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Abstract

The human CYPZ2C locus harbors the polymorphic CYP2C18, CYP2C19, CYP2C9and CYP2C8
genes, and of these, CYP2C19and CYP2C9are directly involved in the metabolism of ~15% of
all medications. All variant CYP2C19and CYP2C9star (*) allele haplotypes currently catalogued
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by the Pharmacogene Variation (PharmVar) Consortium are defined by sequence variants. To
determine if structural variation also occurs at the CYP2C locus, the 10923.33 region was
interrogated across deidentified clinical chromosomal microarray (CMA) data from 20,642
patients tested at two academic medical centers. Fourteen copy number variants that affected the
coding region of CYP2C genes were detected in the clinical CMA cohorts, which ranged in size
from 39.2-1,043.3 kb. Selected deletions and duplications were confirmed by MLPA or ddPCR.
Analysis of the clinical CMA and an additional 78,839 cases from the Database of Genomic
Variants (DGV) and ClinGen (total n=99,481) indicated that the carrier frequency of a CYP2C
structural variant is ~1 in 1000, with ~1 in 2,000 being a CYP2C19full-gene or partial-gene
deletion carrier, designated by PharmVar as CYP2C19*36 and *37, respectively. Although these
structural variants are rare in the general population, their detection will likely improve
metabolizer phenotype prediction when interrogated for research and/or clinical testing.

Keywords

CYP2C, CYP2C19, CYP2C9, copy number variation; deletion; duplication; pharmacogenomics;
chromosomal microarray; database

INTRODUCTION

The human cytochrome P450 (CYP) enzyme superfamily is responsible for the oxidative
metabolism of many drugs, xenobiotics, and other endogenous substances. The polymorphic
CYP2C locus at chromosome 10023.33 is comprised of the CYP2C18, CYP2C19, CYP2C9
and CYP2C8 genes, which encode enzymes that together are involved in the hepatic
metabolism of ~25% of commonly prescribed drugs. Moreover, CYP2C19 and CYP2C9
metabolize ~15% of drugs currently listed on the U.S. Food and Drug Administration (FDA)
Pharmacogenomic Biomarkers in Drug Labeling table (www.fda.gov/Drugs/
ScienceResearch/ResearchAreas/Pharmacogenetics/ucm083378.htm, which includes
medications commonly used in neurology, rheumatology, psychiatry, cardiology,
gastroenterology, gynecology, and infectious disease.

Currently 35 CYP2C19and 60 CYPZ2C9variant star (*) allele haplotypes are catalogued in
the Pharmacogene Variation Consortium (PharmVar) database (www.pharmvar.org)
(Gaedigk et al., 2018; Gaedigk et al., 2019). Without exception, all are defined by sequence
variants. As such, no CYP2C19or CYPZC9star (*) alleles currently include structural
variation (e.g., copy number variants (CNV)), which is consistent with our previously
reported pilot study that employed multiplex ligation-dependent probe amplification
(MLPA) screening of this gene region across a multi-ethnic cohort of ~500 individuals
(Martis et al., 2013). However, pharmacogenomic CNV alleles can play important roles in
enzyme activity and drug response variability (He, Hoskins, & McLeod, 2011), which have
been characterized among some cytochrome P450 (CYP2B6, CYPZD6), glutathione S-
transferase (GS7T1, GSTMI), and sulfotransferase (SULT1A1, SULTZAI) genes (Gaedigk,
Gaedigk, & Leeder, 2010; Gaedigk, Twist, & Leeder, 2012; Gjerde et al., 2008; Martis et al.,
2013; Schulze et al., 2013; Vijzelaar et al., 2018). Notably, interrogation of publicly
available sequencing data has recently indicated that some populations harbor CNV alleles
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at the CYP2C gene region (Santos et al., 2018). The potential clinical significance of low
frequency structural variation at the CYP2C gene region in the general population prompted
our interrogation of chromosomal microarray (CMA) data from multiple database sources
for pharmacogenomic CNV discovery.

