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Modeling and simulation of complex dynamic
musculoskeletal architectures
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Natural creatures, from fish and cephalopods to snakes and birds, combine neural control,

sensory feedback and compliant mechanics to effectively operate across dynamic, uncertain

environments. In order to facilitate the understanding of the biophysical mechanisms at play

and to streamline their potential use in engineering applications, we present here a versatile

numerical approach to the simulation of musculoskeletal architectures. It relies on the

assembly of heterogenous, active and passive Cosserat rods into dynamic structures that

model bones, tendons, ligaments, fibers and muscle connectivity. We demonstrate its utility

in a range of problems involving biological and soft robotic scenarios across scales and

environments: from the engineering of millimeter-long bio-hybrid robots to the synthesis and

reconstruction of complex musculoskeletal systems. The versatility of this methodology

offers a framework to aid forward and inverse bioengineering designs as well as fundamental

discovery in the functioning of living organisms.
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Musculoskeletal systems consist of bones, muscles, ten-
dons, ligaments, and other connective tissues that
altogether provide function and structure to natural

creatures. One of the most intriguing aspects of these archi-
tectures is the often inseparable nexus between actuation and
control, topology and mechanics, due to the continuum, non-
linear nature of their constitutive elements. As a consequence,
and in stark contrast with rigid-body robots, soft creatures can
harness a wide range of deformations and structural instabilities
to effectively cope with complex, unstructured and dynamic
environments1. Thus, biological musculoskeletal architectures,
due to their intrinsic distributedness, softness and compliance,
exhibit the ability to outsource control tasks to their embodi-
ments, an emerging paradigm denoted as morphological com-
putation or mechanical intelligence1–3.

These considerations have prompted a number of soft robotic
investigations in which artificial compliant materials and highly
stretchable and shearable elastomeric structures are used in a
variety of applications from gripping, grasping, manipulation4–8

and artificial muscles9, to a range of robotic creatures10–19. More
recently, a radically new breed of soft bio-hybrid robots3,20–24

that combine biological muscles and sensors with artificial scaf-
folds has been emerging, paving the way to engineer living
machines with unique abilities of self-assembly, healing, growth
and adaptivity. This technology carries the promise of high
impact applications, from biomedicine to manufacturing25, and
of fundamental discovery as it provides a platform to test
hypotheses related to the functioning of living organisms26.

Despite these experimental advances, the modeling and simu-
lation of dynamic musculoskeletal architectures (either biological,
artificial or bio-hybrid) has not proceeded at the same pace27,
impairing the broad deployment of soft robotic technology.
Biological layouts have been traditionally modeled as mechanical
structures composed of springs, dampers and linkages, for-
mulating joint motions into rigid-body dynamic equations28,29.
Although insightful in many contexts30,31, this approach is ill-
suited to fully capture the dynamics of intrinsically soft-bodied
systems such as cephalopods, fish or snakes. On the other side of
the spectrum, high-fidelity 3D simulations based on the finite
element method (FEM) have been used to model muscles as
viscoelastic continuous materials32,33 and to design soft robotic
components8. Nonetheless, these methods also exhibit limita-
tions: often prohibitive computational costs, numerical instabil-
ities and loss of accuracy due to distortion of discretization
elements, ad-hoc (re-)meshing, and an involved mathematical
formulation. As a consequence, FEM have so far been impractical
for the simulation of complete musculoskeletal structures and
their interaction with the environment.

An attempt to fill the space between rigid-body and FEM
models is represented by the 3D lattices of masses and Euler
beams of Hiller et al.34, which represent a balanced compromise
between accuracy, robustness, and computational costs, although
specialized to monolithic soft bodies. The graphics community
has also been active in this space35–37. Grinspun and colleagues
introduced a popular discrete elastic rods method38 for the
simulation of elastic yet unshearable and unstretchable filaments,
and considered their assembly into dense, entangled masses39. Pai
and colleagues investigated combining together spline-based
muscle-strands for the simulation of various human body parts
such as hands or ocular muscles35,36,40–42. Although numerically
efficient, these approaches are specialized to scenarios in which
shear, stretch, and/or twist and dynamic effects are unimportant.
In general, instead, it is not possible to rule out a priori any
particular mode of deformation, especially when complex and
compliant architectures interact with unstructured and dynamic
environments. Hence the need for efficient, robust and more

broadly applicable solvers. Thus, building on the above methods,
we have developed an approach based on assemblies of Cosserat
rods43. These rods are slender, elastic, and soft filaments that can
undergo all modes of deformation and whose dynamics in 3D
space can be accurately represented via a one-dimensional
mathematical description. Active and passive rods characterized
by different material properties are then combined together
through appropriate boundary conditions, into dynamic layouts
that model the connectivity between bones, tendons, muscles as
well as artificial scaffolds interacting with the environment
(contact, friction, fluids). The Cosserat model and its (far more
popular) unstretchable, unshearable counterpart, the Kirchhoff
model44, spurred by the work of Grinspun and colleagues38, have
led to a number of graphics applications involving elastic rib-
bons45,46, woven cloth47,48, entangled hair and fibers39,46,49, wire
mesh50, and viscous threads51. Moreover, these models found
application in physics, biology, and engineering to characterize
polymers and DNA52,53, flagella26,54, tendrils55, cables in auto-
motive design56, and soft robot arms57. Nevertheless, almost all
studies consider individual filaments, a few consider multiple rods
that are generally passive and homogeneous (hair, cloth) and
none of them consider dynamic, heterogeneous living archi-
tectures capable of undergoing all modes of deformation.

