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Abstract

Rationale: Neutrophil extracellular traps (NETs) are important in
the host defense against infection, but they also promote
intravascular coagulation and multiorgan failure in animal models.
Their clinical significance remains unclear, and available assays for
patient care lack specificity and reliability.

Objectives: To establish a novel assay and test its clinical
significance.

Methods: A prospective cohort of 341 consecutive adult ICU
patients was recruited. The NET-forming capacity of ICU admission
blood samples was semiquantified by directly incubating patient
plasma with isolated neutrophils ex vivo. The association of NET-
forming capacity with Sequential Organ Failure Assessment scores,
disseminated intravascular coagulation, and 28-day mortality was
analyzed and compared with available NET assays.

MeasurementsandMainResults:Using the novel assay, we could
stratify ICU patients into four groups with absent (22.0%), mild
(49.9%), moderate (14.4%), and strong (13.8%) NET formation,

respectively. Strong NET formation was predominantly found in
sepsis (P, 0.0001). Adjusted by Acute Physiology and Chronic
Health Evaluation II score, multivariate regression showed that the
degree of NET formation could independently predict disseminated
intravascular coagulation and mortality, whereas other NET assays
(e.g., cell-free DNA, myeloperoxidase, and myeloperoxidase–DNA
complexes) could not. IL-8 concentrations were found to be strongly
associated with NET formation, and inhibiting IL-8 significantly
attenuated NETosis. Mitogen-activated protein kinase activation by
IL-8 has been identified as a major pathway of NET formation in
patients.

Conclusions: This assay directly measures the NET-forming
capacity in patient plasma. This could guide clinical
management and enable identification of NET-inducing factors
in individual patients for targeted treatment and personalized
ICU medicine.
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Morbidity and mortality rates in critically ill
patients remain high despite significant
advances in ICU management. Sepsis is a
major driver of poor outcome, and because
sepsis definitions have shifted toward
infection-triggered organ dysfunction (1),
the pathophysiology that underlies
progressive organ failure requires further
elucidation (2). The microcirculation plays
a key role in the development of organ
dysfunction and is particularly vulnerable

to the interactions between inflammation,
coagulation, and innate immune activation
(3). Aberration of this process can cause
“immunothrombosis” (4) and promote
development of disseminated intravascular
coagulation (DIC) to impair
microcirculation.

The role of neutrophils in
immunothrombosis is increasingly
recognized (4). Activated neutrophils can
expel nuclear chromatin to form neutrophil
extracellular traps (NETs) (5, 6) in response
to different pathogens (7–12), bacterial
toxins (12, 13), cytokines (12, 14–17),
histones (18), and activated platelets (19,
20). Mechanistically, NETs are formed
through reactive oxygen species generation
via the mitogen-activated protein kinase
(MAPK) pathway that specifically includes
mitogen-activated protein kinase kinase
(MEK)/extracellular signal-regulated
kinase (ERK) signaling (21) to trigger
myeloperoxidase (MPO)-mediated
activation of neutrophil elastase (NE) and
protein-arginine deiminase type 4 (PAD4)
activation. The resultant histone
citrullination leads to chromatin
decondensation and the expulsion of
extracellular DNA decorated with
antimicrobial enzymes (NE and MPO) and
histones (22). NETs can trap and kill
bacteria to form a first line of defense
against infection. However, excessive NET
formation facilitates immunothrombosis
and even DIC (23–28) to damage
microcirculation and contribute to organ
failure (19, 29, 30). NETs have been
recognized as therapeutic targets,
particularly in critical illnesses (19, 31, 32),
and monitoring the degrees of NET
formation in real time may benefit these
patients in clinical practice.

