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Abstract Coffee consumption is associated with reduced

risk of metabolic syndrome, obesity and diabetes, which

may be related to the effects of coffee and its bioactive

components on lipid metabolism. Coffee contains caffeine,

a known neuromodulator that acts as an adenosine receptor

antagonist, as well as other components, such as chloro-

genic acids, trigonelline, cafestol and kahweol. Thus, this

review discusses the up-to-date knowledge of mechanisms

of action of coffee and its bioactive compounds on lipid

metabolism. Although there is evidence that coffee and/or

its bioactive compounds regulate transcription factors (e.g.

peroxisome proliferator-activated receptors and sterol reg-

ulatory element binding proteins) and enzymes (e.g. AMP-

activated protein kinase) involved in lipogenesis, lipid

uptake, transport, fatty acid b-oxidation and/or lipolysis,

needs for the understanding of coffee and its effects on

lipid metabolism in humans remain to be answered.

Keywords Alkaloid � Phenolic acid � Cholesterol �
Obesity � Fat

Introduction

Coffee is an ancient drink that is increasingly popular

around the world. People who drink coffee are not only

attracted to its flavor, but also to its potential health

benefits, including lower risk of metabolic syndrome,

obesity and diabetes (Farah, 2012; Grosso et al., 2017;

Santos and Lima, 2016). As altered lipid metabolism is

common to these conditions, the effects of coffee bioac-

tives on lipid metabolism have been suggested as under-

lying mechanisms of the health benefits of coffee (Grosso

et al., 2017; Santos and Lima, 2016). Therefore, this review

primarily discusses the current knowledge of coffee and its

bioactive components on lipid metabolism.

Coffee composition

The composition of regular coffee varies mostly according

to type of beans, roasting and brewing methods (Cruz et al.,

2018; Vignoli et al., 2014). The most popular coffee beans

are from Coffeea arabica (Arabica) or C. canephora (Ro-

busta) with significant differences in their composition,

including caffeine content; e.g. drinks from Robusta beans

had higher caffeine levels than Arabica (Vignoli et al.,

2014). Roasting coffee beans degrades heat unstable com-

pounds (e.g. phenolic acids and trigonelline) and changes

their sensory profile (Farah, 2012). For instance, light or

medium roast coffee beans are used to make coffee drinks

with more chlorogenic acids (CGA) than dark roast coffee

beans (Vignoli et al., 2014). Brewing methods influence the

coffee drink composition as well; Turkish-style coffee

drink had higher concentrations of diterpenes (cafestol and

kahweol) than filtered coffee drink (Rendon et al., 2018).

These differences in composition have shown to influence

the potential biological properties of coffee (Cruz et al.,

2018).

The most common coffee extraction is performed by hot

water from beans, but other plant parts or solvents are used

to develop other coffee products. Water extraction from the

coffee fruit (pulp) or silver skin (bean testa), usually

& Yeonhwa Park

ypark@foodsci.umass.edu

1 Department of Food Science, University of Massachusetts,

Amherst, MA 01003, USA

2 Department of Food Science & Biotechnology, Kyung Hee

University, Yongin 17104, Korea

123

Food Sci Biotechnol (2019) 28(5):1287–1296

https://doi.org/10.1007/s10068-019-00662-0

http://orcid.org/0000-0001-9727-0899
http://crossmark.crossref.org/dialog/?doi=10.1007/s10068-019-00662-0&amp;domain=pdf
https://doi.org/10.1007/s10068-019-00662-0


discarded in the regular coffee production, retained some of

the coffee bioactive compounds, containing about 1% CGA

and 1–3% caffeine (Ameca et al., 2018; Martinez-Saez

et al., 2014; Ontawong et al., 2019b). Different solvent

extraction methods change the coffee extract composition.

Decaffeinated coffee, which has 2–15 mg caffeine per

serving, can be produced by organic solvents or super-

critical CO2 methods (de Azevedo et al., 2008; Farah,

2012). Ethanol extraction is used to make the commercially

available green coffee bean extracts (GCBE), which con-

tain 27–50% CGA and 2–10% caffeine (Choi et al., 2016;

Kim et al., 2014; Shimoda et al., 2006). Taken together,

coffee processing methods have a great impact on its

composition and related biological properties.

