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ABSTRACT We evaluated the activity of minocycline and comparator agents against a
large number of Stenotrophomonas maltophilia (n � 1,289), Acinetobacter baumannii-
Acinetobacter calcoaceticus species complex (n � 1,081), and Burkholderia cepacia
complex (n � 101) isolates collected from 2014 to 2018 from 87 U.S. medical centers
spanning all 9 census divisions. The isolates were collected primarily from hospital-
ized patients with pneumonia (1,632 isolates; 66.0% overall), skin and skin structure
infections (354 isolates; 14.3% overall), bloodstream infections (266 isolates; 10.8%
overall), urinary tract infections (126 isolates; 5.1% overall), intra-abdominal infec-
tions (61 isolates; 2.5% overall), and other infections (32 isolates; 1.3% overall).
Against the A. baumannii-A. calcoaceticus species complex, colistin was the most ac-
tive agent, exhibiting MIC50/90 values at �0.5/2 �g/ml and 92.4% susceptibility. Mi-
nocycline ranked second in activity, with MIC50/90 values at 0.25/8 �g/ml and sus-
ceptibility at 85.7%. Activity for these two agents was reduced against extensively
drug-resistant and multidrug-resistant isolates of the Acinetobacter baumannii-
Acinetobacter calcoaceticus species complex. Only two agents showed high levels
of activity (susceptibility, �90%) against S. maltophilia, minocycline (MIC50/90, 0.5/
2 �g/ml; 99.5% susceptible) and trimethoprim-sulfamethoxazole (MIC50/90, �0.5/
1 �g/ml; 94.6% susceptible). Minocycline was active against 92.8% (MIC90, 4 �g/ml)
of trimethoprim-sulfamethoxazole-resistant S. maltophilia isolates. Various agents ex-
hibited susceptibility rates of nearly 90% against the B. cepacia complex isolates;
these were trimethoprim-sulfamethoxazole (MIC50/90, �0.5/2 �g/ml; 93.1% suscepti-
ble), ceftazidime (MIC50/90, 2/8 �g/ml; 91.0% susceptible), meropenem (MIC50/90, 2/8 �g/
ml; 89.1% susceptible), and minocycline (MIC50/90, 2/8 �g/ml; 88.1% susceptible). These
results indicate that minocycline is among the most active agents for these three prob-
lematic potential pathogen groups when tested against U.S. isolates.
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Stenotrophomonas maltophilia, the Acinetobacter baumannii-Acinetobacter calcoace-
ticus species complex, and the Burkholderia cepacia complex are nonfermentative

Gram-negative bacteria that are typically resistant to many antimicrobials (1–8). Infec-
tions from S. maltophilia and the A. baumannii-A. calcoaceticus species complex often
occur in intensive care units and in immunocompromised patients. These organisms
are associated with a variety of infections, but most commonly, bloodstream infections
and pneumonia in hospitalized patients (7, 9–11). The multidrug-resistant (MDR; resis-
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tant to three or more classes of agents) nature of these organisms makes them serious
treatment challenges (3, 9–12).

MDR Acinetobacter pathogens are included in the 2013 CDC list of pathogens posing
a serious health risk and the 2017 WHO list of bacteria for which new antibiotics are a
critical priority (13, 14). S. maltophilia has occurred in numerous hospital outbreaks,
increasingly causing ventilator-associated pneumonia (7, 9, 12). S. maltophilia was
among the 10 most common bacterial pathogens causing pneumonia in hospitalized
patients from Europe, China, and the United States (15). The B. cepacia complex is a
serious problem for cystic fibrosis patients and is increasingly occurring in hospital
outbreaks in intensive care settings (5, 16–18).

Tetracycline agents have historically exhibited broad-spectrum antibacterial activity
(19, 20). These agents were expanded from the original class representative, tetracy-
cline, to later-generation agents with expanded activity, either oral or intravenous, and
with improved safety (19–22). Doxycycline, minocycline, omadacycline, eravacycline,
and tigecycline are examples of later-generation tetracyclines (23–27). Of these agents,
minocycline has been shown to have the best activity against S. maltophilia, the A.
baumannii-A. calcoaceticus species complex, and the B. cepacia complex (28).