Although NETs can be induced and
monitored in vitro and in animal models
(12, 33), this has been difficult to quantify
in clinical settings. Currently, assays to
monitor NET formation are limited to
invasive organ biopsy observations or
through indirect measures, such as
circulating cell-free DNA (cfDNA),
nucleosomes, citrullinated histone, MPO,
and citrullinated histone H3–DNA or
MPO–DNA complexes (34–36). The
clinical potential of these surrogate markers
of NET formation have been highlighted
for critical illness (26, 32, 37) but do not
correlate with disease severity (34–36).
Furthermore, their circulating
concentrations are unstable and subject to

enzymatic degradation (18, 23, 38, 39).
Therefore, a more reliable assay is urgently
required. In this study, we have developed
an assay to directly determine the NET-
forming capacity of patient plasma, and its
clinical use has also been evaluated in a
prospective cohort of ICU patients.

Methods

Study Design and Participants
A prospective cohort of adult patients
admitted to a general adult ICU at the Royal
Liverpool University Hospital in the United
Kingdom between June 2009 and June 2013
was assessed. Patients were enrolled in
accordance with the protocol approved by
the National Research Ethics Service
Committee North West – Greater
Manchester West and Liverpool Central
(reference nos. 07/H1009/64 and
13/NW/0089). Written informed consent
was obtained for all participants, and daily
serial blood samples were collected over the
first 96 hours of ICU admission (study
duration). Exclusion criteria were transfers
from other ICUs, ICU readmissions within
30 days, preexisting causes of neutropenia
(including hematological malignancy),
intravenous heparin treatment (23), or
insufficient plasma preserved to effectively
perform functional analysis (Figure E1
in the online supplement). ICU admission
diagnoses were verified by two independent
experienced clinicians. Admission Acute
Physiology and Chronic Health Evaluation
(APACHE) II scores, daily Sequential Organ
Failure Assessment (SOFA) scores, and
modified SOFA scores (platelet
component removed to avoid bias from
thrombocytopenia) were recorded together
with outcome measures, including
respiratory/cardiovascular support days,
length of ICU stay, and 28-day mortality
(from ICU admission). Sepsis was defined
using the American College of Chest
Physicians/Society of Critical Care Medicine
2001 international sepsis definition (1).

DIC scoring was performed daily for
the first 96 hours of ICU stay using criteria
defined by the International Society for
Thrombosis and Haemostasis (40). DIC was
diagnosed when a cumulative score greater
than or equal to 5 was reached from platelet
(>1003 103/ml = 0; ,1003 103/ml = 1;
,503 103/ml = 2), fibrinogen (>1.0
g/L = 0; ,1 g/L = 1), D-dimers (no
increase = 0; moderate increase = 2; strong

At a Glance Commentary

Scientific Knowledge on the
Subject: Neutrophils are the first line
of defense against bacterial infection,
and formation of neutrophil
extracellular traps (NETs) is an
important protective mechanism.
However, NETs can also cause harm by
exposing cytotoxic histones and
promoting intravascular coagulation.
Although NETs are increasingly
considered as important therapeutic
targets, there is currently no robust
measure of NET formation to inform
clinical care and enable precision
medicine in patients in the ICU.

What This Study Adds to the Field:
We have established a novel assay by
incubating patient plasma with
neutrophils to directly induce and
measure NET formation. This is
different from currently available
assays, which primarily detect NET
breakdown products. Using this assay
in a prospective cohort of 341 ICU
patients, we found that the degree of
NET formation is significantly
associated with disease severity and
independently predicted development
of disseminated intravascular
coagulation and mortality. This assay
also enabled identification of IL-8 as a
major factor that drives NETosis
through mitogen-activated protein
kinase pathway activation. Inhibiting
IL-8 or mitogen-activated protein
kinase significantly reduced NET
formation. Therefore, this assay can
provide information on the in vivo
capacity for NET formation and its
inducing factors to enable improved
therapeutic targeting strategies for
ICU patients.
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increase = 3), and prolongation of
prothrombin time (3 s = 0; .3 but ,6 s = 1;
.6 s = 2) (40).

