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Abstract

Purpose: To assess the utility of deep learning in the detection of geographic atrophy (GA) from 

color fundus photographs; secondary aim to explore potential utility in detecting central GA 

(CGA).

Design: A deep learning model was developed to detect the presence of GA in color fundus 

photographs, and two additional models to detect CGA in different scenarios.

Participants: 59,812 color fundus photographs from longitudinal follow up of 4,582 participants 

in the Age-Related Eye Disease Study (AREDS) dataset. Gold standard labels were from human 

expert reading center graders using a standardized protocol.

Methods: A deep learning model was trained to use color fundus photographs to predict GA 

presence from a population of eyes with no AMD to advanced AMD. A second model was trained 

to predict CGA presence from the same population. A third model was trained to predict CGA 

presence from the subset of eyes with GA. For training and testing, 5-fold cross-validation was 

employed. For comparison with human clinician performance, model performance was compared 

with that of 88 retinal specialists.
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Main Outcome Measures: Area under the curve (AUC), accuracy, sensitivity, specificity, 

precision.

Results: The deep learning models (GA detection, CGA detection from all eyes, and centrality 

detection from GA eyes) had AUC of 0.933–0.976, 0.939–0.976, and 0.827–0.888, respectively. 

The GA detection model had accuracy, sensitivity, specificity, and precision of 0.965 (95% CI 

0.959–0.971), 0.692 (0.560–0.825), 0.978 (0.970–0.985), and 0.584 (0.491–0.676), respectively, 

compared to 0.975 (0.971–0.980), 0.588 (0.468–0.707), 0.982 (0.978–0.985), and 0.368 (0.230–

0.505) for the retinal specialists. The CGA detection model had equivalent values of 0.966 (0.957–

0.975), 0.763 (0.641–0.885), 0.971 (0.960–0.982), and 0.394 (0.341–0.448), compared to 0.990 

(0.987–0.993), 0.448 (0.255–0.641), 0.993 (0.989–0.996), and 0.296 (0.115–0.477). The centrality 

detection model had equivalent values of 0.762 (0.725–0.799), 0.782 (0.618–0.945), 0.729 (0.543–

0.916), and 0.799 (0.710–0.888), compared to 0.735 (0.445–1), 0.878 (0.722–1), 0.703 (0.332–1), 

and 0.626 (0.273–0.979).

Conclusions: A deep learning model demonstrated high accuracy for the automated detection of 

GA. The AUC was non-inferior to that of human retinal specialists. Deep learning approaches may 

also be applied to the identification of CGA. The code and pretrained models are publicly 

available at https://github.com/ncbi-nlp/DeepSeeNet.

Précis

A deep learning model developed to automatically to detect geographic atrophy associated with 

age-related macular degeneration from color fundus images achieved high accuracy and was non 

inferior to determination by retinal specialists.

Taxonomy topics

deep learning; geographic atrophy; central geographic atrophy; Age-Related Eye Disease Study 
(AREDS); artificial intelligence (AI)

Introduction

Age-related macular degeneration (AMD) is the leading cause of irreversible vision loss in 

individuals older than 60 years of age in Western countries, and accounts for approximately 

9% of blindness worldwide1–3. Late AMD takes two forms, neovascular and atrophic, 

though these may coexist in the same eye. Geographic atrophy (GA) is the defining lesion of 

the atrophic form of late AMD. GA in AMD has been estimated to affect over 5 million 

people worldwide2,4. Unlike for neovascular AMD, no drug therapies are available to 

prevent GA, slow its enlargement, or restore lost vision; this makes it an important research 

priority5,6. Rapid and accurate identification of eyes with GA could lead to improved 

recruitment of eligible patients for future clinical trials and eventually to early identification 

of appropriate patients for proven treatments.