Here, we demonstrate a methodology in which the full
dynamics of all these deformation modes (bend, twist, shear, and
stretch) is accounted for. We build on our previous work on
Cosserat rods and establish a musculoskeletal modeling approach
to represent and realistically simulate active, heterogenous bio-
logical layouts. We thus demonstrate the utility of our approach
to engineer, synthesize and replicate living body architectures
through: (1) Engineering of bio-hybrid robots in which we
illustrate and exploit the predictive capability of our approach to
guide the design and fabrication of bio-hybrid robots, mitigating
the need for impeding trial-and-error methods; (2) Synthesis of
complex biological systems in which we couple our solver with
evolutionary optimization techniques to understand how mus-
cular architectures lead to smooth slithering gaits. This study
illustrates how biological layers of complexity can be stripped
away to unveil broadly applicable design principles, thus advan-
cing biomimetic applications; (3) Replication of full-scale biolo-
gical systems in which we employ our solver to reconstruct and
actuate feathered wings. This exemplifies our ability to replicate
biological systems, mimicking the underlying biomechanics, thus
providing accessible ways to study and understand the biophy-
sical functioning of natural creatures in silico.

Overall, this study advances the argument that rod models
have a valuable role to play in the modeling of complex active
systems, further expanding their range of application in robotics
and biology.

Results
The human elbow joint. We first consider the human elbow joint
comprised of muscles, tendons and bones (Fig. 1a) to illustrate
how rod assemblies are mapped to physiology, dynamics, and
morphology. In contrast to a fully compliant system, the elbow
joint exhibits both soft and stiff characteristics as well as sim-
plified dynamics and reduced configuration space. Nonetheless,
its analysis allows us to verify and calibrate our model against a
wealth of readily available data (anatomical and biomechanical),
and to relate our description to the widely used Hill model30 (see
Supplementary Note 1). It also serves the purpose of illustrating
our representation’s level of detail, which can be leveraged to
address human patient-specific kinesiological needs.

We reproduce the biceps brachii (Fig. 1b, orange elements) in
silico, each head modeled as a bundle of 18 viscoelastic Cosserat
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rods, each rod representing 20 motor units, for a total of 360, in
agreement with average physiological measurements58. We note
that the number of motor units per rod can be varied depending
on the desired level of granularity. These rods, whose governing
equations can be found in the Methods section, can actively
contract and relax. Their characteristic force outputs and
twitching times can be directly related to their cross-sectional
area through a contractile stress (σm). This allows the muscle to
comply with the size principle59 which relates low-force, slow-
twitch activity to smaller motor units, and high-force, fast-twitch
activity to larger ones (see Supplementary Note 1). Towards the
completion of a full elbow assembly, we consider the humerus,
ulna and radius (all of which are slender bones), represented as
passive, stiff (effectively rigid) rods with tapering segmental radii
(Fig. 1b, purple elements). Similarly, proximal and distal tendons
are modeled as tapered passive, but this time elastic, rods (Fig. 1b,
yellow elements). We note that bones are not always slender, in
which case a mixed representation that includes rigid bodies or
FEM should be employed.

The final assembly and its configuration space are achieved by
specifying boundary conditions and connectivity among the
various elements. Spherical joints (free relative rotations) are used
for the muscle–tendon, bone–tendon, and upper arm–shoulder
connections. A hinge joint (relative rotations in a prescribed
plane) is implemented for the humerus–radius connection, while

a fixed joint (no relative motion) is used for the ulna–radius
connection. For the mimicking of pure flexion–extension
exercises (as intended here), we do not consider the relative
rotation between ulna and radius which occurs during
pronation–supination. However, these movements can be
modeled by redefining the joint connection to allow for rotations
in two perpendicular planes. The full elbow assembly is depicted
in Fig. 1b. Details on the modeling and boundary conditions can
be found in the Methods section, and biomechanical properties of
constitutive elements are summarized in Supplementary Table 1.

