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ABSTRACT We detected for the first time blaNDM-5 and blaOXA-181 in Escherichia coli
isolates from hospitalized patients and healthy volunteers in Chad. These resistance
genes were located on IncX3 and IncF plasmids. Despite the large diversity of E. coli
clones, the identified resistant intestinal isolates belonged mainly to the same se-
quence type.

KEYWORDS carbapenemases, Escherichia coli, clinical samples, fecal carriage
prevalence, Chad

The rapid spread of carbapenemase-producing Enterobacteriaceae (CPE) represents a
serious public health problem because carbapenems are the last antibiotics avail-

able to treat infections caused by multidrug-resistant (MDR) Gram-negative bacilli (1).
To date, CPE emergence and dissemination have been described worldwide, but
reports on CPE in Africa are rare, thus limiting our knowledge on the need of alternative
strategies to treat patients infected by these bacteria (2). The few reports on CPE in
Central Africa highlighted the presence of CPE isolates that produce NDM-4 in Came-
roon, OXA-181 and NDM-1 in Angola, and NDM-7 in Gabon (2). Here, we determined
the prevalence and genetic characteristics of CPE isolated from clinical and fecal
carriage samples of hospitalized patients and healthy volunteers in Chad.

From January to the end of March 2017, 197 (inpatients, n � 133; outpatients,
n � 64) nonduplicate Enterobacteriaceae and clinically significant bacteria were isolated
from clinical samples processed in three main hospitals of N’Djamena, Chad. In the
same period, 200 fecal samples (100 from patients hospitalized for more than 48 h and
100 from healthy volunteers in the community) were screened for CPE carriage using
the selective medium ChromID Carba Smart plates (bioMérieux, Marcy-l’Etoile, France).
Disk diffusion antimicrobial susceptibility testing (AST) of all clinical and fecal samples
using the EUCAST guidelines and clinical breakpoints (http://www.eucast.org/) identi-
fied 18 potential CPE isolates (Table 1), and this finding was confirmed by PCR analysis.
All 18 isolates were identified as Escherichia coli by matrix-assisted laser desorption
ionization–time of flight (MALDI-TOF) mass spectrometry (Bruker Daltonics). The prev-
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alence of carbapenemase-producing E. coli (CPEc) was 2.5% (5/197) in clinical samples,
and 6.5% (13/200) in fecal carriage samples (n � 3 samples from healthy volunteers and
n � 10 samples from patients; P � 0.001). These results are in agreement with previous
literature data and confirm stronger selective antibiotic pressure and bacterial trans-
mission in inpatients (3, 4). The presence of CPE in fecal samples from healthy
volunteers is alarming, potentially increasing the risk of community-acquired CPE
infections.

Besides resistance to broad-spectrum cephalosporins, all 18 CPE isolates were also
frequently resistant to ciprofloxacin (94%), gentamicin (89%), amikacin (22%), and
trimethoprim-sulfamethoxazole (100%) and remained susceptible to fosfomycin, chlor-
amphenicol, and colistin.

The presence of genes encoding antibiotic resistance determinants was assessed
using multiplex PCR followed by sequencing (see primers and references in Table S1 in
the supplemental material). Among the five clinical CPEc isolates, two carried the
blaOXA-181 gene, one carried the blaNDM-5 gene, and two carried both genes. All 13 CPEc
isolates from fecal carriage samples harbored the blaOXA-181 gene. Associated resistance
determinants are reported in Table 1.

Genotyping data obtained by multilocus sequence typing (MLST) (http://bigsdb.web
.pasteur.fr/), variable-number tandem-repeat typing (5), and the unweighted pair group
method with arithmetic mean (UPGMA) hierarchical clustering allowed for the assess-
ment of the genetic relationships among the 18 CPEc isolates. The dendrogram was
elaborated based on the Nei’s distance using the Phylip and Populations packages and
visualized with TreeDyn (with annotations). The dendrogram highlighted the presence
of two clusters (I and II) and three unique profiles (Fig. 1). Cluster I included 12 CPEc
isolates from fecal carriage samples (n � 10 from inpatients and n � 2 from healthy
volunteers) that belonged to sequence type 692 (ST692) and harbored the blaOXA-181