Since the original description of GA by Gass7, clinical definitions have varied between 

research groups8. In the Age-Related Eye Disease Study (AREDS), it was defined as a 

sharply demarcated, usually circular zone of partial or complete depigmentation of the 

retinal pigment epithelium (RPE), typically with exposure of underlying large choroidal 

Keenan et al. Page 2

Ophthalmology. Author manuscript; available in PMC 2020 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/ncbi-nlp/DeepSeeNet


blood vessels, at least as large as grading circle I-1 (1/8 disc diameter in diameter)9. 

Sensitivity of the retina to light stimuli is markedly decreased (i.e., dense scotomata) in areas 

affected by GA. The natural history of the disease involves progressive enlargement of GA 

lesions over time, with visual acuity decreasing markedly as the central macula becomes 

involved5.

The identification of GA by ophthalmologists conducting dilated fundus examinations is 

sometimes challenging. This may be particularly true for cases with early GA, comprising 

smaller lesions with less extensive RPE atrophy. In addition, the increasing prevalence of 

GA (through aging populations in many countries) will translate to greater demand for 

retinal services. As such, deep learning approaches involving retinal images, obtained 

perhaps using telemedicine-based devices, might support GA detection and diagnosis. 

However, these approaches would require the establishment of evidence-based and 

‘explainable’ systems that have undergone extensive validation and demonstrated 

performance metrics that are at least non-inferior to those of clinical ophthalmologists in 

routine practice.

Recent studies have demonstrated the utility of deep learning in the field of 

ophthalmology10–18. Deep learning is a branch of machine learning that allows computers to 

learn by example. As applied to image analysis, deep learning enables computers to perform 

classification directly (unsupervised) from images, rather than through the recognition of 

features prespecified by human experts. This is achieved by training algorithmic models on 

images with accompanying labels (e.g. color fundus photographs categorized manually for 

the presence or absence of GA), such that these models can then be used to classify new 

images with similar labels. The models are neural networks that are constructed of an input 

layer (which receives, for example, the color fundus photograph), followed by multiple 

layers of nonlinear transformations, to produce an output (e.g. GA present or absent). One 

recent deep learning model, DeepSeeNet17, performed patient-based AMD severity 

classification with a level of accuracy higher than a group of human retinal specialists. 

Indeed, it also did this in an ‘explainable’ way, by simulating the human grading process, 

which may improve levels of acceptability to ophthalmologists and patients. However, to the 

best of our knowledge, few studies have focused specifically on GA19–22, and the majority 

of these have concentrated on image segmentation tasks rather than automated detection of 

GA.

The primary aim of this study was to assess the utility of deep learning for the detection of 

GA from color fundus images. We also conducted experiments to assess the potential utility 

of deep learning for the detection of central GA (CGA) from color fundus images.

Methods

Dataset

The dataset used for this study (training and testing) was from the AREDS. The AREDS was 

a multi-center, prospective cohort study of the clinical course of AMD (and age-related 

cataract), as well as a phase III randomized clinical trial of nutritional supplementation for 

treatment of AMD and cataract23. Its primary outcome was the development of advanced 
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AMD, defined as CGA or neovascular AMD. The study design has been described 

previously23. In short, 4,757 participants aged 55 to 80 years were recruited between 1992 

and 1998 at 11 retinal specialty clinics in the USA. Based on color fundus photographs, 

best-corrected visual acuity, and ophthalmologic evaluations, participants were enrolled into 

one of several AMD categories. Institutional review board approval was obtained at each 

clinical site and written informed consent for the research was obtained from all study 

participants. The research was conducted under the Declaration of Helsinki.

As described previously, at baseline and annual study visits, comprehensive eye 

examinations were performed by certified study personnel using standardized protocols. At 

the baseline, 2-year, and annual study visits thereafter, stereoscopic color fundus 

photographs were taken of both eyes (field 2, i.e., 30° imaging field centered at the fovea). 