We then performed isometric (static) and isokinetic (dynamic)
tests for validation against experiments60,61. An isometric test is
conducted with the biceps muscle performing a maximum
voluntary contraction (MVC) against a non-moving handle, so
that the elbow joint movement is restricted and the muscle length
η of the biceps is kept constant. By repeating this exercise for
different handle positions, the static force output is mapped to
different muscle lengths (Fig. 1c). To perform the test in silico, we
use available experimental data (Fig. 1c) to compute polynomial
fittings that dictate the muscle active MVC and passive elastic
response (Fig. 1c) as functions of its elongation η (see
Supplementary Note 2). Once these biomechanical properties
are determined, we let the muscle (initialized at rest length η ¼ 1)
perform its MVC while applying prescribed external forces Fset at
its ends. The simulation then dynamically evolves the muscle to
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Fig. 1 Human elbow actuation. a Elbow anatomy. b Simulation of an elbow composed of three bones (humerus, ulna and radius) and two heads of biceps
(short and long head) performing a complete flexion. c Experimental data60 and simulations for active and passive force normalized with peak force
ðFm=FmaxÞ during the isometric exercise (Fset mimics the resistance encountered by the muscle and results in its equilibrium length η). d Experimental61 and
simulation torque measurements of the elbow joint (angled at 60°) performing maximal isokinetic concentric flexions at different angular velocities along
with the corresponding overall muscle strain rate damping ζ . The numerically determined ζ (see Supplementary Note 2) are then compared with
theoretical estimates based on the Hill model62
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its static equilibrium length η. By repeating this experiment for
various Fset, we can relate muscle length to static force output
(Fig. 1c), confirming a good match between simulations and
experiments.

Isokinetic tests instead measure the dynamic torque output of
the muscle performing MVC against a handle moving at constant
speed (joint flexion in Fig. 1b). When the muscle performs MVC
during length-changing actuation, its viscosity introduces damp-
ing effects which decrease the static force output. We take into
account these effects through a damping coefficient ζ , which is
numerically set to match simulated and experimental torque
outputs (Fig. 1d). The resulting ζ was then compared with
theoretical estimates62 (Supplementary Eq. 5) and found to be in
reasonable agreement (Fig. 1d).

Our simulations also capture morphological deformations as
the joint flexes. Indeed, during contraction the motor units
shorten and, due to muscle incompressibility63, the bicep radius
increases (Fig. 1b). Our model accounts for incompressibility
(Poisson ratio ν ¼ 0:5) through the local dilatation factor e of
Eqs. (3) and (4) (Methods section—mathematical derivation in
Gazzola et al.64), and prevents rods’ interpenetration by checking
for collisions among them (Eq. (7)). We measure �28% increase
in biceps cross-sectional area when the elbow forms a 90° angle,
consistent with �30–34% observed experimentally65.

In summary, we virtually reconstructed a 3D replica of a
human elbow joint and, by taking advantage of isometric and
isokinetic tests, modeled, calibrated, and validated individual
muscle unit’s actuation so as to reproduce the dynamic and
morphological behavior of this system. In general, this modeling
approach presents several advantages relative to the commonly
used Hill model: (a) Individual rods (motor units of different
sizes) can be selectively recruited or rendered passive (mimicking
an injury). As an example, in Supplementary Note 6.2, we
propose an assisting device (inspired by the coiled fishing lines of
Haines et al.66), which converts internal twist into contraction
forces to aid restoring the weightlifting abilities of an injured
biceps. (b) Compliant muscles can bend, twist and shear to
respond realistically to the dynamics of the entire structure and
the environment. Indeed, the investigations presented in
Supplementary Note 6 find that neglecting twist or shear
(disregarded in Kirchhoff or strand models35,36,40–42) can have
a significant quantitative and qualitative impact, especially when
the environment produces three-dimensional, fluctuating and
impulsive loads.

Engineering of bio-hybrid robots. Next, we employ our solver to
guide the design and fabrication of swimming and walking
millimeter-long bio-hybrid bots.

For the investigation of swimming bio-hybrid robots, we first
solve a forward problem by numerically modeling and simulating
the bio-hybrid flagella of Williams et al.23, the first instantiation
of a functionalized PDMS (polydimethylsiloxane) coupled with
cultured cardiomyocytes beating in viscous fluids. We create a
one-to-one computational replica of the original swimmer of
length L ¼ 1927 mm: the PDMS substrate is modeled as one
passive filament replicating the experimental geometry and
material properties23, while the living component—the cluster
of cultured cells—is represented as a small, soft contractile
filament connected to the substrate. The swimmer operates in a
flow regime characterized by a small Reynolds number
(Re � 10�2) so that hydrodynamic loads can be captured via
slender body theory67. System details are reported in Fig. 2, and
Supplementary Note 3.

As observed in Fig. 2, we obtain good qualitative and
quantitative match between simulations and experiments in both

the assessment of swimming motion (Fig. 2a) and forward
displacement of the bot’s center of mass (Fig. 2b).

With a working model in hand, we then tackle the inverse
problem of optimizing the bot layout to maximize its swimming
speed. In order to identify the optimal design, we couple our
solver with the Covariance Matrix Adaptation-Evolution Strategy
algorithm (CMA-ES, Hansen et al.68). The CMA-ES is a
stochastic optimization algorithm that progressively samples
generations of parameter vectors (population of bots character-
ized by different layouts) from a multivariate Gaussian distribu-
tion N . While there is no mathematical proof of convergence to
global optimum, CMA-ES has proven reliable in dealing with
multi-modal, low-dimensional continuous problems69,70 and has
been employed in a range of engineering and biophysical
applications71–74.