DATA SPECIFICATIONS

Data type

Tables of copy number variant (CNV) coordinates

Data acquisition
method

Chromosomal microarray (CMA)

Data format

Analyzed

Experimental
factors

Germline DNA tested by CMA for clinical indication or involvement in population genomics
research

Experimental
features

CYP2C gene region [chr10:96100000_97100000 (GRCh37/hg19)] was interrogated across
CMA data from 99,481 individuals

Data source
location

New York, NY, Kansas City, MO, publicly available CNV databases

Data accessibility

Data in this study are available at public repositories:

Leiden Open Variation Database (LOVD) (https://databases.lovd.nl; DOI: 10.1002/humu.21438)
cases:

https://databases.lovd.nl/shared/individuals/00239123
https://databases.lovd.nl/shared/individuals/00239124
https://databases.lovd.nl/shared/individuals/00239125
https://databases.lovd.nl/shared/individuals/00239126
https://databases.lovd.nl/shared/individuals/00239127
https://databases.lovd.nl/shared/individuals/00239128
https://databases.lovd.nl/shared/individuals/00239129
https://databases.lovd.nl/shared/individuals/00239130
https://databases.lovd.nl/shared/individuals/00239131
https://databases.lovd.nl/shared/individuals/00239132
https://databases.lovd.nl/shared/individuals/00239133
https://databases.lovd.nl/shared/individuals/00239134
https://databases.lovd.nl/shared/individuals/00239135
https://databases.lovd.nl/shared/individuals/00239136
https://databases.lovd.nl/shared/individuals/00239137

Clinical Genome Consortium (http://dbsearch.clinicalgenome.org/search/; DOI: 10.1056/
NEJMsr1406261)

Database of Genomic Variants (http://dgv.tcag.ca; DOI: 10.1093/nar/gkt958)
DECIPHER (https://decipher.sanger.ac.uk; DOI: 10.1016/j.ajhg.2009.03.010)
Pharmacogene Variation Consortium (PharmVar) database (www.pharmvar.org; DOI: 10.1002/
cpt.1268)

IMPACT OF DATA

In contrast to the well-described pharmacogenomic alleles that are relatively common in the
general population (e.g., CYP2C9*2, CYP2C19*2), it is increasingly appreciated that the
majority of human genetic variation is actually rare [minor allele frequency (MAF) <1%]
(Genomes Project et al., 2010; Tennessen et al., 2012), making association studies between
these variants and drug response phenotypes challenging (Verma et al., 2018). To facilitate
the discovery of low frequency variants that potentially influence drug response, recent
studies have interrogated high-throughput sequencing data across drug target genes (Nelson
etal., 2012), CYP450genes (Gordon et al., 2014), and selected drug absorption,
distribution, metabolism and excretion (ADME) and other candidate pharmacogenes (Bush
et al., 2016; Li et al., 2014; Santos et al., 2018), all indicating that rare and potentially
functional pharmacogenomic variants are prevalent in diverse populations. These studies
highlight the importance of interrogating large datasets for rare pharmacogenomic variation
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discovery, which prompted our interrogation of deidentified CMA data from large databases
to further study low frequency pharmacogenomic structural variation at the clinically
relevant CYP2C gene cluster region.

MATERIALS AND METHODS

Experimental Design

The design of this study included interrogation of multiple databases of CMA data,
including both clinical cytogenomic laboratory CMA data (discovery and replication
cohorts), as well as publicly available CMA data from the general population (research and
clinical cohorts). Selected CYP2C gene deletion and duplication samples from the discovery
and replication cohorts were analytically confirmed by orthogonal copy number methods.

Clinical Cytogenomic Testing Cohort — Discovery

Individuals in the discovery cohort were referred to the Cytogenetics and Cytogenomics
Laboratory at Mount Sinai Genomics Inc. (DBA Sema4), New York, from 2010 to 2017 for
pre- or postnatal clinical CMA testing. All patients were tested with informed consent and
deidentified CMA data were stored in an internal database that enabled interrogation and
CNV frequency analyses. A total of 11,096 unique samples were analyzed, which included
6,083 prenatal (amniotic fluid, chorionic villus specimens, fetal blood) and 5,013 postnatal
(peripheral blood, products of conception) samples. Although race and ethnicity were not
commonly available, the prenatal cohort self-reported as white (82.5%), Asian (8.0%), black
(4.7%), Hispanic/Latino (4.5%) and American Indian (0.36%), and the postnatal cohort self-
reported as white (59.1%), Hispanic/Latino (19.1%), black (11.8%), Asian (6.3%), and
American Indian (3.8%).