Because of the inherent redundancy in a pair of stereoscopic photographs, for each eye, only 

one of the pair of photographs was used in the current study. In general, the left image of the 

pair was used, unless it was missing from the database, in which case the right image was 

used instead (~ 0.5%). As a result, a total of 59,812 color fundus images from 4,582 

participants were extracted from the AREDS dataset (Table 1).

The ground truth labels used for both training and testing were the grades previously 

assigned to each color fundus photograph by expert human graders at the University of 

Wisconsin Fundus Photograph Reading Center. (These grading experts did not overlap at all 

with the 88 retinal specialists described elsewhere). The Reading Center workflow is 

described in detail in AREDS Report number 69. In brief, a senior grader (grader 1) 

performed initial grading of the photograph for AMD severity using a 4-step scale (where 

step 3 includes non-central GA and step 4 includes CGA), and a junior grader (grader 2) 

performed detailed grading for multiple AMD-specific features (including CGA and non-

central GA). In the case of discrepancy between the two graders, a senior investigator at the 

Reading Center would adjudicate the final grade. All photographs were graded 

independently, that is, graders were masked to the photographs and grades from previous 

visits. In addition, a rigorous process of grading quality control was performed at the 

Reading Center, including the assessment for the inter-grader and intra-grader agreement 

overall and according to specific AMD features24. Inter-grader agreement was substantial 

for CGA (kappa 0.73). Analyses for potential “temporal drift” were conducted by having all 

graders re-grade in a masked fashion the same group of images annually for the duration of 

the study. The presence of GA was defined as a sharply demarcated, usually circular, zone of 

partial or complete depigmentation of the RPE, typically with exposure of underlying large 

choroidal blood vessels, at least as large as grading circle I-1 (1/8 disc diameter in 

diameter)9. If present, GA was categorized as central or non-central according to 

involvement of the ‘center point’ (Figure 1). In this study, images where GA was present 

alongside signs of neovascular AMD (i.e., image graded positive for both GA and 

neovascular AMD) were excluded from the dataset.

Models

The deep learning models for predicting GA and CGA were built using the methods 

described in DeepSeeNet17. Specifically, three separate deep learning models were built: (i) 
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one (‘GA model’) for identifying GA from a population of eyes with no AMD to advanced 

AMD, irrespective of central involvement, (ii) one (‘CGA model’) for identifying CGA from 

a population of eyes with no AMD to advanced AMD, and (iii) one (‘centrality detector 

model’) for identifying CGA from a population of eyes with GA (i.e., a model that assesses 

for central involvement, when GA presence is already known). All three models were binary 

classification models. As shown in Table 1, there were 2,585 positive instances for the 

former (GA model) and 1,455 for the latter two (CGA model and centrality detector model). 

The convolutional neural network architecture used for all models was Inception-v325, 

which is a state-of-the-art convolutional neural network for image classification. It contains 

317 layers, comprising a total of over 21 million weights (learnable parameters) that are 

subject to training.

The three models were pre-trained using ImageNet, an image database of over 14 million 

natural images with corresponding labels, using methods described previously17. (This very 

large dataset is often used in deep learning to pre-train models. In a process known as 

transfer learning, pre-training on ImageNet is used to initialize the layers/weights, leading to 

the recognition of primitive features (e.g., edge detection), prior to subsequent training on 

the dataset of interest). During subsequent training, for all three models, the input to the 

model was a color fundus photograph cropped to a square and scaled to 512 pixels. 

Cropping was done by decreasing the longer dimension of the image to match the shorter 

dimension (keeping the center point unchanged). We also applied a Gaussian filter to 

normalize the color balance26,27. We trained the deep learning models using two commonly 

used libraries: Keras28 and TensorFlow29. During the training process, we updated the model 

parameters using the Adam optimizer (learning rate of 0.0001) for every minibatch of 32 

images. Model convergence was measured when the loss on the development set started to 

increase. The training was stopped after 5 epochs (passes of the entire training set) once the 

accuracy values no longer increased or started to decrease. All experiments were conducted 

on a server with 32 Intel Xeon CPUs, using a NVIDIA GeForce GTX 1080 Ti 11Gb GPU 

for training and testing, with 512Gb available in RAM memory.