The aim of this study was to evaluate the in vitro activity of minocycline and
comparator agents against a large collection of contemporary U.S. isolates consisting of
S. maltophilia, the A. baumannii-A. calcoaceticus species complex, and the Burkholderia
cepacia complex. These isolates were collected from 2014 to 2018 from 87 U.S. medical
centers spanning all nine census divisions.

RESULTS

A total of 1,081 isolates of the Acinetobacter baumannii-A. calcoaceticus species
complex, 1,289 isolates of Stenotrophomonas maltophilia, and 101 isolates of the
Burkholderia cepacia complex from the SENTRY Antimicrobial Surveillance Program
collection were evaluated, representing 87 medical centers in the 9 U.S. census divi-
sions from 2014 to 2018 (Table 1). The isolates were collected primarily from specimens
from pneumonia in hospitalized patients (1,632 isolates; 66.0% overall), skin and skin
structure infections (354 isolates; 14.3% overall), bloodstream infections (266 isolates;
10.8% overall), urinary tract infections (126 isolates; 5.1% overall), intra-abdominal
infections (61 isolates; 2.5% overall), and other infections (32 isolates; 1.3% overall).

Table 1 shows the MIC distributions for these organisms, including a breakdown of
the distributions for MDR and extensively drug resistant (XDR) A. baumannii-A. cal-

TABLE 1 Antimicrobial activity of minocycline tested against the main organisms and organism groups

Organism/organism group (no. of isolates)

No. and cumulative % of isolates inhibited at MIC (�g/ml) of:

MIC50 MIC90<0.06 0.12 0.25 0.5 1 2 4a 8 >b

A. baumannii-A. calcoaceticus complex (1,081) 136 250 170 82 105 119 64 66 89 0.25 8
12.6 35.7 51.4 59.0 68.7 79.7 85.7 91.8 100.0

MDR A. baumannii-A. calcoaceticus complex (539) 4 21 35 53 98 112 61 66 89 2 �8
0.7 4.6 11.1 21.0 39.1 59.9 71.2 83.5 100.0

XDR A. baumannii-A. calcoaceticus complex (401) 1 5 12 35 77 89 51 55 76 2 �8
0.2 1.5 4.5 13.2 32.4 54.6 67.3 81.0 100.0

S. maltophilia (1,289) 3 72 296 480 265 126 41 3 3 0.5 2
0.2 5.8 28.8 66.0 86.6 96.4 99.5 99.8 100.0

S. maltophilia (trimethoprim-sulfamethoxazole
resistant, 69)

0 1 7 15 20 15 6 3 2 1 4
0.0 1.4 11.6 33.3 62.3 84.1 92.8 97.1 100.0

B. cepacia complex (101) 1 0 1 4 30 43 10 7 5 2 8
1.0 1.0 2.0 5.9 35.6 78.2 88.1 95.0 100.0

aCLSI M100 (29) susceptible breakpoint indicated by shaded column.
bGreater than the highest concentration tested.
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coaceticus species complex isolates. Susceptibility profiles for minocycline and compar-
ator agents are presented in Table 2.

Activity against the Acinetobacter baumannii-A. calcoaceticus species complex.
Colistin was the most active agent against the A. baumannii-A. calcoaceticus species
complex, exhibiting MIC50/90 values at �0.5/2 �g/ml (Table 2) with 92.4% of isolates
susceptible (Table 2). Colistin activity was slightly decreased for MDR and XDR isolates
with an MIC90 value of 4 �g/ml for each resistance phenotype (Table 2). Minocycline
ranked second in activity against all A. baumannii-A. calcoaceticus species complex
isolates with MIC50/90 results at 0.25/8 �g/ml and susceptibility at 85.7% (Table 2).
Against MDR and XDR isolates, susceptibility was reduced to 71.2% and 67.3%, respec-
tively, for minocycline (Table 2). Activity for the carbapenems, third- and fourth-
generation cephalosporins, and the �-lactam/�-lactamase inhibitor combinations
piperacillin-tazobactam and ampicillin-sulbactam ranged from 50.2% to 62.4% for all A.
baumannii-A. calcoaceticus species complex isolates and was much lower for MDR (7.1%
to 25.8% susceptible) and XDR (0.2% to 11.2% susceptible) isolates. Susceptibility for
amikacin was at 79.2% for all isolates and at 58.7% and 48.9% for MDR and XDR isolates,
respectively (Table 2).