Coffee bioactive compounds

Caffeine (Fig. 1), an alkaloid that has a variety of potential

biological effects, is found at concentration between 50 and

380 mg/100 mL in regular coffee drink (Farah, 2012;

Grosso et al., 2017). Caffeine is an adenosine receptor

antagonist, related to its mostly known function as a neu-

romodulator, that boosts energy expenditure (Harpaz et al.,

2017; Wu et al., 2017). Although caffeine has potential

beneficial effects against Parkinson’s disease and type-2

diabetes, some need to control caffeine intake due to its

effect on increased blood pressure (Grosso et al., 2017).

There are different CGA esters in coffee and their

concentrations combined range from 35 to 500 mg/100 mL

in the regular coffee drink (Farah, 2012). CGA esters are

formed between cinnamic acids (caffeic acid, ferulic acid

and p-coumaric acid) and quinic acid; here, any CGA ester

will be referred as CGA (Clifford et al., 2017). Among

them, 5-O-caffeyolquinic acid (Fig. 1) is the most studied

CGA ester and is linked to the GCBE’s fat-lowering effects

(Farias-Pereira et al., 2018). In addition, the CGA precur-

sors (i.e. cinnamic acids) or its degraded products were

related to antioxidant properties (Jeszka-Skowron et al.,

2016; Kamiyama et al., 2015; Yue et al., 2019).

Trigonelline (Fig. 1), an alkaloid derivative of niacin

(vitamin B3), is present at 40–50 mg/100 mL in regular

coffee drink (Farah, 2012). Although there is limited evi-

dence of the physiological effects of trigonelline, trigo-

nelline has shown to have antioxidant and anti-

inflammatory effects (Mohamadi et al., 2018). Addition-

ally, trigonelline has shown to be potential anti-diabetes

and anti-obesity agent, which may also be linked to nia-

cin’s effects on lipid metabolism (Riedel et al., 2014;

Sharma et al., 2018; Yoshinari et al., 2009).

Cafestol (Fig. 1) is one of the coffee diterpenes found at

0.25–0.3 mg/100 mL in the regular coffee drink, and up to

4 mg/100 mL in unfiltered coffee drink (Rendon et al.,

2018). High amounts of cafestol intake increased blood

cholesterol levels; daily intake of 60 mg cafestol increased

about 30 mg/dL total cholesterol levels in humans after

Fig. 1 Illustrative summary of

the overall effects of coffee and

its bioactive compounds on lipid

metabolism. Molecular

structures of chlorogenic acids

(phenolic acids) representative:

5-O-caffeoylquinic acid;

alkaloids: caffeine and

trigonelline; diterpenes: cafestol

and kahweol. ;, decrease;?,
inconclusive; :, increase
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28 days (Urgert et al., 1997). This is due to the fact that

cafestol is an agonist of farnesoid X receptors (FXR),

responsible for the increase of blood cholesterol levels by

inhibiting bile acid synthesis (Post et al., 1997; Ricketts

et al., 2007). On the other hand, cafestol has shown ben-

eficial biological effects, such as anti-obesity, anti-diabetes,

anticancer and anti-inflammatory properties (Lima et al.,

2017; Mellbye et al., 2015, 2017; Shokouh et al., 2018; van

Cruchten 2010).

Kahweol (Fig. 1), present at range of 0.14–0.2 mg/

100 mL in the regular coffee drink, is another diterpene

mostly found in Arabica coffee beans (Farah, 2012; Ren-

don et al., 2018). In vitro studies have shown that kahweol

is a potential antioxidant, anti-obesity and anticancer agent

(Baek et al., 2017; Lee and Jeong, 2007; Oh et al., 2018).

Although kahweol and cafestol are structurally similar,

their effects on lipid metabolism have been shown to be

different; cafestol was more effective as cholesterol-raising

factor, while kahweol was more effective as an adipogen-

esis inhibitor (Baek et al., 2017; Urgert et al., 1997).