Evaluation

For training and testing, we used the standard machine learning approach of five-fold cross-

validation. This consists of subdividing the total data into five equally-sized folds. We used 

three folds for training, one fold for development (to optimize the hyperparameters and 

measure the convergence), and the remaining one fold for testing. This process was repeated 

five times, reserving a different fold each time as the testing set. These settings avoid 

overfitting the test set, as well as having the test set large enough to be representative. The 

cross-validation splitting (into the five folds) was performed randomly, at the participant 

level (i.e., without stratification by disease status). All images from a single participant were 

present in only one fold. In addition, image augmentation procedures were used, as follows, 

in order to increase the dataset artificially (i.e., using additional synthetically modified data): 

(i) rotation, (ii) width shift up to 0.1, (iii) height shift up to 0.1, (iv) horizontal flip, and (v) 

vertical flip.
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Each model was evaluated against the gold standard Reading Center grades. We obtained the 

following metrics: overall accuracy, sensitivity, specificity, and precision (with 95% 

confidence intervals). Outcomes were also evaluated using receiver operating characteristic 

(ROC) curves and their corresponding area under the curve (AUC).

The performance of the models was compared with the performance of 88 human retinal 

specialists (in terms of their pooled gradings). The retinal specialists had graded all color 

fundus photographs (as part of a qualification survey used to determine AMD severity) at 

AREDS baseline; the grading was non-overlapping (i.e., each image was graded by one 

retinal specialist only) and was independent of the Reading Center grading, which was used 

as the ground truth.

Results

The ROC curves for the deep learning models are shown in Figure 2. For each model, five 

ROC curves are displayed on the same graph, with each curve representing one of the folds 

tested (in the five-fold cross-validation procedure). For comparison, the performance of the 

human retinal specialists (in terms of their pooled gradings) on the same fold is shown as a 

single point, such that one point accompanies each of the five curves. For the GA model, the 

five AUC values were 0.933, 0.952, 0.962, 0.964, and 0.976. For the CGA model, the five 

AUC values were 0.939, 0.941, 0.955, 0.968, and 0.976. For the centrality detector model, 

the five AUC values were 0.827, 0.833, 0.864, 0.884, and 0.888. Based on the ROC analysis, 

the performance levels of the GA model were slightly superior to those of the retinal 

specialists; those of the CGA model were slightly superior or similar, and those of the 

centrality detector model were generally inferior.

The accuracy, sensitivity, specificity, and precision of the three models are shown in Table 2. 

The GA model demonstrated high accuracy (0.965, 95% CI 0.959–0.971), attaining 

sensitivity of 0.692 (0.560–0.825) and specificity of 0.978 (0.970–0.985). The sensitivity 

was substantially higher and the specificity slightly lower than those of the human retinal 

specialists. The CGA model also demonstrated high accuracy (0.966, 0.957–0.975), with 

sensitivity of 0.763 (0.641–0.885) and specificity of 0.971 (0.960–0.982). Again, the 

sensitivity was substantially higher and the specificity slightly lower than those of the retinal 

specialists. The centrality detector model had accuracy of 0.762 (0.725–0.799), sensitivity of 

0.782 (0.618–0.945), and specificity of 0.729 (0.543–0.916). The accuracy and specificity 

were slightly higher than those of the retinal specialists, while the sensitivity was 

substantially lower. For all three models, the precision was higher than that of the retinal 

specialists.

