Skip to main content
. 2019 Oct 23;9:15173. doi: 10.1038/s41598-019-51564-4

Table 2.

Assessment of the discriminating power of BRT models for malaria risk in villages.

Model Overall P. vivax P. falciparum
cvAUC tAUC cvAUC tAUC cvAUC tAUC
High risk (API > 10) 2010 0.72 0.70 0.72 0.70 0.78 0.76
2011 0.80 0.76 0.80 0.75 0.86 0.74
2012 0.82 0.80 0.82 0.80 0.84 0.81
2013 0.84 0.80 0.83 0.80 0.87 0.80
2014 0.83 0.82 0.82 0.82 0.85 0.84
2015 0.82 0.79 0.82 0.79 0.87 0.85
2016 0.82 0.80 0.82 0.81 0.87 0.84
2017 0.82 0.83 0.87
Very high risk (API > 50) 2010 0.76 0.76 0.77 0.76 0.82 0.78
2011 0.85 0.81 0.84 0.80 0.88 0.81
2012 0.85 0.82 0.85 0.81 0.87 0.76
2013 0.86 0.80 0.86 0.80 0.89 0.84
2014 0.84 0.84 0.84 0.83 0.89 0.83
2015 0.85 0.83 0.85 0.82 0.89 0.86
2016 0.84 0.83 0.84 0.83 0.88 0.83
2017 0.85 0.84 0.89

Each cross-validation BRT model built with data of a given year yielded a cross-validated AUC (cvAUC), while its model predictions with testing data of the following year allowed for the estimation of a testing AUC (tAUC).