Ex Vivo Assay of NET-Forming
Capacity
Assay development was performed using a
cohort of 54 patients with sepsis (NHS REC
ethical approval 13/WA/0353) admitted to
the ICU at Aintree University Hospital and
the Royal Liverpool University Hospital. The
capacity of patient platelet-poor plasma to
formNETs was tested by incubating patient or
healthy control plasma (or serum, when
indicated) (100 ml) with heterologous
neutrophils (23 105) from healthy volunteers
(see eMethods section in the online
supplement) or patient-specific neutrophils,
when indicated, for 4 hours in glass chamber
slides (BD Biosciences) at 378C in 5% CO2.
After fixation (2% paraformaldehyde; Sigma-
Aldrich), extracellular DNA was stained with
10 mg/ml propidium iodide (Sigma-Aldrich)
and visualized by immunofluorescence
microscopy (320 magnification unless
otherwise specified). Quantification was
performed by double-blinded assessment of
extracellular DNA release by three
experienced clinical scientists, and the average
percentage was used for analysis. Degree of
NETs formed was categorized into four
groups: absence of NETs=0% neutrophils
forming NETs per microscopic field, mild
NETs=1–25%, moderate NETs=26–50%,
and strong NETs greater than or equal to
50%, including amalgam of webs. For
validation, plasma-induced NETs were
stained with antihuman NE (Santa Cruz
Biotechnology) and antihuman MPO
(Abcam) together with fluorescein
isothiocyanate and Alexa Fluor 700 (Thermo
Fisher Scientific) secondary antibodies.
Mechanistic studies were performed using
specific inhibitors of either PAD4 (Cl-
amidine; Cambridge Biolabs), IL-8 (IL-8
monoclonal antibody [mAb], R&D Systems;
CXCR1/2 [reparixin], Dempé; or AZD5069,
AstraZeneca) or MAPK signaling (U0126;
Sigma-Aldrich).

Clinical Samples
After ICU admission, surplus blood samples
were collected daily from all patients for the
first 96 hours, in accordance with ethically
approved protocols. Measurements
included whole-blood cell counts,
coagulation parameters, NET-related
markers, and cytokines (see eMethods
section in the online supplement).

Statistical Analysis
Distributions of continuous variables were
assessed by Q–Q plots, histograms, and
Shapiro-Wilk tests. Clinical parameters were
nonparametric in nature and are presented
as medians and interquartile ranges (first
and third quartiles). NET-forming capacity
was analyzed in two ways: 1) as continuous
variables (percentage of NETs per
microscopic field) and 2) as categorical
groups based on the degree of NETs.
Differences in medians between two (Mann-
Whitney U test) or more groups (Kruskal-
Wallis test) were assessed. For cytokine
analysis and comparator NET assays, the
NET categories were also compared with
healthy control subjects. The x2 test was
used for categorical variables (sex, ethnicity,
presence/absence of ICU admission
diagnosis, DIC, and 28-d mortality) between
either two or more groups. Correlation
analysis used Spearman rank’s correlation
test. To test whether our NET assay and
other NET-related markers were
independent predictors of DIC and
mortality, multivariable analysis of crude
and adjusted odds ratios were performed
(with patients adjusted for APACHE II
scores). Multivariate model construction is
detailed in the eMethods section in the
online supplement (Table E1). Receiver
operating characteristic curves assessed the
performance of the different parameters
(using continuous variables on ICU
admission) for predicting DIC and
mortality. Comparisons of receiver operating
characteristic curves were performed using
the DeLong test with MedCalc software. All
other analyses were performed using IBM
SPSS Statistics version 22 statistical software
(IBM). A two-tailed P value less than 0.05
was considered statistically significant.