Coffee regulates lipid metabolism

Coffee and human health

Human studies have shown that moderate consumption of

coffee (2–3 cups/day) is associated with reduced risk of

metabolic syndrome, obesity and type 2 diabetes (Grosso

et al., 2017; Santos and Lima, 2016). Daily consumption of

coffee (510 mg CGA and 120 mg caffeine) or GCBE

(372 mg CGA and 14.48 mg caffeine) ameliorated some

parameters for metabolic syndrome after 8 weeks, includ-

ing reduced body fat and insulin resistance (Roshan et al.,

2018; Sarria et al., 2018). Consistently, daily intake of

600 mg CGA increased fat oxidation in healthy male

subjects after 5 days (Park et al., 2017).

The effects of coffee are influenced by genetic differ-

ences in the population; i.e., rate of caffeine metabolism

contributed significantly to physiological responses to

coffee (Palatini et al., 2015; Robertson et al., 2018). Daily

intake of coffee (174.4 mg CGA and 175.2 mg caffeine)

reduced postprandial glucose levels in people who metab-

olizes caffeine slowly, but increased postprandial glucose

levels in people who metabolize caffeine quickly after

12 weeks (Robertson et al., 2018). However, a follow-up

study reported that hypertensive patients who metabolize

caffeine slowly had higher risk of impaired fasting glucose,

compared to whom metabolize caffeine quickly or non-

coffee drinkers (Palatini et al., 2015).

A systematic review of clinical trials has discussed

inconsistent results of different types of coffee on glucose

metabolism and suggested that CGA and other compounds

than caffeine within coffee contribute to the coffee’s

effects on human health (Reis et al., 2019). For instance, a

cross-over study showed that decaffeinated coffee (equiv-

alent to 17–24 mg caffeine or 0.24–0.33 mg caffeine/kg

body weight), but not caffeinated coffee (equivalent to

101–144 mg caffeine or 1.4–2.0 mg caffeine/kg body

weight), improved insulin sensitivity in healthy men (Reis

et al., 2018). Therefore, many of the inconsistent effects of

coffee on human health may be due to variation of coffee

composition.

Although some epidemiological studies show that

moderate coffee consumption is associated with reduced

risk of cardiovascular diseases, whether coffee has adverse

or beneficial effects on blood lipids profile and its mech-

anisms is still being investigated (Godos et al., 2014; Poole

et al., 2017; Saeed et al., 2019). A meta-analysis showed

that coffee consumption (2.4–8 cups/day) increased total

cholesterol, low-density lipoproteins (LDL) and triglyc-

erides levels after 2–11 weeks (Grosso et al., 2017). Others

have shown that coffee has a null or beneficial effect on

lipid profile; coffee or GCBE did not have an impact on

lipid profile in healthy subjects (Robertson et al., 2018;

Roshan et al., 2018), while coffee reduced blood triglyc-

erides levels in subjects with high cholesterol levels after

8 weeks (Sarria et al., 2018). In addition, unfiltered coffee

was strongly associated with the undesirable changes in

lipid profile, probably due to inhibitory effects of cafestol

on bile acid synthesis (Saeed et al., 2019; Urgert et al.,

1997). Overall, these human trials provide limited evidence

that coffee and its bioactive compounds regulate lipid

metabolism. This review will summarize the current pro-

posed mechanisms of action of coffee and its bioactive

compounds on lipid metabolism (Tables 1 and 2).

Coffee reduces lipogenesis

Coffee has shown to have fat-lowering effects in humans,

which was associated with reduced lipogenesis (Santos and

Lima, 2016). Coffee extracts (Choi et al., 2016; Farias-

Pereira et al., 2018; Jia et al., 2014; Murase et al., 2010),

CGA (Cho et al., 2010; Farias-Pereira et al., 2018; Huang

et al., 2015; Ong et al., 2013; Sudeep et al., 2016; Zheng

et al., 2014), caffeine (Liu et al., 2017; Sinha et al., 2014;

