Skip to main content
. Author manuscript; available in PMC: 2019 Dec 6.
Published in final edited form as: Biometrics. 2019 Apr 29;75(4):1063–1075. doi: 10.1111/biom.13072

TABLE 1.

Simulation results for p = 100, q = 100, n = 600

Method numSNP Estimation loss Model error True positive False positive MCC
IVGC βk = 0.5, k = 1,…,10
3 0.65 (0.31) 0.33 (0.12) 10 (0) 4.67 (3.72) 0.82 (0.11)
4 0.65 (0.30) 0.35 (0.12) 9.99 (0.07) 4.05 (3.51) 0.84 (0.11)
5 1.19 (1.22) 0.55 (0.41) 9.72 (0.96) 3.35 (3.22) 0.85 (0.11)
βk ~ U (0.5, 1), k = 1,…,10
3 1.24 (0.35) 0.57 (0.13) 9.99 (0.07) 4.5 (3.49) 0.83 (0.11)
4 1.48 (0.40) 0.69 (0.15) 9.99 (0.07) 4.00 (3.70) 0.84 (0.11)
5 1.98 (1.64) 0.90 (0.53) 9.76 (0.87) 2.96 (3.05) 0.86 (0.12)
IV βk = 0.5, k = 1,…,10
3 1.51 (0.4) 0.64 (0.13) 10 (0) 5.09 (3.75) 0.81 (0.11)
4 1.86 (0.47) 0.77 (0.16) 9.96 (0.18) 4.26 (3.57) 0.83 (0.11)
5 4.36 (0.78) 1.59 (0.29) 7.61 (1.01) 3.68 (3.29) 0.70 (0.13)
βk ~ U (0.5, 1), k = 1,…,10
3 1.99 (0.60) 0.85 (0.19) 9.97 (0.16) 5.30 (3.91) 0.80 (0.11)
4 2.71 (0.71) 1.12 (0.24) 9.95 (0.23) 4.75 (3.73) 0.82 (0.11)
5 5.89 (1.29) 2.22 (0.46) 7.99 (1.01) 2.92 (2.65) 0.75 (0.12)

Abbreviation: IV, instrumental variable; IVGC, IV regression with graph-constrained regularization.

The numbers in the parentheses are the empirical SE.