We thus let CMA-ES evolve four key parameters that
characterize the bot layout—head length, head radius, tail radius
and cell location—within prescribed ranges accounting for actual
manufacturability. The bot length remains fixed.

The optimization course illustrated in Fig. 2c converges to an
optimal solution that improves the original swimmer's maximum
speed by a factor of 2.44. The optimal design requires a shorter
but wider head, muscle cells attached closer to the head and a
�38% thinner tail (exact parameters reported in Fig. 2). We
observe that the longer (due to shorter head) and thinner (thus,
more compliant) tail in the optimal design enables larger bending
deflection (Fig. 2d), leading to larger forward thrust that
accelerates the swimmer, while the optimized head contributes
in balancing the imparted angular momentum. We note that the
optimizer did not select the lower bound of attainable tail radius,
which suggests that balance between flexibility and drag
associated with large tail deflection is needed for optimal
performance. This approach thus lays the foundations for the
next generation of bio-hybrid swimming robot design24.

In addition to modeling and optimizing a bio-hybrid swimmer,
we also tackled the computational design of a bio-hybrid walker,
leading to the fabrication and testing of the largest and fastest
motile biological machine (biobot) to date21. Inheriting the bio-
hybrid robot design from a previous demonstration22, the walker
of Pagan-Diaz et al.21 consists of an asymmetric hydrogel scaffold
and skeletal muscle tissues, resembling muscle–tendon–bone
relationships found in vivo. The walker operates in a solution
bath in which the muscles are suspended and electrically shocked
to induce contractions that result in motion due to asymmetry
and friction. We modeled this architecture and, targeting a bot
length of 14 mm, which is approximately twice the previous
largest attempt, used our simulations to design the new scaffold
and topological muscle arrangement of the bot. Critical to the
design is a new muscle–tissue topology (represented via rod
assembly, Fig. 2e) in which a thin strip section connects two rings
wrapped around the skeleton legs to transfer muscle contraction
forces. The muscle contractile stress (σm) was characterized
through benchmark experiments21, and implemented in simula-
tion as the absolute value of a sinusoidal signal with amplitude
σm. Thus, the maximum force Fm that a muscle tissue with cross-
sectional area Am and Young’s modulus Em can exert on the
skeleton is expressed as

Fm ¼ Am γσm � Emϵ

1� ϵ

� �
; ð1Þ

where γ ¼ Aact=Am is the ratio of active-to-total muscle cross
section area (determined in Pagan-Diaz et al.21) and ϵ denotes
strain. The second term on the right-hand side captures the
elastic response of the deforming filament and its cross-sectional
rescaling as it shortens or elongates. Taking into account hydrogel
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properties (Young’s modulus E) and 3D printing capabilities, we
redesigned the target robot layout by varying material stiffnesses,
leg lengths, muscle topology, and geometry until a faster design
was obtained. This computational blueprint was then experi-
mentally tested and demonstrated in Pagan-Diaz et al.21 (Fig. 2f).
As computationally predicted, the bot is capable of walking under
different muscle stimulation frequencies (Fig. 2i), with the
maximum velocity being twice that of the previously reported
design22.

Here, we challenge our computational framework to further
improve the walker of Pagan-Diaz et al.21 by optimizing it for
speed, a non-trivial task given the non-linear interplay between
asymmetric friction, bending stiffness of the skeleton and length

ratio of the two pillars. Thus, after fixing the overall length and
width of the walker and the muscle contraction frequency at 2 Hz,
we identify three critical parameters: skeleton's Young's modulus,
length of the shorter pillar and location of the muscle strip. As
can be seen in Fig. 2i, the newly identified optimal solution
(Fig. 2g) locomotes at double (�250%) the speed of Pagan-Diaz
et al.21, across stimulation frequencies (2 Hz, 1 Hz, and 0.5 Hz),
thanks to a softer connecting bridge coupled with slightly more
asymmetric legs (Fig. 2g).

We have shown through these studies that our computational
approach is able to capture the physics of cell- and muscle-
powered soft robotic systems and further optimize their design
for desired performance. This also illustrates how the robustness
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and versatility of our solver—coupled with inverse design
techniques—can be harnessed to engineer more capable
prototypes.

Synthesis of slithering snakes. Here we employ our numerical
approach to distill design principles and extract broadly
applicable architectural motifs from complex biological
systems (in this case, a snake with its intricate musculature
layout), in favor of engineering manufacturability and bio-
mechanical understanding.