Zheng et al., 2014, 2015), trigonelline (Yoshinari et al.,

2009) and cafestol (van Cruchten 2010) have shown to

reduce activity of key enzymes for lipogenesis: acetyl-CoA

carboxylase (ACC), fatty acid synthase (FAS) and/or

stearoyl-CoA desaturase (SCD). ACC and FAS are

responsible for the first two steps of de novo lipogenesis,

while SCD for the synthesis of monounsaturated fatty acids

for fat storage (Proenca et al., 2014). The enzymatic inhi-

bitory effects of coffee and/or its bioactive compounds

were in part via regulation of upstream transcription factors
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for lipogenesis: CCAAT/enhancer-binding proteins (C/

EBP), peroxisome proliferator-activated receptors (PPAR,

especially PPARc), and/or sterol regulatory element-bind-

ing proteins (SREBP) (Choi et al., 2016; Farias-Pereira

et al., 2018; Kim et al., 2014; Liu et al., 2017; Ma et al.,

2015; Murase et al., 2010; Ontawong et al., 2019a; Sharma

et al., 2018; van Cruchten 2010; Wang et al., 2019; Zheng

et al., 2014; Zheng et al., 2015). These transcription factors

are well-known to regulate adipogenesis, including lipo-

genesis (Chung et al., 2016; Proenca et al., 2014).

In addition, coffee reduces lipogenesis by regulating

another metabolic pathway, AMP-activated protein kinase

(AMPK), which inhibits ACC and FAS (Ong et al., 2013;

Proenca et al., 2014). In fact, coffee, CGA, caffeine and

trigonelline were able to activate AMPK (Egawa et al.,

2011; Mathew et al., 2014; Ong et al., 2013; Sharma et al.,

2018; Sudeep et al., 2016; Wei Ong et al., 2012; Zhang

et al., 2015). Many factors regulate AMPK activity,

including the second messenger cyclic AMP (cAMP),

which is increased by caffeine (Zhang et al., 2015). Along

with increased cAMP, caffeine and CGA activated

Ca2?/calmodulin-dependent protein kinase (CaMK), which

can subsequently regulate the AMPK activation (Egawa

et al., 2011; Mathew et al., 2014; Ong et al., 2013).

Coffee can also activate the forkhead box O (FOXO),

involved in the insulin-signaling pathway known to regu-

late lipogenesis. GCBE and CGA reduced body fat

dependent to increased FOXO nuclear translocation, lead-

ing to an decreased lipogenesis in Caenorhabditis elegans

(Farias-Pereira et al., 2018). These suggest that the fat-

lowering effects of coffee by inhibition of lipogenesis are

potentially from its effects on insulin-mediated pathway

via FOXO.

Epigenetic modifications by coffee might contribute to

its effects on lipogenesis as well; coffee and CGA upreg-

ulated miR-122, a microRNA abundant in the liver with the

inhibition of SREBP, ACC and FAS in murine hepatocytes

(Murase et al., 2010). Similarly, others reported that coffee

increased miR-96, a microRNA involved in SREBP

expression in human intestinal epithelial Caco-2 cells (Jeon

et al., 2013; Nakayama et al., 2017). Therefore, coffee and

its bioactive compounds may inhibit lipogenesis via epi-

genetic changes.

Coffee compounds regulate lipid uptake

and transport

Coffee can regulate the fatty acid translocase (FAT/CD36/

SR-B2), a key transmembrane protein for lipid uptake and

transport (Marechal et al., 2018). Caffeine, CGA and tri-

gonelline have shown to decrease the diet-induced hepatic

CD36 overexpression (Huang et al., 2015; Ma et al., 2015;

Sharma et al., 2018; Zheng et al., 2015). CD36 is not only

important for the uptake of dietary fatty acids, but also its

ability to bind lipoproteins in the liver (Calvo et al., 1998;

Ramasamy, 2014). Thus, the decreased expression of

CD36 by coffee compounds is probably related to changes

in blood lipid profile, including reduced triglycerides,

cholesterol and LDL levels (Huang et al., 2015; Ma et al.,

2015; Sharma et al., 2018; Zheng et al., 2015). It was

further suggested that caffeine, CGA and trigonelline reg-

ulated CD36 via AMPK- and PPARc -dependent pathways

(Huang et al., 2015; Ma et al., 2015; Marechal et al., 2018;

Quan et al., 2013; Sharma et al., 2018).