Discussion

The deep learning model showed relatively robust performance for the detection of GA from 

a population of eyes with a wide spectrum of disease, from no AMD to advanced AMD. The 

ROC analysis demonstrated that its performance was non-inferior to that of human retinal 

specialists. The results of this study highlight the potential utility of deep learning models in 

identifying GA, based on simple color fundus photographs without additional imaging 
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modalities or other information. In addition, potential utility was demonstrated for deep 

learning-based detection of CGA in two different scenarios, i.e., from a population of eyes 

with a wide spectrum of disease and from a population of eyes already known to have GA. 

Each of these scenarios might be relevant in different clinical or research settings.

To probe further the performance of the GA model that identifies GA presence/absence, 

particularly in light of lower sensitivity than specificity, we performed an error analysis of 

false negative cases according to GA area. The hypothesis was that the model performance 

may have been superior for large GA lesions and inferior for small GA lesions, such that 

missed cases with small GA lesions might help explain suboptimal model sensitivity. As part 

of the original Reading Center grading, GA area (within the AREDS grid) was quantified 

into one of seven categories using the AREDS grading circles9. We analyzed the proportions 

of false negatives (GA cases missed by the model) according to the seven area categories. 

Table 3 demonstrates that questionable and small GA lesions had a much higher false 

negative rate (62.9% for questionable and 78.9% for area < circle I-2), whereas large GA 

lesions had a much lower false negative rate (19.8% for area ≥ 2 DA), with evidence of a 

dose-response effect. Hence, the model’s performance had (perhaps understandably) lower 

sensitivity for small and questionable GA lesions. One contributing factor to this is likely to 

be the relatively low number of instances during training, since the smaller GA categories 

accounted for low proportions of the training set.

To probe further the performance of the CGA model that identifies CGA presence/absence, 

again in light of lower sensitivity than specificity, we performed an error analysis of false 

negative cases according to the two categories shown in Figure 1 (i.e., ‘center point with 

definite GA’ versus ‘center point with questionable GA but central subfield with definite 

GA’). As before, we analyzed the proportions of false negatives (CGA cases missed by the 

model) according to the two categories (Table 4). As expected, the latter category had a 

higher false negative rate (31.6%) than the former category (21.5%). Hence, the model’s 

performance had (perhaps understandably) lower sensitivity for cases with questionable 

involvement of the center point.

In future studies, possible approaches to improve the false negative rate in images with small 

GA lesions might include the use of additional datasets, image augmentation, and generation 

of synthetic images. In particular, further training on the AREDS2 dataset is likely to 

improve this aspect of performance, since the dataset includes 1616 eyes with GA (of which 

1118 had GA area <0.75 disc areas at first appearance)5. In the near future, deep learning 

might also be able to generate synthetic retinal images with GA (where small lesions could 

be specified), for improved model training30.

In addition, for the false negative cases, we analyzed the fundus photographs and their 

accompanying saliency maps (explained in the Supplementary information) for a random 

sample of 20 images. We graded the photographs qualitatively using pre-specified criteria: 

(i) image quality, (ii) GA size, (iii) degree of depigmentation in GA lesion(s), and (iv) other 

factors. Image quality was extremely poor in 5/20 and moderately poor in 10/20. GA size 

was very small in 4/20 and extremely large (occupying almost all of the photograph) in 2/20. 

Degree of depigmentation was very mild in 3/20. The most common other factor (in 11/20) 
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was GA lesion features suggestive of prior neovascular AMD (even though the Reading 

Center grading for these images was negative for neovascular AMD); indeed, examination of 

previous Reading Center gradings for the same eyes confirmed that, in 10 of these eyes, 

neovascular AMD had been graded positive at one or more previous study visits. Hence, one 

or more potential reasons for a false negative grading (very poor image quality, very small 

GA size, very mild depigmentation, or features of previous neovascular AMD) was found in 

19/20 cases. The remaining case had a combination of moderately poor image quality and 

moderately small GA lesion size. In addition, in 5/20 cases, the saliency maps demonstrated 

increased signal concentrated in the GA lesion(s), despite the negative prediction.