Clinical Cytogenomic Testing Cohort — Replication

Individuals in the replication cohort were referred to the Clinical Genetics and Genomics
Laboratory at Children’s Mercy, Kansas City, from 2009 to 2018 for pre- or postnatal
clinical CMA testing. All patients were tested with informed consent and deidentified CMA
data were stored in an internal database that enabled interrogation and CNV frequency
analyses. A total of 9,760 unique peripheral blood samples were analyzed as a replication
cohort for structural variation at the CYP2C locus. Race and ethnicity demographics of the
patient cohort were not available.

Chromosomal Microarray (CMA) Analysis — Discovery

CMA was performed on the discovery cohort using the Agilent Technologies platform
(Santa Clara, CA, USA) according to the manufacturer’s instructions and as previously
reported (Reiner et al., 2017; Scott et al., 2010). Throughout the period of clinical CMA
testing and data analysis (2010-2017), three commercial microarrays were used that had
increasing probe density and resolution [44K (design 015141), 105K (design 031750), and
180K (design 029830); Agilent Technologies]; however, all three microarray designs had
adequate probe coverage across the CYP2C gene cluster region to detect multi-exon CNVs
within CYP2C18 (NG_008373.1), CYP2C19 (NG_008384.3), CYP2C9 (NG_008385.1),
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and/or CYP2C8(NG_007972.1) (Figure 1). All genomic coordinates are reported using
NCBI human genome reference Build 37 (GRCh37/hg19).

Chromosomal Microarray (CMA) Analysis — Replication

CMA was performed on the replication cohort using the Affymetrix Cytoscan® HD CNV
+SNP array platform (Santa Clara, CA, USA) or the Agilent 244K whole genome
oligonucleotide microarray (design 014693; Santa Clara, CA, USA) according to the
manufacturer’s instructions. The CytoScan® HD microarray contains 1,953,246 non-
polymorphic and 743,304 single nucleotide polymorphism (SNP) markers, which are
enriched in disease gene areas, and the Agilent 244K microarray contains ~244,000
oligonucleotide probes spaced at a median distance of 6.4 kb across the human genome
(Figure 1). Data were analyzed by ChAS 3.2 (Affymetrix) or Genomic Workbench (Agilent
Technologies) software as appropriate. As above, all genomic coordinates are reported using
NCBI human genome reference Build 37 (GRCh37/hg19).

Copy Number Variation (CNV) Confirmation

Multiplex Ligation-dependent Probe Amplification (MLPA)—Copy number results
from CMA testing were validated by multiplex ligation-dependent probe amplification
(MLPA) testing on samples from the discovery cohort with available DNA. MLPA was
performed using the Cytochrome P-450 MLPA kit (P128-B1; MRC-Holland, Amsterdam,
The Netherlands) according to the manufacturer’s instructions and as previously reported
(Martis et al., 2013; Vijzelaar et al., 2018). This commercial MLPA probe mix includes three
CYP2C19probes (exons 2, 6, and 9) and five CYP2C9 probes (exons 2, 7, 8 [2 probes], and
9) (Figure 1), plus an additional 34 probes that interrogate 12 other pharmacogenetic genes
(CYP2D6, CYP1BI1, CYP3A4, CYP3A5, CYPZEL, CYPI1AL CYPIAZ CYPZA6,
CYPZB6, GSTP1, GSTT1and GSTMI) (Martis et al., 2013). Amplified products were
separated by capillary gel electrophoresis and analyzed using GeneMarker v1.90 software
(SoftGenetics, State College, PA). After quality control and data normalization, copy
number was determined according to the following peak ratio ranges: one copy >0.25 and
<0.75; two copies >0.75 and <1.25; three copies >1.25 and <1.7; four copies >1.7 and <2.0.

Droplet Digital PCR (ddPCR)—Copy number results from CMA testing were also
validated by droplet digital PCR (ddPCR) testing on samples from the replication cohort
with available DNA. TagMan™ copy number assays targeting CYP2C19exon 2
(Hs05148033_cn) and intron 6 (Hs02932336_cn) were employed and signals normalized
against the TERT gene (Cat# 4403316; Thermo Fisher, Waltham, MA) (Figure 1), and
analysis was performed using the Bio-Rad QX-200 Droplet Digital PCR System (Bio-Rad,
Hercules, CA). Genomic DNA were digested with EcoRI-HF (New England BioLabs,
Ipswich, MA) and inactivated at 65°C. Digested DNA were subsequently combined with 1X
ddPCR Supermix for Probes (Bio—Rad, Hercules, CA), TagMan™ and TERT reference
assays. Droplets were generated with the Auto Droplet Generator and cycled in a C1000
Touch Thermocycler using recommended parameters. Droplets were analyzed with the
QX200 Droplet Reader instrument and data analysis performed with the Quantasoft™
Software (Bio-Rad, Hercules, CA).
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Cytogenomic Copy Number Variation (CNV) Population Cohorts

