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Mycobacterium abscessus, a rapidly growing nontuberculous mycobacterium (NTM),
is increasingly recognized as an important pathogen causing soft tissue and lung

infections as well as severe disseminated infections in immunocompromised patients
(1, 2). Due to the intrinsic resistance to most of the classic antituberculous drugs and
many other antibiotics, infections with M. abscessus are extremely difficult to manage
(3, 4). The spread of strains which acquired additional resistance-causing mutations and
the requirement for extended treatment periods, often leading to severe adverse
events, stress the need for identification of new compounds active against this patho-
gen (2). Recent drug screening efforts have focused on testing of preselected com-
pounds and compound libraries containing substances with known antimycobacterial
or antibacterial activity which led to identification of some compounds inhibiting
growth of M. abscessus (5–9). Given the high attrition rate of hit and lead compounds
during preclinical and clinical development, additional efforts may be needed to
identify promising clinical candidates against M. abscessus. Phenotypic whole-cell
screening of large, diverse synthetic small-molecule libraries led to the identification of
potent and selective antituberculous drugs, some of which have been tested success-
fully in clinical trials (8, 10, 11). While the expected hit rate for these classic M.
tuberculosis whole-cell screens is between 0.3 and 1%, this important information is
missing for M. abscessus strains (12).

Here, we report on a head-to-head comparison of M. abscessus and Mycobacterium
tuberculosis in a whole-cell phenotypic screen using a diverse chemical library of 10,000
synthetic small molecules (World Diversity Set III, SPECS, Netherlands) (13). We estab-
lished a resazurin microtiter assay (REMA) for M. abscessus in analogy to the M.
tuberculosis REMA which was previously described (14, 15). Log phase M. abscessus
ATCC 19977 with an optical density at 600 nm (OD600) of 0.0001 was incubated in
96-well plates at 37°C in Middlebrook 7H9 broth supplemented with 10% ADC (albu-
min, dextrose, catalase), 0.5% glycerol, and 0.05% Tween 80. After 72 hours, resazurin
was added (0.025% wt/vol), and fluorescence was measured after 2 hours of incubation
(excitation at 560 nm and emission at 590 nm). When using dimethyl sulfoxide (DMSO)
and clarithromycin (20 �M) as controls, the assay had a Z-factor of 0.78 in a 96-well
microplate format. Molecules were tested in parallel REMA against M. abscessus or M.
tuberculosis Erdman in duplicates at concentrations of 20 �M and 10 �M, respectively.

In the M. tuberculosis primary screen, we observed the expected hit rate of 0.7% (72
hits). In contrast to that, the M. abscessus screen revealed only 7 substances causing
growth inhibition of 50% or higher (hit rate of 0.07%) (Table 1). M. abscessus hits were
retested, followed by MIC determination in M. abscessus and M. tuberculosis using 2-fold
serial dilutions and a starting concentration of 100 �M. To estimate the cellular toxicity
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(50% inhibitory concentration [IC50]) of the seven hit compounds, we used standard
human hepatoma HepG2 cell cytotoxicity assays and calculated the corresponding
selectivity indices (SI) (IC50/MIC). Growth inhibition of M. abscessus was confirmed for all
7 hit compounds. However, only compound 1 had a MIC below 20 �M (6.1 �M). The
selectivity index for this substance was 8.9 (Table 1). Hit compound 2, a carbamothio-
ate, and hit compound 3, a thiourea, had MICs of 22 �M and 23.7 �M, respectively. IC50

cytotoxicity values were �100 �M. A database search revealed that both substances
display known antituberculous activity (Collaborative Drug Discovery Vault) (16). This
also holds true for the imidazo-pyridazine compounds 4 to 6, all which displayed an SI
of �1 due to pronounced cytotoxicity. Hit compound 7, a quinoline, did not reach a
MIC of �100 �M.

TABLE 1 Properties of M. abscessus REMA hit compoundsa

Substance Molecular structure
MIC (�M)
M. abscessus

MIC (�M)
M. tuberculosis IC50 (�M)b SI (M. abscessus)c

1 6.1 6.3 54.2 8.9

2 22 �100 �100 �4.5

3 23.7 25.4 �100 �4.2

4 �100 3.5 2.1 �0.02

5 40.8 6.9 39.7 0.97

6 �100 45.4 17.2 �0.17

7 �100 �100 �100 ND

Positive control Clarithromycin 0.7 ND ND ND
Positive control Isoniazid ND 1.3 ND ND
aND, not determined.
bIC50, half maximal inhibitory concentration, measured in human hepatoma HepG2 cells.
cSI, selectivity index (MIC against M. abscessus/IC50).
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In conclusion, we show that high-throughput screening of randomly selected
molecules yields extremely low hit rates for compounds targeting M. abscessus. Despite
using a two-times-higher compound concentration in the M. abscessus assay, the hit
rate was 10 times lower than results obtained for M. tuberculosis. From a total of seven
hits, only one showed a MIC below 10 �M and moderate cytotoxicity. Five of the seven
M. abscessus hits were either positive in our M. tuberculosis REMA or had been described
previously as hits in other M. tuberculosis screening campaigns (16). Upon testing of M.
abscessus hits against M. tuberculosis, we identified only one substance (number 2)
which seems to possess selective activity against M. abscessus (Table 1). The disap-
pointing results observed in this M. abscessus small-molecule screening study can be
explained by the high intrinsic drug resistance of NTM that might reflect an evolutional
adaptation to hostile environments (soil and water) (4, 17). NTM have a highly flexible
system of gene regulation altering growth rate, metabolism, and inducible expression
of genes directly facilitating drug resistance (e.g., genes encoding efflux pumps). One
example is the transcriptional regulator WhiB7, which is involved in various mecha-
nisms of inducible drug resistance in mycobacteria (18–22). Recently, it was shown that
WhiB7 confers species-specific patterns of gene induction that might explain differ-
ences in drug susceptibilities among different mycobacterial species. For M. abscessus,
it was shown that resistance to amikacin is induced by the WhiB7-regulated gene eis2,
which seems to be unique for this species (23).

Based on our findings, we suggest retesting and repurposing substances that have
already been tested positive in screens targeting M. tuberculosis and Gram-positive
bacteria, rather than performing large-scale phenotypic screening against M. abscessus
(5–7, 24, 25). In addition, known antimycobacterial drugs may exhibit synergistic effects
as shown for combinations of various drug classes acting against M. abscessus (26–28).
Changing assay conditions and using different media may also increase hit rates, as
recently shown for experiments performed using Mueller-Hinton broth (6). Whether
this will translate into compounds with good in vivo activity against M. abscessus
requires further investigation.
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