gene. Cluster II was composed of three CPEc clinical isolates that belonged to ST2 and
harbored the blaNDM-5 gene alone or with the blaOXA-181 gene. The CPEc isolates that
belonged to ST4 (one fecal sample from a volunteer), ST39, and ST88 (one clinical
sample each for ST39 and ST88) formed three unique profiles. The high number of CPEc
isolates included in the two clusters (15/18; 83%) could reflect the importance of
interhuman transmission of these multidrug-resistant bacteria in Chad. Analysis of the
patients’ medical records suggested a probable nosocomial outbreak among the ten
patients (samples 1 to 10) from cluster I (Fig. 1) because they were in the same hospital
at the same time. Phylogroups were also determined based on the PCR method
developed by Clermont et al. (6), and most strains (14/18, 78%) belonged to commensal
clones B1 and C (Fig. 1).

Mating experiments performed using the azide-resistant E. coli strain J53 as the
recipient were successful for most of the isolates. In the case of transfer failure, plasmid
DNA was extracted using the GeneJet plasmid miniprep kit (7) and transferred by
electroporation into E. coli DH10B (Invitrogen, Cergy-Pontoise, France) (8). Plasmids
were characterized by PCR-based replicon typing and plasmid relaxase gene typing
(PRaseT) (9). PRaseT showed that blaOXA-181 was located on IncX3 plasmids, and

FIG 1 UPGMA dendrogram based on the variable-number tandem-repeat (VNTR) (9 loci) and MLST data for the 18 CPEc isolates. The relationships between
patterns were assessed using the UPGMA hierarchical clustering method. ST, sequence type; NTP, nontypeable plasmid; HGRN, National Reference General
Hospital; RH, Renaissance Hospital; MCH, Mother and Child Hospital; ICU, Intensive Care Unit.
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blaNDM-5, blaCTX-M-9, and blaCTX-M-15 were located on IncF plasmids in all clinical
isolates. In most fecal isolates, the blaCTX-M-15 gene was located on a nontypeable
plasmid, except for four isolates where it was located on an IncF, IncR, or Mobp5-3
plasmid (Fig. 1).

Overall, our results revealed that most CPEc isolates (12/18; 67%) were E. coli ST692
harboring the blaOXA-181 gene carried by the IncX3 plasmid, as already described in
Burkina Faso (10). This suggests the circulation of this clone in sub-Saharan Africa;
however, the factors that contribute to this success are still unknown.

We determined the complete sequences of all 17 IncX3 plasmids carrying blaOXA-181

using the Oxford Nanopore MinION platform (Oxford Nanopore Technologies). We
obtained 51-kb plasmids, which were highly similar (99% nucleotide identity) to
pOXA181_EC14828 (GenBank accession no. KP400525), a blaOXA-181-harboring plasmid
first described in China in 2015 (11). The blaOXA-181 gene was found in a 14,107-bp
region flanked by two IS26 elements in direct orientation, with duplicated nucleotides
(GT) at both extremities. The PMQR gene qnrS1 was found downstream of blaOXA-181

and was the only other resistance gene found on these plasmids (apart from a
truncated ere gene). Similar genetic environments were described in plasmids from
other countries in Africa, in Europe, and in Asia (4, 10–16).

NDM-5, an NDM variant, was first identified in 2011 in an E. coli isolate from a patient
in the United Kingdom who traveled to the Indian subcontinent (17) and, since then,
has been increasingly detected worldwide. Interestingly, two E. coli clones recovered
from clinical samples in this study were previously found to coharbor blaOXA-181 and
blaNDM-5 genes in Egypt and Myanmar (18, 19). The high frequency of population
movements between Chad, Egypt, and China for medical treatment and economic
relationships could promote the dissemination of carbapenemase-encoding genes.

This study shows the alarming CPE circulation in community and hospital environ-
ments in Chad. The transmission of MDR bacteria among inpatients could lead to
therapeutic deadlocks associated with high mortality rates, especially in Chad where
AST is expensive and limited. Our results call for urgent public health efforts to set up
educational campaigns on strict infection prevention/control measures targeting the
Chadian population and health care professionals and better surveillance to limit the
spread of MDR bacteria.
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