Activity against Stenotrophomonas maltophilia. Only seven agents (ticarcillin-
clavulanate, ceftazidime, cefidericol, minocycline, levofloxacin, trimethoprim-sulfa-
methoxazole, and chloramphenicol) have susceptibility interpretive criteria for
Stenotrophomonas maltophilia in CLSI M100 (2019), four of which (ceftazidime, mino-
cycline, levofloxacin, and trimethoprim-sulfamethoxazole) are included in this study
(29). Among the agents not tested, cefiderocol is still in clinical development and has
not yet been approved for marketing in the United States, ticarcillin-clavulanate was
discontinued by the manufacturer in the United States in 2015, and chloramphenicol
has markedly poor activity against this organism. Two of the tested agents showed high
levels of activity (susceptibility, �90%). The highest susceptibility rate was minocycline
(99.5%) with MIC50/90 values at 0.5/2 �g/ml (Table 2). Trimethoprim-sulfamethoxazole
activity was 94.6% susceptible with MIC50/90 values at �0.5/1 �g/ml (Table 2). Levo-
floxacin (75.8% susceptible) showed moderate activity, and ceftazidime exhibited poor
activity (26.8% susceptible; Table 2). Minocycline was active against 92.8% (MIC90,
4 �g/ml) of trimethoprim-sulfamethoxazole-resistant isolates (Tables 1 and 2). The
three other agents with published interpretive criteria against this species, ticarcillin-
clavulanate, cefiderocol, and chloramphenicol, were not tested.

Activity against Burkholderia cepacia. As with S. maltophilia, only seven agents
(ticarcillin-clavulanate, ceftazidime, meropenem, minocycline, levofloxacin, trimetho-
prim-sulfamethoxazole, and chloramphenicol) have interpretive criteria for Burkholderia
cepacia in CLSI M100 (2019), five of which (ceftazidime, levofloxacin, meropenem,
minocycline, and trimethoprim-sulfamethoxazole) were tested in the present study
(29). A total of 88.1% of isolate MIC values for minocycline were �4 �g/ml (MIC50/90 at
2/8 �g/ml; 88.1% susceptible; Tables 1 and 2). Other active agents included trimethoprim-
sulfamethoxazole (93.1% susceptible), ceftazidime (91.0%), and meropenem (89.1%)
(Table 2). Susceptibility to levofloxacin was 71.3% (Table 2). Ticarcillin-clavulanate and
chloramphenicol were not tested.

DISCUSSION

The only agent that demonstrated a high level of susceptibility against all three
organism groups of S. maltophilia, the A. baumannii-A. calcoaceticus species complex,
and the B. cepacia complex was minocycline. Colistin was the most active agent against
the A. baumannii-A. calcoaceticus species complex (92.4% susceptible, MIC90, 2 �g/ml),
and minocycline was the next most active agent (85.7% susceptible, MIC90, 8 �g/ml).

Although we have identified 22 different species of Acinetobacter in the course of
the SENTRY Program (7), we do not routinely go beyond complex for the Acinetobacter
baumannii-A. calcoaceticus species complex. In general, A. baumannii sensu stricto was
less susceptible to the agents tested than the other members of the Acinetobacter
baumannii-A. calcoaceticus species complex (data not shown).