Other lipid-binding proteins involved in lipid uptake and

transport, such as fatty acid-binding proteins (FABP) and

fatty acid transporters proteins (FATP), were regulated by

coffee bioactive components (Baek et al., 2017; Farias-

Pereira et al., 2018; Lally et al., 2012; Su et al., 2013). It is

suggested that the decreased lipid uptake and transport is

related to lipogenesis inhibition; FABP4 (also called aP2),

a target for PPARc, was downregulated by caffeine and

kahweol in adipocytes (Baek et al., 2017; Su et al., 2013).

Consistently, a fatty acid- and retinoid-binding protein,

FAR-4, was required for GCBE and CGA to reduce fat

accumulation in C. elegans (Farias-Pereira et al., 2018).

However, coffee compounds can increase lipid uptake and

transport in the muscle driven by fatty acid b-oxidation;
caffeine increased lipid uptake and transport in muscle

tissue by regulating FABP, FATP1 and FATP4, partially

dependent on mitochondrial CD36 (Lally et al., 2012).

Taken together, coffee bioactive compounds regulate tis-

sue-specific lipid uptake and transport via CD36 and other

lipid-binding proteins.

Coffee increases fatty acid b-oxidation

There are many reports of coffee and its bioactive com-

pounds on regulating fatty acid b-oxidation (Cho et al., 2010;
Choi et al., 2016; Farias-Pereira et al., 2018; Huang et al.,

2015; Li et al., 2009; Liu et al., 2017; Ma et al., 2015; Shi-

moda et al., 2006; Sinha et al., 2014; Sudeep et al., 2016; van

Cruchten 2010;Wang et al., 2019; Zheng et al., 2014, 2015).

Coffee, CGA, caffeine and cafestol have shown to increase

the rate-limiting enzyme for mitochondrial fatty acid b-ox-
idation, carnitine palmitoyl transferase (CPT), which trans-

ports acyl-CoA from cytosol into mitochondria (Choi et al.,

2016; Huang et al., 2015; Ma et al., 2015; Shimoda et al.,

2006; Sinha et al., 2014; Sudeep et al., 2016; van Cruchten

2010). In addition, peroxisomal fatty acid b-oxidation was

increased by CGA and/or caffeine via regulation of acyl-

CoA oxidases (ACOX), the first step of the peroxisomal fatty

acid b-oxidation (Ma et al., 2015; Reddy and Hashimoto,

2001; Zheng et al., 2014, 2015).

It is suggested that coffee regulates enzymes of fatty

acid b-oxidation by activating PPARa in the liver and
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adipose tissues (Cho et al., 2010; Choi et al., 2016; Huang

et al., 2015; Li et al., 2009; Liu et al., 2017; Ma et al., 2015;

Ontawong et al., 2019a; Wang et al., 2019). Moreover,

PPARb/d, involved in the fatty acid b-oxidation in muscle

tissue, may play a role in the coffee’s effects; caffeine

upregulated PPARb/d in muscle cells (Chung et al., 2016;

Schnuck et al., 2018). However, it was reported that a

coffee extract and CGA did not act as PPAR agonists in

kidney CV-1 cells (Murase et al., 2010). Therefore, the

mechanism in which coffee and its bioactive compounds

activate PPAR is yet to be clear.

Other nuclear hormone receptors are reported to be

involved in the coffee bioactive components’ effects on

fatty acid b-oxidation. For instance, CGA has shown to

increase expression of retinoid X receptor (RXR) and

decrease liver X receptor (LXR) (Huang et al., 2015),

which share similarities with PPARa (Boergesen et al.,

2012). There is evidence that cafestol acts as a FXR agonist

(Ricketts et al., 2007); FXR is not only involved in

cholesterol metabolism, but involved in fatty acid b-oxi-
dation (Massafra and van Mil, 2018; Yang et al., 2019).

Thus, it is possible that cafestol and CGA regulate fatty

acid b-oxidation via FXR, RXR and LXR. Therefore, it can

be considered that coffee has pleiotropic effects by regu-

lating transcription factors that potentially impact fatty acid

b-oxidation.