Extensive work has been done on understanding snake
locomotion12,29,75, targeting robotic replicas made of rigid linked
elements actuated with servomotors76,77. Here we illustrate the
viability of a completely soft elastic snake, modeled and
computationally designed inspired by real snakes, but effectively
actuated via a small number of muscle–tendon groups to achieve
smooth undulatory movement. Snakes exhibit a complex
architecture made of hundreds of overlapping homologous lateral
muscle segments, each spanning across multiple vertebrae
(Fig. 3a). Although snakes are equipped with a multitude of
muscles to orchestrate a variety of gaits and body deformations,
we speculate that only a few and, importantly, overlapping
actuators are necessary for effective and smooth forward
slithering. We test this hypothesis by considering a simplified
snake architecture made of a small number of symmetric and
antagonistic lateral muscle–tendon pairs. Then, we let CMA-ES
identify locations and actuation patterns, so as to maximize the
snake’s forward speed. This way architectural motifs are free to
emerge, and their performance can be compared with reference
simulations64,78,79 and experimental recordings75,80. While pre-
vious reference studies were able to realistically replicate various
gaits via continuously actuated elastic beams64,78,79, we empha-
size that our goal here is to reveal hidden architectural design
principles and expose their function for engineering purposes.
This is achieved here via a generic, species-agnostic approach,
rather than dissecting in detail the functioning of any specific
snake architecture (Supplementary Note 4).

Then, our limbless, soft robot is constituted by a tapered, elastic
skeleton modeled as a filament, and to retain the biological
analogy, we measure the length of the snake in terms of vertebrae,
from 0 (head) to 100 (tail). In our simulation, the three major
lateral muscle–tendon groups responsible for locomotion (semi-
spinalis-spinalis (SSP-SP), longissimus dorsi (LD) and iliocostalis
(IC)) are lumped into a single group—one muscle bundle that
intervenes between two tendons (Fig. 3a). Two joints anchor the
extrema of these longitudinal actuators along the snake’s body at
half its radius away from the midline vertebra. While this
simplifies the snake’s overall architecture, it retains its funda-
mental components and allows us to test whether overlapping
muscle layouts naturally emerge as favorable solutions. Finally,
muscles and tendons are ‘glued’ to the body, hence complying
with the same local curvature in response to the full body
dynamics. The interaction between the snake and the ground is
rendered via anisotropic friction by adopting the model of
Gazzola et al.64 and the experimental friction coefficients and
Froude number Fr (ratio between inertial and friction forces) of
refs. 75,80.

Given the above musculoskeletal model, we seek to determine
the minimal number of actuators, their layout and activation
patterns so as to closely reproduce reference simulations64,78,79

and experimental recordings75,80. The body layout is then
parametrized so that each antagonistic muscle–tendon group i ¼
1; ¼ ; n (we separately considered the six scenarios 1 � n � 6)
can arbitrarily span any number of vertebrae between 5 and 95
(xim denotes the starting location and Lim the overall length

0 � Lim � 90), exert a peak force of magnitude 0 � Fi
m � 3500 N

(corresponding to a local torque between 0 and �40 Nm,
consistent with the range in Gazzola et al.64), and is rhythmically
activated by the periodic function based on Hu et al.75 and
Gazzola et al.64

Activity ðtÞ ¼ Fim � ð0:5 sin 2πf t� ϕim
� �� �þ 0:5Þ; t> ϕim right

Fim � ð�0:5 sin 2πf t� ϕim
� �� �þ 0:5Þ; t> ϕim left

(

ð2Þ

where 0 � ϕim � 1 is the phase shift, and the activation frequency
is set to be constant so as to attain Fr ¼ 0:164,75. Therefore, our
fully compliant, active structure is characterized through the
parameters xim , Lim , Fi

m , ϕim . The optimal set of parameters that
maximizes the average forward speed over one actuation period is
again identified via CMA-ES. This set-up allows us to make
meaningful comparisons against previous studies64 which
employed the same optimization technique.

By considering snakes with increasing number of muscle pairs
(1 � n � 6), separately optimized for speed, we show in
Supplementary Note 4 that as few as four soft longitudinal
actuators can closely approximate the idealized continuous
reference64, which sets the attainable velocity upper bound. The
37-generation optimization course of this four-muscle architec-
ture is reported in Fig. 3b and illustrates how the average velocity
converges to a maximum value that coincides with the upper
bound. Thus, a snake bearing merely four muscle groups is shown
to perform comparably to the continuous actuation model. The
identified design exhibits muscle groups that span roughly 30–40
vertebrae (Fig. 3d). This is in reasonable agreement with
biological observations81 where the snake’s major epaxial muscle
segments in total span �27 vertebrae (Fig. 3a, adapted from
Jayne81). The phase differences between the muscle groups are
depicted in Fig. 3c. Moreover, actuators’ overlap (Fig. 3d) is
consistently identified as a key feature independent of the number
of muscle pairs considered (Supplementary Note 4). Indeed, non-
overlapping architectures were systematically discarded by CMA-
ES as sub-optimal (up to 60% speed degradation).