We consider that these models, and future models arising from them, may be useful in 

several different scenarios, including assistance in (i) clinical care, (ii) recruitment for 

clinical trials, (iii) population-based screening for clinical care, and (iv) population-based 

screening for epidemiological research. Notably, GA has been estimated to affect over 5 

million people worldwide2,4, but it is likely that many of these individuals remain 

undiagnosed, especially in countries with lower levels of access to retinal specialists. As 

regards clinical care, the ongoing incorporation of deep learning into radiology and 

pathology is through augmentation (rather than replacement) of human diagnosis. In 

ophthalmic care, it might be helpful for an optometrist, general ophthalmologist, or even 

retinal specialist to have software like this available alongside traditional clinical tools. The 

software would assist human diagnosis and decision-making, rather than replacing it. For 

example, it could be used (with settings selected for high sensitivity) by an optometrist, 

alongside normal examination procedures. Deep learning-assisted GA detection could lead 

to referral for consultation with a retinal specialist. This approach might also lend itself well 

to telemedicine approaches, particularly in remote areas. Ultimately, an integrated suite of 

tools like this might be helpful for augmented human evaluation of a wide range of 

ophthalmic pathologies, such as AMD, diabetic retinopathy, and glaucoma. However, it 

would be very important to perform prospective studies to compare the performance of 

clinicians with and without assistance from deep learning systems.

As to assistance in recruitment for clinical trials, the number of clinical trials of drugs to 

slow GA enlargement is likely to increase over the next decade. Models like these would 

enable rapid screening of large numbers of individuals, to identify potential qualifying 

participants. If treatments that successfully slow GA enlargement are identified and 

approved, the identification of patients with GA who may stand to benefit from treatment 

may be aided by these models. Finally, as regards assistance in population-based screening 

for epidemiological research, accurate data on GA prevalence and characteristics are 

important for understanding AMD pathophysiology and planning service provision. 

However, few modern population-based studies have these data readily available. If models 

like this were used for rapid population-based screening, large quantities of epidemiological 

data could be produced. For example, the UK Biobank study contains color fundus 

photographs on 68,544 adult participants (with detailed accompanying data on medical 

history, lifestyle, physical measures, and blood samples). Applying this model to the dataset 

would generate a large volume of data on GA prevalence, with powerful links to the medical 

characteristics of the affected participants. Similar approaches might be possible in the 

future, e.g. using the Million Veterans Program and others.
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There are several limitations to this study. First, the proportions of positive test cases (i.e., 

images with GA and CGA) were relatively low. This limitation may be reflected in the 

higher rates of specificity than sensitivity for the first two models. Second, model training 

and testing were carried out (necessarily) in the context of a high prevalence of AMD, which 

is a controlled clinical trial rather than a real-world scenario. The ideal setting for evaluating 

model performance in real-world scenarios (i.e., within a realistic background of retinal 

diseases and findings) would be a population-based dataset, in which the presence of GA 

and of other retinal findings had been rigorously graded by human reading center graders. 

However, the AREDS participants did encounter ocular and systemic disease typical for an 

elderly population and were not excluded from follow-up for these reasons. Therefore, many 

AREDS images contain signs of diabetic retinopathy and other pathology (though this was 

towards the milder end of the disease spectrum, particularly in earlier study years). Hence, 

model training and testing were performed in the presence of co-existing retinal pathology, 

perhaps not unlike that expected in population-based studies. Despite this, the GA detection 

model’s specificity was very high, suggesting that the algorithm did not confuse non-AMD 

lesions with GA. As regards sensitivity, of the sample of 20 false negative cases, we 

observed no cases where coexisting retinal pathology led to GA being missed.

