issue in genetical genomic data analyses. Because 

genes function in networks to achieve their joint tasks, we have proposed a graph-

constrained selection and estimation method under an IV regression framework. Our model 

is an extension of the work by Lin et al. (2015) while incorporating prior knowledge of the 

graph structures of genes that belong to a network (eg, pathway). We established the 

selection consistency under the proposed two-step estimation procedure and showed the L∞ 
bound that provides theoretical insights into the properties of our method.

Intensive simulations were conducted to evaluate the model’s performance while comparing 

it with the IV regression method (Lin et al., 2015). Because the authors have demonstrated 

the advantage of the IV regression over a naive regression without considering IVs (Lin et 

al., 2015), we did not include a comparison of our method with the naive method in this 

work. We applied our method to a human liver cohort data set to demonstrate the 

effectiveness of our method. The stability evaluation results indicated the robustness of our 

method compared with the IV method without considering the real biological regulatory 

relationship.

In our work, the first-stage estimation is done with the LASSO algorithm. At the second 

stage, a graph penalty is applied to encourage genes with edges to be selected together. Our 

first-stage estimation does not consider correlations among the X variables. This strategy, 

however, is safe to apply in general. After regressing each X variable against all G variables, 

the correlation between two fitted values is mainly determined by the number of G variables 

they share in common. That is, after projecting the X variables to the column space spanned 

by G variables, the correlation of the projected values is mainly determined by how many G 
variables they share in common. The original correlation has little impact on the correlations 

among the fitted values, hence on the graph penalty and the selection results. Thus, the 

proposed LASSO estimation at the first stage is safe to apply. As we demonstrated in our 
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simulation studies (see Table 2 and Table S6), the correlation has little impact on the 

selection and estimation performance. The other option is to employ the “MRCE” method 

proposed by Rothman et al. (2010) in which the regression coefficients and covariance 

matrix can be simultaneously estimated in a sparse multivariate multiple regression setup. 

However, this method may have computational issues when the data dimensions (both p and 

q) are high.

In general, LASSO does not have the oracle property. It is possible that the estimation errors 

of the coefficients cannot be reduced to zero even under large samples. SCAD and MCP are 

natural alternatives that enjoy the oracle property (Fan and Li, 2001; Zhang, 2010). Both 

penalties can be applied in our procedure to replace the lasso penalty. We will consider these 

penalties in our future work, although substantial modifications may be needed for the proof 

of the selection consistency.

When applying the graph-constrained penalization method, the graphical structure needs to 

be available before the penalized estimation is applied. The network structure is very 

important to the success of the estimation procedure. One has to be careful in borrowing the 

network information. Chang et al. (2018) has discussed the similar issue via simulation 

studies. Their results show that imposing wrong network structure can increase both false 

positive and false negatives and lower the prediction performance. Statistically speaking, one 

can estimate the network information using methods such as the graphical model estimation 

methods in the literature. However, the accuracy of the estimated network is subject to 

sample size and various other issues. Thus, in practice, one should try to borrow network 

information from reliable resources such as using the KEGG pathway information, unless 

one can get a quite robust estimation in network structures with large sample sizes. The 

consequence of imposing different network structure on selection performance is further 

revealed by the two pathways analyzed in this work. Thus, our practical suggestion is to 

borrow available network information from well-known databases, especially when the 

sample size is small. In our real data analysis, we used the KEGG pathway information as 

prior knowledge to establish the graph structure. However, when such knowledge is not 

available, some statistical methods, such as the thresholding methods of Bickel and Levina 

(2008a; 2008b), Rothman et al. (2009), and Lam and Fan (2009), can be applied to estimate 

the network structure before applying our method. In addition, our current model was 

developed for continuous response. In human genetics, many disease responses are shown as 

binary variables. We plan to adapt our method to a generalized linear model framework in 

the future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Illustration of the instrumental variable regression model in genetical genomics analysis
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FIGURE 2. 
Results for fixed p(=100) and q(=100) but varying n (200~1400). IV, instrumental variable; 

IVGC, IV regression with graph-constrained regularization [Color figure can be viewed at 

wileyonlinelibrary.com]
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FIGURE 3. 
The network structure of the 70 genes (left figure) and the top three selected genes listed in 

Table 4 (right figure) from KEGG “Metabolism of Xenobiotics by Cytochrome P450” 

pathway, extracted using the R package KEGGgraph
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FIGURE 4. 
The network structure of the 66 genes (left figure) and the top 12 selected genes listed in 

Table 5 (right figure) from KEGG “Drug metabolism-cytochrome P450” pathway, extracted 

using the R package KEGGgraph
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TABLE 4

List of the top genes with a stability selection rate >60% by using any one of the three methods (IVGC, IV and 

EN) for pathway hsa00980

Gene symbol IVGC IV EN

CYP2E1 1.00 0.99 0.99

EPHX1 0.99 0.98 0.99

SULT2A1 0.89 0.84 0.92

Abbreviation: IV, instrumental variable; IVGC, IV regression with graph constrained regularization.
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TABLE 5

List of the top genes with a stability selection rate >60% by using any one of the three methods (IVGC, IV and 

EN) for pathway hsa00982

Gene symbol IVGC IV EN

CYP2E1 1 0.98 0.99

AOX1 0.96 0.88 0.94

CYP2D6 0.89 0.48 0.7

UGT1A1 0.89 0.46 0.65

UGT1A9 0.86 0.33 0.48

MAOB 0.83 0.3 0.55

CYP3A4 0.79 0.06 0.14

CYP2C19 0.75 0.16 0.38

GSTO2 0.71 0.28 0.47

GSTM3 0.7 0.22 0.48

UGT1A5 0.67 0.01 0.17

FMO2 0.66 0.17 0.41

Abbreviation: IV, instrumental variable; IVGC, IV regression with graph-constrained regularization.
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