Minocycline Activity against Acinetobacter Antimicrobial Agents and Chemotherapy

November 2019 Volume 63 Issue 11 e01154-19 aac.asm.org 3

https://aac.asm.org


TABLE 2 Activity of minocycline and comparators when tested against Acinetobacter baumannii-Acinetobacter calcoaceticus species
complex, Stenotrophomonas maltophilia, and Burkholderia cepacia complex isolates from the United States (2014 to 2018)

Organism/organism group (no. of isolates)
and antimicrobial agent MIC50 (�g/ml) MIC90 (�g/ml) Range (�g/ml)

CLSIa

%S %I %R

A. baumannii-A. calcoaceticus complex (1,081)
Amikacin 4 �32 �0.25–�32 79.2 2.6 18.2
Ampicillin-sulbactam 4 �32 0.5–32 62.4 12.9 24.7
Cefepime 8 �16 �0.5–�16 50.8 11.5 37.7
Ceftazidime 8 �32 0.5–�32 56.0 6.2 37.8
Colistin �0.5 2 �0.5–�8 92.4 7.6
Gentamicin �1 �8 �1–�8 64.0 5.1 30.9
Imipenem 0.25 �8 �0.12–�8 61.5 3.2 35.2
Levofloxacin 0.5 �4 �0.12–�4 55.2 1.9 42.9
Meropenem 1 �32 0.06–�32 58.8 1.9 39.4
Minocycline 0.25 8 �0.06–�8 85.7 6.1 8.2
Piperacillin-tazobactam 16 �64 �0.5–�64 50.2 7.6 42.1
Tetracyclineb 4 �8 �0.5–�8 51.8 6.1 42.1
Trimethoprim-sulfamethoxazole �0.5 �4 �0.5–�4 59.6 40.4

MDR A. baumannii-A. calcoaceticus complex (539)c

Amikacin 8 �32 0.5–�32 58.7 5.0 36.3
Ampicillin-sulbactam 16 �32 1–�32 25.8 24.9 49.4
Cefepime �16 �16 2–�16 7.8 18.4 73.8
Ceftazidime �32 �32 2–�32 16.5 9.8 73.7
Colistin �0.5 4 �0.5–�8 87.9 12.1
Gentamicin �8 �8 �1–�8 30.1 9.3 60.7
Imipenem �8 �8 �0.12–�8 22.8 6.5 70.7
Levofloxacin �4 �4 �0.12–�4 11.3 3.3 85.3
Meropenem 32 �32 0.12–�32 18.0 3.2 78.8
Minocycline 2 �8 �0.06–�8 71.2 12.2 16.5
Piperacillin-tazobactam �64 �64 �0.5–�64 7.1 12.8 80.1
Tetracyclineb �8 �8 �0.25–�8 10.2 8.2 81.6
Trimethoprim-sulfamethoxazole �4 �4 �0.5–�4 25.0 75.0

XDR A. baumannii-A. calcoaceticus (401)c

Amikacin 32 �32 0.5–�32 48.9 6.0 45.1
Ampicillin-sulbactam 32 �32 2–�32 11.2 28.7 60.1
Cefepime �16 �16 4–�16 2.5 15.2 82.3
Ceftazidime �32 �32 2–�32 11.0 8.0 81.0
Colistin �0.5 4 �0.5–�8 86.5 13.5
Gentamicin �8 �8 �1–�8 18.0 9.5 72.6
Imipenem �8 �8 0.25– �8 6.7 5.2 88.0
Levofloxacin �4 �4 0.5–�4 1.2 3.0 95.8
Meropenem �32 �32 1–�32 2.5 3.5 94.0
Minocycline 2 �8 0.06–�8 67.3 13.7 19.0
Piperacillin-tazobactam �64 �64 8–�64 0.2 6.2 93.5
Tetracyclineb �8 �8 1–�8 3.4 6.2 90.5
Trimethoprim-sulfamethoxazole �4 �4 �0.5–�4 14.2 85.8

S. maltophilia (1,289)
Amikacin �32 �32 1–�32
Ampicillin-sulbactam �32 �32 2�32
Cefepime �16 �16 �0.5–�16
Ceftazidime 32 �32 0.5–�32 26.8 9.9 63.3
Colistin 4 �8 �0.5–�8
Gentamicin �8 �8 �1–�8
Imipenem �8 �8 0.5–�8
Levofloxacin 1 �4 �0.12–�4 75.8 9.7 14.5
Meropenem �32 �32 0.03–�32
Minocycline 0.5 2 �0.06–�8 99.5 0.2 0.2
Piperacillin-tazobactam �64 �64 2–�64
Tetracyclineb �8 �8 0.5–�8
Trimethoprim-sulfamethoxazole �0.5 1 �0.5–�4 94.6 5.4