DATA:

Structural variation databases were also interrogated to identify CYP2Cregion CNVs in
healthy and clinical cohorts. Three independent sources were utilized: (1) the Database of
Genomic Variants (DGV) (http://dgv.tcag.ca), which catalogues structural variation (>50 bp)
in healthy population samples; (2) Clinical Genome Consortium (ClinGen) (http://
dbsearch.clinicalgenome.org/search/), which catalogues genomic variation in patient
population samples; and (3) DECIPHER (https://decipher.sanger.ac.uk), which also
catalogues genomic variation in patient population samples. A 1 Mb genomic region was
queried across all public databases [chr10:96100000_ 97100000 (GRCh37/hg19)], and only
CNVs that included coding regions of any CYP2C gene were included in the study. Larger
overlapping chromosome 10023.33-g24.1 deletions and duplications (>2 Mb) in the clinical
databases were excluded from the CYP2C CNV allele and carrier frequency analyses, as
these likely pathogenic aberrations would be more consistent with a syndromic Mendelian
phenotype.

Chromosomal Microarray (CMA) Detection of CYP2C Deletions and Duplications

The CMA probe coverage across the CYP2C region for all clinical microarrays used in the
study are illustrated in Figure 1. In the discovery cohort (ISMMS/Sema4; n=11,096),
CYP2ZC gene region CNVs were detected in nine unrelated patients, including seven
deletions and two duplications (Table 1 and Table 2). The identified deletions ranged in size
from 52.0 kb (exons 8 to 9 of CYP2C18and exons 1 to 4 of CYP2C19) to 421.0 kb
(including 7TBC1D12, HELLS, CYP2C18, and CYP2C19) (Table 1 and Figure 1). The
identified duplications were larger, 663.8 kb and 1.0 Mb, and included all CYP2C
(CYP2C18 CYP2C19, CYP2CY, CYP2C8) and the neighboring ACMS6, PDLIM1 and
SORBS1 genes (Table 1 and Figure 1). In the replication cohort (CMH; n=9,760), CYP2C
region CNVs were detected in six unrelated patients, including three CYP2C deletions and
three CYP2C duplications (Table 1 and Table 2). The deletions ranged in size from 39.2 kb
to 61.5 kb (exons 1 to 5 of CYP2C19) (Table 1 and Figure 1), whereas the duplications
(130.8 and 131.9 kb) included the 3’ region of CYP2C19 (exon 9 with or without exon 8)
and exons 1 to 7 of CYP2C9 (Table 1 and Figure 1). All CYP2C CNV alleles identified in
the discovery and replication CMA cohorts were submitted to the Leiden Open Variation
Database (LOVD) (https://databases.lovd.nl) (Fokkema et al., 2011), and their unique variant
IDs are listed in Table 1.

Confirmation of CYP2C Copy Number Variants (CNVs)

Among all subjects with CYP2C CNVs identified by CMA testing, five samples from the
discovery cohort had available DNA for confirmation by MLPA testing. The locations of the
MLPA probes in relation to the CMA probes are illustrated in Figure 1. All MLPA results
were consistent with the CNVs detected by CMA testing (Table 2). Of note, given that the
CMA and MLPA platforms have unique probe locations to interrogate copy number across
the CYP2C region, deletions that affected only CYP2C18and/or only exon 1 of CYP2C19
were not detected by MLPA. As noted in the Materials and Methods, the MLPA probe mix
only interrogates exons 2, 6, and 9 of CYP2C19and exons 2, 7, 8, and 9 of CYP2C9 (Figure
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1). In addition, all subjects with CYP2C19 CNVs identified by CMA testing in the
replication cohort were confirmed by ddPCR. The locations of the ddPCR probes in relation
to the CMA probes are illustrated in Figure 1. All ddPCR results at exon 2 and intron 6 of
CYP2C19were consistent with the partial gene deletions and duplications detected by CMA
testing.