Results

NETs Can Be Directly Induced by
Incubating Neutrophils with Plasma
or Sera from Patients with Sepsis
We observed that NETs were directly induced
by heterologous healthy neutrophils incubated
with platelet-poor plasma taken from a cohort
of 54 patients with sepsis from two ICUs
(Figure 1A). Typical NET structures were
observed in the wells containing certain septic
plasma or serum. By contrast, NETs did not
form in the wells containing plasma or serum
from healthy donors (n=20) (Figure 1A),
unless coincubated with 100 nM phorbol

myristate acetate, a known positive control for
NET formation. For further validation of
patient plasma-induced NETs, antihuman NE
and antihuman MPO and corresponding
fluorescein isothiocyanate and Alexa Fluor
700–conjugated secondary antibodies were
used, and we confirmed that the typical
features of NETs existed (Figure 1B). Cl-
amidine, an inhibitor of PAD4 and NETosis,
was able to block the plasma- or serum-
induced NETs (Figure 1C). We compared the
plasma and serum isolated from blood
samples taken from the same patients at the
same time and found that either plasma or
serum could induce similar amount of NETs
(Figure 1D). Moreover, experiments were also
performed using patient-specific (n=10)
neutrophils incubated with patients’ own
plasma to compare the degree of NETs
generated by normal donor neutrophils
(n=10), and we found no obvious difference
in NET formation (Figure 1E). The degree of
NET formation from patient plasma (n=10)
was repeatable with neutrophils isolated from
different healthy donors (n=10) (data not
shown). Similarly, there was no exception
among plasma from different healthy
volunteers (n=20), with none of them
inducing NETs (data not shown). Differential
degrees of NET formation between patients
with sepsis (n=54) (Figure 2A) were
quantified as a percentage (NETs per
microscopic field; see METHODS) and
categorized into four groups: absent (no
neutrophils forming NETs per microscopic
field) (n=21), mild (1–25%) (n=15),
moderate (26–50%) (n=10), and strong
(>50%) (n=8) (Figure 2A). The strong NETs
induced by patient plasma were equivalent to
phorbol myristate acetate–induced NETs in
healthy samples, whereas patient samples with
absent NETs were indistinguishable from
those of healthy control subjects.

These data indicate that the assay is
robust and reliable for quantification. On
the basis of this extensive assay validation
work, we progressed to examine plasma
taken from a large cohort of ICU patients
(n= 341) to examine the clinical relevance
of NETosis.

Sepsis Is the Predominant ICU
Condition Associated with NET
Formation
In total, 341 patients meeting the inclusion
criteria were recruited (Figure E1). The
clinical characteristics of patients are
described in Table 1. We found that in 266
of 341 (78%) patients, their plasma could
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induce NET formation. In the remaining 75
of 341 (22%) patients, no NET formation
was observed (Table 1). The degree of NET
formation differed between patients: in 170
of 341 (49.9%), it was mild; in 49 of 341
(14.4%), moderate; and in 47 of 341 (13.8%),
strong. The degrees of NET formation were
not associated with age, sex, or ethnicity

(Table 1) (P. 0.05), but they were strongly
associated with primary diseases, in
particular a diagnosis of sepsis (Table 1 and
Figure 2B). Two-thirds of moderate and
strong NET formation was induced by
plasma from patients with sepsis, whereas
more than 70% of mild NET formation was
induced by plasma from patients without

sepsis. There was no significant correlation
between NET formation and white blood
cell (R=20.336; P=0.062) and neutrophil
counts (R=20.309; P= 0.114) (Table 2) or
with other NET-related markers such as
cfDNA (R=20.134; P=0.864), MPO
(R=0.327; P= 0.204), and DNA–MPO
complexes (R=0.158; P= 0.982) (Table E2).