Comparing the dynamic behavior of the Gazzola et al.64 with
our identified model, we observe that despite having approxi-
mately equal mean forward velocities (�0:58ms�1), our
musculoskeletal representation exhibits larger oscillation in
forward and lateral velocities (Fig. 3f). This stems from the
limited number of muscles, and is reflected in the more
prominent lateral displacement of the midline kinematics
(Fig. 3e). For comparison, we additionally report experimentally
recorded midline gaits of a corn snake, the fastest recorded in Hu
and Shelley80 among various species characterized by Fr � 0:1.
The observed gait is found to closely resemble our models
(Fig. 3e). It is then remarkable how the careful orchestration of
distributed actuation (four longitudinal muscle groups) allows for
smooth realistic gaits despite its simplicity. This is in stark
contrast with a rigid snake robot counterpart equipped with only
four servomotors that would otherwise exhibit a less refined and
less smooth motion.

This study illustrates a framework to simplify, test and distill
biomechanical principles out of complex biological systems as
shown by a fully compliant, realistically slithering and fast snake
made of a few simple actuators. Thus, by solving an inverse
problem, the musculoskeletal layout for a potential soft robotic
snake is identified, guiding its practical design and manufactur-
ing. This is shown to approximate the idealized continuous
actuation case, highlighting the role of a natural solution based on
overlapping longitudinal actuators.
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Replication of feathered wings. So far we have studied muscu-
loskeletal layouts that are assembled from two key components: the
power source (muscles, cells) and the substrate (bones, elastic
bodies), entailing Oð10Þ rods generating locomotive functions on
surfaces or in bulk liquids. In this section, we demonstrate an
instance of locomotive strategy that incorporates additional

biological structures with critical functionalities—a feathered mus-
culoskeletal bird wing—scaling up our representation to Oð103Þ
rods. The study case here serves as an illustration of our solver’s
ability to qualitatively replicate full-scale biological systems while
capturing main traits of the underlying biophysical behavior,
thereby providing an accessible tool to understand them in silico.
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Numerous studies have been conducted to understand the
different biophysical aspects of bird flight, from muscular
activation patterns for different flight modes82 to geometrical
and mechanical properties of feathers83, in relation to thrust
generation, drag reduction and sound suppression84. Motivated
by these investigations, we consider the dynamics of the wing
structure of a pigeon (Columba livia). We reconstruct in silico
remiges feathers and model the rachis as filaments with bending
stiffness EI consistent with85. Depending on the length of the
feather, �80�200 barbs are attached to one rachis (Fig. 4a). Each
computational barb represents approximately five real ones, with
its radius set to match the estimated aggregate bending stiffness86

(see Supplementary Note 5.1). Overall, 19 feathers are connected
to the wing such that the total wing area conforms to biological
data87. Our computational model then entails a total of �3000
rods per wing. We consider the four muscles associated with
the shoulder and elbow joints to control wing actuation
and morphing (Fig. 4b), with biomechanical parameters adapted-
from the human elbow joint, due to lack of specific measurements.
In our four-muscle model, the supracoracoideus–pectoralis pair
controls the dorsoventral angle of the shoulder and the
biceps–scapulotriceps pair controls the elbow angle during
flexion–extension. The temporal evolution of anteroposterior
angle then arises from the dynamic interaction between the
structure and the environment. Aerodynamic loads are estimated
via a reduced order model in which forces scale quadratically with
the local body velocity (see Supplementary Note 5.2). While this
model cannot capture the complex unsteady aerodynamics
associated with flapping flight, it nonetheless provides a
preliminary estimate. We underscore the qualitative character
of this specific demonstration.

We then set to reproduce the kinematics of wings morphing
through a full stroke cycle during takeoff mode. We first initialize
our simulated wing in a straight, flat configuration (Fig. 4d) and
over the initiation phase, set (arbitrarily) the muscle activation via
Supplementary Eq. 6 so as to prepare the wing for the downstroke
phase (Fig. 4e, f). During the downstroke and upstroke phase, the
muscle actuation patterns (Supplementary Eqs. 7–10) are instead
based on experimentally recorded electromyography (EMG)
signals82 (Fig. 4f). Since EMG measurements do not provide
the magnitude at which the muscles operate (only their time
sequences), we set the muscle actuation force (�10 N, same order
of magnitude as in Biewener et al.88, Supplementary Note 7.4). As
can be seen in Fig. 4e, our model captures the temporal evolution
of the three joint angles, in qualitative agreement with
experimental measurements82. This is a non-trivial task given
the highly non-linear interplay between muscle actuation, passive
structural dynamics and aerodynamic loads. The main discre-
pancy is observed for the anteroposterior joint angle. This is not
surprising since the four muscles have little control on it and its
time evolution emerges as a result of the overall system dynamics,
rendering it most sensitive to modeling approximations. In this
context, it is still notable that despite all the approximations that
our model necessarily entails, simulations can qualitatively
capture the overall wing behavior, with a maximum joint angle
deviation from experiments of �10°, comparable with measure-
ment variations.

Thus, here we have demonstrated the potential of our method
in representing complex, heterogenous biological structures to a
high degree of detail for the investigation of locomotive functions.