Trimethoprim-sulfamethoxazole-resistant S. maltophilia (69)
Ceftazidime �32 �32 1–�32 20.3 4.3 75.4
Levofloxacin �4 �4 0.5–�4 21.7 15.9 62.3
Minocycline 1 4 0.12–�8 92.8 4.3 2.9

(Continued on following page)

Flamm et al. Antimicrobial Agents and Chemotherapy

November 2019 Volume 63 Issue 11 e01154-19 aac.asm.org 4

https://aac.asm.org


Colistin showed significant in vitro activity; however, concerns exist about its safety
and efficacy due to its narrow therapeutic window and the suboptimal and uncertain
pharmacokinetics (11, 30). In addition, there are concerns about the development of
resistance (11, 30). Colistin has been used in combination treatment; however, optimi-
zation of dosing regimens and whether those will prevent the emergence of resistance
is still a question (31, 32). In contrast, minocycline has been shown to have few adverse
events (AE; primarily central nervous system [dizziness, lightheadedness, and vertigo]
and gastrointestinal [nausea and diarrhea]), favorable pharmacokinetic (PK)/pharmaco-
dynamic (PD) profiles (oral and parenteral formulations, dosing flexibility, low protein
binding, good tissue distribution, and long half-life), and stability to many tetracycline
resistance mechanisms (18–22). Although the combinations of minocycline and several
other agents have been studied, there is no consensus as to the optimal combination
and its clinical utility (7, 31).

Typically, trimethoprim-sulfamethoxazole is very active against S. maltophilia (3, 7,
28). Minocycline has also been shown to be one of the more active agents (3, 7, 28). In
our study, minocycline was the most active agent in terms of susceptibility (99.5%
susceptible), followed closely by trimethoprim-sulfamethoxazole (94.6%). Due to prob-
lems in maintaining a supply of intravenous trimethoprim-sulfamethoxazole, Hand et
al. conducted a retrospective chart review and concluded that treatment failure did not
differ among patients taking monotherapy with trimethoprim-sulfamethoxazole or
minocycline for S. maltophilia infections (4).

Agents that might be considered for use in treatment of B. cepacia complex
infections in the lung include trimethoprim-sulfamethoxazole, meropenem, ciprofloxa-
cin or levofloxacin, minocycline, or chloramphenicol (33). In this study, high levels of
susceptibility occurred with trimethoprim-sulfamethoxazole (93.1% susceptible), cefta-
zidime (91.0% susceptible), meropenem (89.1% susceptible), and minocycline (88.1%
susceptible).

More than 20 testable agents have CLSI susceptibility interpretive criteria for the A.
baumannii-A. calcoaceticus species complex (29). Unfortunately, due to the large num-
ber of resistance mechanisms that include efflux pumps, which may provide resistance
across multiple classes of antibiotics, the actual number of antimicrobials that might
test as susceptible may be very limited. For example, in this study, 37.1% of A.
baumannii-A. calcoaceticus species complex isolates were an XDR phenotype and 49.9%
were an MDR phenotype.

The number of antimicrobial agents that laboratories can test and provide antimi-
crobial susceptibility category results for S. maltophilia or the B. cepacia complex is
quite limited (29). Notably, two of the testable agents for these organism groups are

TABLE 2 (Continued)

Organism/organism group (no. of isolates)
and antimicrobial agent MIC50 (�g/ml) MIC90 (�g/ml) Range (�g/ml)