Database Detection of CYP2C Copy Number Variants (CNVs)

Structural variants within a 1 Mb region at the CYP2C locus (chr10:96100000_97100000)
were also identified in the DGV, which is commonly considered to be a CMA database
representative of the general population. These CYP2C CNVs were consistent with those
detected in our clinical cohorts and are illustrated in Figure 1 and detailed in the Appendix.
A total of 36 CNVs (from 9 independent studies) overlapping the CYP2C18, CYP2C19,
CYP2C9, andlor CYP2C8 genes were catalogued in the DGV. The majority (n=27; 75%)
were deletions, including 17 and 4 deletions that overlapped coding regions of CYP2C19
and/or CYP2C9, respectively (Table 3).

Structural variants at the CYP2C gene region were also identified in the ClinGen and
DECIPHER databases. Given that these databases are comprised of CMA data from patient
cohorts with variable phenotypes, larger deletions and duplications of the chromosome
10g23.33-g24.1 region were present; however, aberrations >2 Mb were not included in the
CYP2C CNV analyses as detailed in the Materials and Methods (Appendix). Consistent with
the DGV CYP2C CNVs, 22 CNVs were present in ClinGen and DECIPHER that
overlapped CYP2C18, CYP2C19, CYP2C9and/or CYP2CS8, including 13 deletions (8.6 kb
to 969.7 kb), and eight duplications (8.9 kb to 1.1 Mb) (Figure 1, Table 3 and Appendix).
Notably, the most common CYP2C CNVs in all three population databases were deletions
that overlapped CYP2C19 (n=26; 44.8% of all CYP2C CNVs).

CYP2C Deletion and Duplication Frequencies and Allele Nomenclature

The CYP2C CNV frequency data from our clinical CMA cohorts and the CNV population
databases are summarized in Table 3. The CYP2C CNV data from DECIPHER was not
incorporated into the population frequencies given the difficulty with determining an
accurate size of this dynamic clinical cohort. Taken together, the overall carrier frequency of
a CYP2CCNV is ~1in 1000 [0.085% (95% CI: 0.067-0.104%)] (Table 3). The data for
these CNV alleles were reviewed by the PharmVar Consortium (Gaedigk et al., 2018;
Gaedigk et al., 2019), which subsequently classified a full gene CYP2C19deletion as
CYP2C19%36and a partial gene CYP2C19deletion (that includes at least exon 1) as
CYP2C19*37 [combined carrier frequency of ~1 in 2000; 0.046% (95% CI: 0.033-
0.059%)]. The full gene and partial gene CYP2C9deletion alleles identified in the DGV and
ClinGen had a carrier frequency of ~1 in 20,000; 0.005% (95% CI: 0.001-0.009%)] (Table 3
and Figure 1). The CYP2C19, CYP2C9, and CYP2C8 duplications did not receive
designated star (*) alleles as PharmVar recommends classifying gene duplications based on
their haplotype sequence and total detected copy number (e.g., CYP2C9*1/*1x2), consistent
with established CYP2D6 duplication nomenclature (Gaedigk et al., 2018)
(www.pharmvar.org). Notably, one sample in the clinical CMA cohort with the largest
chromosome 10g23.33 duplication (1043.3 kb) that included multiple CYP2C genes was
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genotyped for a panel of CYP2C star (*) allele variants, which resulted in the following
diplotypes: CYP2C19*17/%17x2, CYP2C9*1/*1x2, and CYP2C8*1/*1x2.

DISCUSSION

Recent studies that utilized large high-throughput sequencing datasets for pharmacogenomic
variant discovery prompted our interrogation of deidentified CMA data from 99,695
individuals for pharmacogenomic CNV discovery at the clinically relevant CYP2C gene
cluster region. Consistent with the sequencing studies that identified novel coding variants in
pharmacogenomic genes (Bush et al., 2016; Gordon et al., 2014; Li et al., 2014; Nelson et
al., 2012), our large CNV study resulted in the discovery of pharmacogenomic deletion and
duplication alleles at the CYP2C region. The full gene and partial gene CYP2C19deletions
have been designated by the PharmVar Consortium as CYP2C19*36and CYP2C19%*37,
respectively (www.pharmvar.org). Of note, the CYP2C19%*37 partial deletion allele is
consistent with the CYP2C19 partial gene deletions recently identified in the Exome
Aggregation Consortium (ExXAC) database (Ruderfer et al., 2016; Santos et al., 2018).
Dissemination of these newly defined CYP2C19alleles through the widely utilized
PharmVar database will likely increase awareness of these low frequency structural variants
across the pharmacogenomics community.