Importance of all modes of deformations. Finally, we note that
while the role of different deformation modes may be predicted a
priori for simple problems, their significance in more complex
heterogenous architectures interacting with uncertain

environments may present a challenge. In this light, and to fur-
ther advance the argument for the need to capture all deforma-
tion modes, we extend our investigation to understand in
particular the impact of twist and shear (often assumed unim-
portant) on the architectures presented in this study through
numerical twist- and shear-hardening experiments. Findings can
be found in Supplementary Note 6, where interaction with the
environment (particularly friction) is observed to excite these
modes, thereby affecting system response. Additionally, two
demonstrations, which functionality critically relies on twist
(elbow assistive device) and shear (slithering on uneven terrain)
modes, are introduced to underscore the opportunity of modeling
these effects.

Discussion
We have presented a methodology based on the assembly of
heterogeneous, active and passive Cosserat rods for the simula-
tion of dynamic musculoskeletal architectures that can undergo
all modes of deformation. This approach aims at addressing the
lack of rigorous engineering methods in soft robotics and con-
tributes to fill the gap between conventional rigid-body modeling
and high-fidelity FEM methods, striking a compromise between
versatility, accuracy, robustness, numerical and computational
complexity. These favorable features are leveraged for engineer-
ing, synthesis and replication of soft-bodied systems, demon-
strated here in a number of forward and inverse problems relative
to soft robotic and complex biological structures across scales
(from �100 μm to m) and environments (aquatic, terrestrial, and
aerial locomotion). Our results illustrate the utility of our
approach, establishing it as a promising asset in a broad range of
applications, from bioengineering to customized rehabilitation, as
well as fundamental discovery in the functioning of living
organisms.

Methods
The Cosserat rod model. In the context of composite and soft bodies char-
acterized by large deformations in 3D space, non-linear mechanics, continuous
actuation, sensory feedback and interface effects, we propose a dynamic model
based on assemblies of Cosserat rods89. In this section, we recall the mathematical
basis and numerical methods for the simulation of individual elastic, stretchable
and shearable filaments64, and the extensions implemented here to handle complex
biological layouts.

Individual rods. We mathematically describe a rod (slender body, Fig. 5a) by a

centerline �xðs; tÞ 2 R
3 and a rotation matrix Qðs; tÞ ¼ f�d1; �d2; �d3g�1

which leads
to a general relation between frames for any vector v: v ¼ Q�v, �v ¼ QTv, where �v
denotes a vector in the lab frame and v is a vector in the local frame. Here
s 2 ½0; L0� is the material coordinate of a rod of rest length L0, L denotes the
deformed filament length and t is time. If the rod is unsheared, �d3 points along the
centerline tangent ∂s�x ¼ �xs while �d1 and �d2 span the normal–binormal plane.
Shearing and extension shift �d3 away from �xs, which can be quantified with the
shear vector σ ¼ Qð�xs � �d3Þ ¼ Q�xs � d3 in the local frame. The curvature vector κ
encodes Q’s rotation rate along the material coordinate ∂sdj ¼ κ ´ dj , while the
angular velocity ω is defined by ∂tdj ¼ ω ´ dj . We also define the velocity of the
centerline �v ¼ ∂t�x and, in the rest configuration, the bending stiffness matrix B,
shearing stiffness matrix S, second area moment of inertia I, cross-sectional area A
and mass per unit length ρ. Then, the dynamics64 of a soft slender body is
described by:

ρA � ∂2t �x ¼ ∂s
QTSσ
e

� �
þ e�f ð3Þ

ρI
e � ∂tω ¼ ∂s

Bκ
e3

� �
þ κ ´Bκ

e3
þ Q

�xs
e
´ Sσ

� �

þ ρI � ω
e

� 	
´ωþ ρIω

e2
� ∂t eþ ec

ð4Þ

where Eqs. (3) and (4) represent linear and angular momentum balance at every
cross section, e ¼ j�xsj is the local stretching factor, and �f and c are the external
force and couple line densities, respectively64.
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The above continuous representation is discretized into ðnþ 1Þ nodes of
position xi and n connecting cylindrical segments (Fig. 5a–c), so that midline linear
displacements are determined by the internal and external forces acting at the
nodes (of mass mi), while rotations are accounted for via couples applied to the
cylindrical elements. The dynamic behavior of a rod is then computed by
integrating the discretized set of equations in time via a second order position
Verlet scheme. The details of our numerical implementation can be found in
Gazzola et al.64, together with a rigorous validation against a number of benchmark
problems with known analytic solutions as well as experimental investigations
involving contact, anisotropic surface friction and highly viscous fluids.

This representation entails a number of advantages: (1) captures 3D dynamics
accounting for bend, twist, shear and stretch—fundamental effects in the case of
elastomeric or biological materials; (2) continuum actuation, interface and
environmental effects can be directly combined with the body dynamics through �f
and c, rendering the inclusion of (self)-contact, friction, muscular activity,
hydrodynamics and adhesion straightforward; (3) its complexity scales linearly
with axial resolution, as opposed to cubic for FEM solvers, reducing computing
time; (4) the realization that bones, tendons and muscle fiber units are generally
slender, provides the rationale for assembling multiple rods with different
mechanical properties to model complex musculoskeletal structures.