CLSIa

%S %I %R

B. cepacia complex (101)
Amikacin �32 �32 �0.25–�32
Ampicillin-sulbactam �32 �32 1–�32
Cefepime 16 �16 �0.5–�16
Ceftazidime 2 8 0.5–�32 91.0 4.0 5.0
Colistin �8 �8 �0.5–8
Gentamicin �8 �8 �0.5–�8
Imipenem 4 �8 �0.12–�8
Levofloxacin 2 �4 �0.12–�4 71.3 9.9 18.8
Meropenem 2 8 0.06–�32 89.1 5.0 5.9
Minocycline 2 8 �0.06–�8 88.1 6.9 5.0
Piperacillin-tazobactam 4 64 �0.5–�64
Tetracyclineb �8 �8 2–�8
Trimethoprim-sulfamethoxazole �0.5 2 �0.5–�4 93.1 6.9

aClinical and Laboratory Standards Institute (2019). S, susceptible; I, intermediate; R, resistant.
bNot tested in 2015.
cMultidrug-resistant and extensively drug-resistant as described in references 7 and 28.
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chloramphenicol and ticarcillin-clavulanate (discontinued by the manufacturer in the
United States in 2015), neither of which represent an optimal choice.

Given the limited number of agents available with robust activity against S. malto-
philia, the A. baumannii-A. calcoaceticus species complex, and the Burkholderia cepacia
complex, developing new antimicrobials with activity against these organisms, as well
as gaining a better understanding of the role and optimization of combinations of
agents, is needed. In this study, four agents tested (ceftazidime, levofloxacin, minocy-
cline, and trimethoprim-sulfamethoxazole) have established CLSI interpretive criteria
against all S. maltophilia, A. baumannii-A. calcoaceticus species complex, and Burkhold-
eria cepacia species complex isolates. Of the four agents, minocycline exhibited the best
overall susceptibility at 99.5%, 85.7%, and 88.1%, respectively.

MATERIALS AND METHODS
Isolate collection. A total of 2,471 isolates were selected from a collection of isolates recovered from

documented infections from the nine U.S. census divisions from 2014 to 2018. The isolates chosen
consisted of the A. baumannii-A. calcoaceticus species complex (for the purpose of this study, isolates
identified as A. baumannii, A. calcoaceticus, A. nosocomialis, A. pittii, and the A. baumannii-A. calcoaceticus
complex were collectively designated A. baumannii-A. calcoaceticus complex isolates), S. maltophilia, and
the B. cepacia complex. Isolates were from a variety of infection types that included bloodstream, skin
and skin structure, pneumonia in hospitalized patients, urinary tract, intra-abdominal, and others.
Bacterial species were identified by the submitting laboratories and confirmed by JMI Laboratories using
standard microbiology methods and matrix-assisted laser desorption ionization–time of flight mass
spectrometry (Bruker Daltonics, Bremen, Germany).

Susceptibility testing. Broth microdilution methods for antimicrobial susceptibility were performed
and interpreted following CLSI guidelines (29). CLSI interpretive criteria for minocycline are as follows:
susceptible, �4 �g/ml; intermediate, 8 �g/ml; resistant, �16 �g/ml (29). JMI Laboratories produced the
frozen-form 96-well panels used to test minocycline and the comparator agents. The testing medium was
cation-adjusted Mueller-Hinton broth. Amikacin, ampicillin, cefepime, ceftazidime, gentamicin, imi-
penem, levofloxacin, meropenem, minocycline, sulbactam, tazobactam, tetracycline, and trimethoprim
were obtained from United States Pharmacopeia (North Bethesda, MD, USA). Colistin, piperacillin, and
sulfamethoxazole were obtained from Sigma-Aldrich (St. Louis, MO, USA).

Resistance phenotype definitions. The A. baumannii-A. calcoaceticus species complex isolates were
defined as MDR if organisms were nonsusceptible to three or more drug classes and as XDR if all but two
or fewer drug classes had a nonsusceptible drug (7, 28). The drug classes used were extended-spectrum
cephalosporins (ceftazidime and cefepime), carbapenems (imipenem and meropenem), antipseudomo-
nal penicillins plus a �-lactamase inhibitor (piperacillin-tazobactam), fluoroquinolones (levofloxacin),
aminoglycosides (amikacin and gentamicin), polymyxins (colistin), tetracyclines (tetracycline and mino-
cycline), and penicillins plus �-lactamase inhibitors (ampicillin-sulbactam).
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