The significance of structural variation in human disease and phenotypic diversity is
increasingly being recognized, and several genomic studies have generated catalogs of
CNVs to facilitate a better understanding of their clinical relevance (Johansson & Feuk,
2011; Sudmant et al., 2015). It is estimated that up to 60% of the human genome may
contain structural variants in the general population, which typically range in size from 100
bp to 50 kb (Escaramis, Docampo, & Rabionet, 2015), and clinical interpretation of these
aberrations when identified by CMA testing is facilitated by professional medical genetics
practice guidelines (South et al., 2013). Larger gene-dense aberrations are more likely to
result in penetrant syndromic phenotypes; however, some smaller CNVs have increasingly
been implicated as susceptibility alleles for several phenotypes, including neurodegenerative
disorders, cancer, autism, and psychiatric diseases (Cook & Scherer, 2008; Gonzalez et al.,
2005; Han et al., 2017; Nishioka et al., 2006; Rovelet-Lecrux et al., 2006; Sebat et al.,
2007). CNVs can influence these human traits by altering the copy number of dosage-
sensitive genes (Douglas et al., 2005; Roa, Garcia, & Lupski, 1991) and/or modulating local
gene expression (Cahan, Li, lzumi, & Graubert, 2009; Henrichsen, Chaignat, & Reymond,
2009).

Pharmacogenomic structural variation has been previously characterized at several clinically
relevant regions (Santos et al., 2018), including CYP450 genes (CYP2A6, CYPZ2B6, CYP2C
cluster, CYP2D6), glutathione S-transferases (GS7T7T1, GSTMI), and sulfotransferases
(SULT1A1, SULT2AI) (Gaedigk et al., 2010; Gjerde et al., 2008; Martis et al., 2013;
Schulze et al., 2013; Vijzelaar et al., 2018). Notably, individuals with greater than two
functional CYPZD6 copies (e.g. *IxN, *2xN, *35xN) have higher enzyme activity, whereas
CYP2D6*5 deletion alleles do not encode a functional CYP2D6 protein. Moreover, common
full gene GSTT71and GSTM!I1 deletions have been associated with increased risk for
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chemotherapy toxicity among lymphoma patients (Cho et al., 2010) and susceptibility to
tacrine hepatotoxicity among Alzheimer’s patients (Simon et al., 2000).

Loss-of-function CYP2C19and CYP2C9alleles have extensive evidence for important roles
in clopidogrel, voriconazole, antidepressant, warfarin and/or phenytoin response, which
prompted recent Clinical Pharmacogenetics Implementation Consortium (CPIC) and Dutch
Pharmacogenetics Working Group (DPWG) practice guidelines for CYP2C19and CYP2C9
pharmacogenetic-guided prescribing (Caudle et al., 2014; Hicks et al., 2015; Hicks et al.,
2017; Johnson et al., 2017; Moriyama et al., 2017; Scott et al., 2013; Swen et al., 2011).
Given that the newly defined CYP2C19%36and *37deletion alleles are presumed to be
nonfunctional, it is expected that they would have the same effects on drug response as the
well-known alleles defined by sequence variants (e.g., CYP2C19%2, *3). Interestingly,
CYP2C19deletions have previously been reported in a Northern Finnish case-control study,
which identified an association between CYP2C19deletion and triple-negative breast cancer
(ER/PR/HER2 negative), implicating CYP2C19 in estrogen catabolism (Tervasmaki,
Wingvist, Jukkola-Vuorinen, & Pylkas, 2014). Our combined analysis of clinical CMA data
from two academic medical centers and publicly available databases indicate that the carrier
frequency of a CYPZ2C structural variant is ~1 in 1000, with ~1 in 2000 being a CYP2C19
deletion carrier; however, these aberrations may have higher allele frequencies in specific
subpopulations (Santos et al., 2018; Tervasmaki et al., 2014).