Coffee regulates lipolysis

Coffee and caffeine consumption increased lipolysis,

measured by free fatty acids and/or glycerol, peaking after

2–4 h in humans (Flanagan et al., 2014; Mougios et al.,

2003; Vandenberghe et al., 2016). It was suggested that

caffeine increases lipolysis in adipose tissue by inhibiting

adenosine receptor and increasing catecholamine levels via

the sympathetic nervous system (Carrageta et al., 2018;

Kogure et al., 2002; Wu et al., 2017). The lipolytic effects

of caffeine are mediated by the increased cAMP levels that

activate enzymes for lipolysis, especially hormone-sensi-

tive lipases (HSL) (Carrageta et al., 2018; Proenca et al.,

2014; Zhang et al., 2015). Consistently, GCBE, CGA and

cafestol upregulated HSL and adipose triglyceride lipases,

both responsible for lipolysis in adipose tissue (Choi et al.,

2016; Peng et al., 2018; van Cruchten 2010). However,

GCBE, not CGA, upregulated HSL expression in C. ele-

gans (Farias-Pereira et al., 2018). Since post-transcriptional

regulation of these enzymes is important (Liu et al., 2018),

the effects of coffee and its compounds on lipase’s activ-

ities will need to be determined to confirm the activities of

coffee on lipolysis.

The lipolytic effects of coffee compounds are regulated

by an additional pathway, the mammalian target of rapa-

mycin (mTOR) (Caron et al., 2015). mTOR was inhibited

by coffee, caffeine, trigonelline and kahweol in vivo or

in vitro (Oh et al., 2018; Sharma et al., 2018; Sinha et al.,

2014; Takahashi et al., 2017). Consistently, the lipolytic

effects of caffeine were related to autophagy-lysosomal

pathway dependent on AMPK and CaMK, known to cross-

talk with mTOR (Mathew et al., 2014; Sinha et al., 2014).

Therefore, the effects of coffee and its compounds on the

nutrient-sensing pathways mTOR, AMPK and CaMK may

contribute to the effects of coffee on lipolysis.

Coffee reduces lipid digestion

Coffee and its bioactive compounds may reduce dietary

lipid digestion, partially due to inhibition of digestive

lipase (Cha et al., 2012; Noh et al., 2006; Ontawong et al.,

2019b). GCBE inhibits pancreatic lipase activity, in which

half-maximal inhibitory concentration (IC50) was estimated

to be 1.98 mg/mL in in vitro digestive simulation (Cha

et al., 2012; Narita et al., 2012). The inhibitory effects of

lipase by coffee is more likely due to CGA than caffeine;

IC50 for CGA was 13–287 lM and IC50 for caffeine was

[ 500 lM (Cha et al., 2012). Trigonelline was also found

to inhibit lipase and other digestive enzymes in rats

(Hamden et al., 2013). GCBE inhibited pancreatic lipase by

decreasing surface area of lipid emulsion and increasing

lipid droplet size in vitro (Narita et al., 2012).

Coffee bioactive compounds can also affect lipid

digestion by reducing the function or synthesis of bile

acids, emulsifying agents that enhance lipid digestion

(Ontawong et al., 2019b; Post et al., 1997). CGA was able

to bind bile acids in vitro, suggesting that it reduces the

function of bile acid on lipid digestion (Ontawong et al.,

2019b). Moreover, cafestol was found to inhibit bile acid

synthesis in rodents, which potentially changes lipid

digestion (Post et al., 1997; Ricketts et al., 2007). There-

fore, the inhibition of bile acid synthesis and lipase activity

by coffee and its bioactive compounds may reduce dietary

lipid digestion.

In conclusion, coffee and its bioactive components have

shown to regulate lipid metabolism. Although there is more

evidence for coffee extracts, especially GCBE, CGA and

caffeine, other, less studied compounds (trigonelline,

cafestol and kahweol) have shown potential to act on lipid

metabolism in vivo and/or in vitro studies. Many questions

about their mechanisms on lipid metabolism remain to be

answered, and perhaps with the use of ‘omics’ technologies

in humans, we will be able to understand and validate the

effects of coffee on human health in future.
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