Assembly of heterogeneous rods. In order to assemble multiple active and
passive rods into dynamic architectures, it is necessary to prescribe their rules of
interaction, via appropriate boundary conditions. In the following we detail our
modeling approach to spherical joints, fixed joints, hinges, and rod–rod contact,
which are the main interaction modes employed in this study. All other connec-
tions that may be employed in this study are derived from these basic ones, and
detailed in the SI when relevant.

As a general strategy, we avoid mathematically enforcing ‘hard’ constraints via
Lagrange multipliers as their formulation may be cumbersome, impairing the
modularity and versatility of the numerical solver. We instead resort to apply
correcting forces and torques through ‘soft’ displacement–force (or torque)
relations. In the following, to simplify the notation, all vectors are expressed in the
global coordinate.

Spherical joint. A spherical joint (Fig. 5d) approximates the physical connection
between two or more filaments that allows them to rotate with respect to each
other. One biological instance is a fibrous enthesis where a tendon (or a ligament)
is connected to a bone. In our model, a spherical joint is formed by the nodes i and
j at the extremities x1i and x2j of the filaments R1 and R2, respectively. The external

force Fc ¼ kϵ that holds the filaments’ ends connected is proportional to the
distance ϵ ¼ x2j � x1i . The constant k can thus be interpreted as the joint stiffness.

Hinge and fixed joint. A hinge connection is encountered when a rod is confined
in a plane defined by another rod. Knee or elbow joints are intuitive examples, as
shanks or forearms rotate with only one degree of freedom. In our simulations, a
hinge joint (Fig. 5e) is based on the spherical joint model with an additional
constraint on the orientation of the end segments S1i and S2j of the connected
filaments. The allowed rotational plane is then defined by the tangent t1i and
normal n to the segment S1i . To cancel the off-plane vector ϵ? (that might arise
during structure actuation) at the node x2ðj�1Þ, we apply a correcting torque τc
proportional to the hinge stiffness through the constant k

τc ¼ ðx2ðj�1Þ � x2j þ ϵ?Þ ´ kϵ?ð Þ; ϵ? ¼ �½ðx2ðj�1Þ � x2jÞ � n�n: ð5Þ
A fixed joint is evolved from a hinge joint by further constraining the

orientation of S2j to a fixed angle θ relative to S1i . A correcting torque is then
similarly computed, this time through the off-position vector ϵ7!

τc ¼ ðx2ðj�1Þ � x2jÞ ´ kϵ7!ð Þ; ϵ7! ¼ x2j þ l2j t1i cos θ þ b1i sin θð Þ
h i

� x2ðj�1Þ

ð6Þ

where l2j is the length S2j , and b1i ¼ n ´ t1i is the binormal vector. To conform with
our Cosserat model implementation (Eqs. (3) and (4)), all the torques are
transformed into the local frame and stored in the external couple c.

Rod collision. Multiple filaments assembled, for example, in a bundle to form a
muscle should not interpenetrate each other. To avoid this and capture contact, we
adopt the same approach of Gazzola et al.64. Thus, as in the previous sections we
introduce additional forces Fc acting between the discrete elements (S1i and S2j ,
belonging to rods R1 and R2, respectively – Fig. 5f) in contact. To determine
whether any two cylindrical elements are in contact, we calculate the minimum
distance dijmin between edges i; j by parameterizing their centerlines ciðhÞ ¼
si þ hðsiþ1 � siÞ so that dijmin ¼ maxh1 ;h22½0;1�jjciðh1Þ � cjðh2Þjj. If dijmin is smaller
than the sum of the radii of the two cylinders, then they are in contact and penalty
forces are applied to each element as a function of the scalar overlap
ϵij ¼ ðri þ rj � dijminÞ, where ri and rj are the radii of edges i and j. If ϵij is smaller
than zero, then the two edges are not in contact and no penalty is applied.
Denoting as dijmin the unit vector pointing from the closest point on edge i to the
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closest point on edge j, the contact repulsion force is given by

Fc ¼ HðϵijÞ � �kϵij � γðvi � vjÞ � dijmin

h i
dijmin ð7Þ

where HðϵijÞ is the Heaviside function that ensures a repulsion force is produced
only in case of contact (ϵij � 0). The first term within the square brackets expresses
the linear response to the interpenetration distance as modulated by the stiffness k,
while the second damping term models contact dissipation and is proportional to
the coefficient γ and the interpenetration velocity vi � vj . In general, the values k
and γ are related to the maximum forces that muscles or external loads exert on a
given structure. For the sake of reproducibility, the employed values are reported in
the SI.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this manuscript are available from the corresponding
author upon reasonable request. A reporting summary for this article is available as a
Supplementary Information file.

Code availability
A non-parallel version of the software used to perform this study is publicly available at
Github: https://github.com/mattialab/musculoskeletal-elastica
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