Recurrent CNVs are often flanked by segmental duplications, which can act as substrates for
non-allelic homologous recombination (NAHR) and the meiotic formation of both deletion
and duplication alleles (Carvalho & Lupski, 2016). Importantly, two pairs of segmental
duplications are nested within the CYP2C gene cluster region, one directly oriented ~10-20
kb element (~92% identical) that flank CYP2C18and CYP2C19, and a smaller element
(~1.6 kb) directly oriented on the negative strand that are located at the 3’ region of CYP2C8
(Figure 1). In addition to these segmental duplications, the CYP2C subfamily genes have a
high degree of sequence homology. This homology and the segmental duplications flanking
CYP2CI18and CYP2C19are likely driving the formation of the more common and recurrent
deletions at this region, which is consistent with the NAHR mechanism generally favoring
deletions over duplications (Liu, Carvalho, Hastings, & Lupski, 2012).

Notably, the resolution of microarrays used for CMA testing was different across platforms
and laboratories. As such, our reported CNV sizes are based on the minimum number of
probes that detected gains or losses by a specific microarray; however, based on both our
data and those from public databases there are recurrent deletions that affect both CYP2C18
and CYP2C19, as well as larger CNVs that can include multiple CYP2C genes.
Unfortunately, precise breakpoints were not feasible to determine given the multiple CMA
platforms used across studies, as well as the paucity of available DNA for follow up
sequencing.

In conclusion, our interrogation of CMA data from almost 100,000 individuals identified
low frequency pharmacogenomic CNVs at the clinically relevant CYP2C region in the
general population. These results are consistent with previously reported pharmacogenomic
sequencing studies, which identified a spectrum of rare pharmacogenomic variants that are
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likely to be functional (Bush et al., 2016; Gordon et al., 2014; Li et al., 2014; Nelson et al.,
2012). Although the identified CYP2C deletion and duplication alleles have low frequencies
in the studied populations, their contribution to an individual’s CYP2C19 and CYP2C9
metabolizer phenotype status is most likely clinically relevant. The nonfunctional deletion
alleles can lead to either intermediate or poor metabolizer phenotypes, and the larger CYP2C
gene region duplications discovered in our study could lead to an ultrarapid metabolizer
phenotype across CYP2C19, CYP2C19, CYPC9 and CYP2C8 if the duplication alleles do
not harbor sequence variants that obliterate function. These rare individuals would likely be
at risk for atypical CYP2C-mediated metabolism across multiple drugs and drug classes
(e.g., voriconazole, clopidogrel, phenytoin, fosphenytoin, phenobarbital, amytriptiline,
torsemide). Although the technical infrastructure and additional cost of interrogating copy
number at the CYP2C gene region may not currently be feasible for clinical laboratories that
offer pharmacogenetic testing, the clinical relevance of these low frequency CNV alleles
indicates that future iterations of clinical pharmacogenomic sequencing assays that
incorporate computational copy number detection pipelines should include this gene family
in addition to the pharmacogenes with more common CNV alleles.
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Figure 1.
Illustration of the chromosome 10g23.33 region with the identified CYP2C copy number

variants (CNVs) noted in relation to the location of known human genes and transcripts from
the UCSC Genes track, segmental duplications, microarray (purple), MLPA (light green),
and ddPCR (dark green) probe locations, structural variants from the Database of Genomic
Variants (DGV), ClinGen, and DECIPHER. Blue bars represent copy number gains
(duplications), red bars represent copy number losses (deletions). The minimum and
maximum CNV sizes in the clinical CMA cohorts are denoted by thick and thin horizontal
bars, respectively.
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Table 2.
CYP2C copy number variant (CNV) confirmation by multiplex ligation-dependent probe amplification
(MLPA).
CYP2C19 CYP2C9
SAMPLE ID
Exon2 Exon6 Exon9 Exonl Exon7 Exon8A Exon8B Exon9
ISMMS/Sema4_4 0499 0458  0.517 0928 0962 0953 0989  0.961
ISMMS/Sema4 5 ¥ 0977 1030  1.004 1016 0995 0982 0949 1075
ISMMS/Sema4_6 0508  0.903  0.968 0953 0959  1.005 1041 1014
ISMMS/Sema4_7 0481  0.854  0.992 1004 1010 1027 1064 0984
ISMMS/Sema4 9 1440 1665  1.297 1209 1561 1368 1487 1577

*
A 113.9 kb deletion was detected by CMA in this sample that included exons 1-8 of CYP2C18and only exon 1 of CYP2C19.

Light gray shaded cells indicate heterozygous deletion or duplication by CMA testing. MLPA ratios: one copy >0.25 and <0.75; two copies: >0.75

and <1.25; three copies >1.25 and <1.7.
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