However, we recommend that the present use case for these models (as currently configured) 

be limited to research settings, such as in highlighting cases with the potential for enrollment 

into clinical trials. Before clinical deployment, as with any novel diagnostic aid or test, 

external validation is required, and should be conducted in the intended use setting(s). The 

performance of the models for populations like the AREDS, with a very high prevalence of 

AMD and a lower (but non-zero) prevalence of other retinal diseases and lesions, is expected 

to be similar to that reported here. We anticipate that the performance may be similar in 

adult population-based studies, since these also have a relatively low prevalence of non-

AMD retinal conditions, though performance might depend on the racial characteristics of 

the study population. For these reasons, first, we have made freely available the models and 

code, so that other research groups may perform testing in their own diverse datasets. 

Second, we are planning external validation studies using well-curated population-based 

studies from different continents. Following demonstrations of robust external validity and 

generalizability, these models (or newer models based on them) may be ready for 

deployment to assist healthcare practitioners in specific clinical settings.

Third, this study is based on one imaging modality only. We used color fundus photographs 

for GA detection because this imaging modality is the historical standard; color fundus 

photographs were used in, for example, the AREDS and AREDS2 to define and classify 

AMD, i.e., to derive classification and prognostic systems including the AREDS 9-step and 

simplified severity scales31,32. As such, color fundus photographs are the most highly 

validated tools for AMD classification and the prediction of disease progression33. They 

have the additional advantages of (i) being the closest correlates to biomicroscopy, (ii) 

consisting of simple datasets (unlike complex 3-dimensional datasets from optical coherence 

tomography (OCT)), and (iii) (unlike fundus autofluorescence) being widely available and 

permitting assessment of GA central involvement (without interference from macular 

pigment in the foveal region).
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While OCT may be used increasingly to define GA in the future34, few large standardized 

datasets currently exist that have followed eyes sequentially for long periods using OCT 

with detailed accompanying reading center grades and clinical information. Deep learning 

approaches to OCT datasets hold promise35 but sophisticated software is required to process 

complex 3-dimensional datasets, and automated segmentation of OCT data can be error-

prone in disease. Ultimately, we anticipate that deep learning approaches to AMD may be 

developed using multiple imaging modalities, first using each independently, then combined 

in a multimodal fashion. In the meantime, the development and validation of deep learning 

models applied to individual imaging modalities is an important first step.

In conclusion, deep learning demonstrated relatively robust performance for the automated 

detection of GA. The performance was non-inferior to that of human retinal specialists. In 

addition, potential utility was observed in the automated identification of CGA. The results 

of this study may serve as a benchmark for deep learning-based identification of GA from 

color fundus photographs. We are making the code and pretrained models publicly available 

at https://github.com/ncbi-nlp/DeepSeeNet. In this way, the work may help stimulate the 

future development of automated retinal image analysis tools, not only in the detection of 

GA, but also in the analysis of GA features including central involvement, multifocality, and 

area quantification.
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Figure 1. 
Distribution of color fundus photographs from the Age-Related Eye Disease Study 

categorized according to the presence and absence of geographic atrophy (GA) and central 

geographic atrophy (CGA).
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Figure 2. 
Receiver operating characteristic curves for (a) the geographic atrophy model, (b) the central 

geographic atrophy model, and (c) the centrality detector model.
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Table 3.

False negatives of geographic atrophy detection categorized by the geographic atrophy area within grid.

Area category Whole test set False negatives

Questionable 275 173 62.9%

Definite, area < circle I-2 38 30 78.9%

Area ≥ I-2 but < O-2 125 76 60.8%

Area ≥ O-2 but < ½ DA 192 90 46.9%

Area ≥ ½ DA but <1 DA 297 79 26.6%

Area ≥ 1 DA but < 2 DA 403 95 23.6%

Area ≥ 2 DA 1,255 248 19.8%
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Table 4.

False negatives of central geographic atrophy detection categorized by involvement of the center point and 

center subfield.

Area category Whole test set False negatives

Definite, center point < I-2 1,297 279 21.5%

Questionable center point, but center subfield area < ½ disc area 158 50 31.6%
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