A B
Neutrophil elastaseDNA

Myeloperoxidase Merge

C

0

20

40

60

80

100

N
E

T
s 

(%
)

N
E

T
s 

(%
)

NETs +Cl-amidine

P<0.0001

+ 100 nM PMA Normal plasma

Septic plasma Septic plasma

DNA

Normal Patient

Neutrophils

0

20

40

60

80

100

ns

ED

ns

Sepsis
patients

ns ns

Normal
+PMA

0

20

40

60

80

100

N
E

T
s 

(%
)

Normal

P S P S P S

Figure 1. Neutrophil extracellular traps (NETs) can be directly induced by plasma or serum from patients with sepsis. (A) Normal healthy human
neutrophils were incubated with either normal plasma with or without 100 nM phorbol myristate acetate (PMA) (n=20) or critically ill patient plasma (n=54)
for 4 hours, and extracellular DNA was stained with propidium iodide. Typical images are presented. (B) NET formation was induced by incubating normal
healthy human neutrophils with critically ill patient plasma, and extracellular DNA was stained with propidium iodide together with human neutrophil
elastase (fluorescein isothiocyanate; green) and human myeloperoxidase (Alexa Fluor 700; blue) using specific antibodies. NET formation (arrows) was
visualized using confocal microscopy. (C) Preincubation of normal neutrophils with Cl-amidine (protein-arginine deiminase type 4 inhibitor) before
treatment with plasma of patients with sepsis blocked NET formation (n=10) (ANOVA; P, 0.05). (D) NET formation was comparable when induced by
either plasma (P) or serum (S). Matched normal plasma (n=20) and serum (n=20) did not induce NET formation when incubated with normal healthy
neutrophils, unless incubated with 100 nM PMA (n=3). There were no significant differences between plasma (n=10) and serum (n=10) of patients with
sepsis in inducing NET formation (ANOVA; P.0.05). (E) Incubating either normal neutrophils or neutrophils of patients with sepsis with matched plasma of
patients with sepsis induced comparable NETs (n=10) (ANOVA; P,0.05). ns = not significant.
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Degrees of NET Formation in Patient
Plasma Strongly Predict DIC
Development
High degrees of NET formation were
strongly associated with thrombocytopenia
(platelets, ,1503 109/L; P, 0.0001). Over
60% of patients whose plasma induced

moderate and strong NET formation had
thrombocytopenia compared with 15.9% in
the absent and mild groups (x2 test;
P, 0.001). Abnormality in prothrombin
time, activated partial thromboplastin time,
and fibrinogen, as well as D-dimer, were
also significantly associated with moderate

or strong NET formation (P, 0.05
compared with mild or absent groups)
(Table 2). These parameters are collectively
indicative of DIC (40), and indeed, DIC
development was significantly higher in
patients with strong (39.4%) and moderate
(26.6%) NET formation than in the mild
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Figure 2. The degree of neutrophil extracellular trap (NET) formation is associated with sepsis and poor clinical outcomes. (A) NET formation was
categorized into four groups based on the percentage of neutrophils forming NETs per microscopic field, which were visualized using fluorescence
microscopy and propidium iodide staining. Typical images are shown. (B) NET formation was associated with an admission diagnosis of sepsis. Plasma
from normal healthy donors did not induce NET formation when incubated with normal neutrophils (n=20). When patients (n=341) were stratified on the
basis of admission diagnosis into those without (n=198) and those with sepsis (n=143), NET formation was significantly elevated in those patients with
sepsis (ANOVA; P, 0.05). (C) Multivariable analysis of crude and adjusted odds ratios (with patients adjusted for Acute Physiology and Chronic Health
Evaluation II scores) demonstrated that NETs were an independent predictor of disseminated intravascular coagulation (DIC) development (left panel) and
28-day mortality (right panel) (n=341). (C and D) Receiver operating characteristic curves for measuring the NET-forming capacity of patient plasma on
ICU admission are presented for predicting DIC development (D) and for mortality (E) (n=341).
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(1.2%) and absent (4.2%) groups (x2 test;
P, 0.0001). NET formation was
significantly higher in patients with DIC
(median, 50.0%; interquartile range,
25.0–88.0%) than in those without DIC
(5.0%; 0.0–20.0%) (P, 0.0001). To address
whether NET formation on ICU admission
could predict DIC development after
admission, we excluded patients with
existing DIC on ICU admission (n= 28)
(Table 2). Univariate analysis using the
continuous percentages of NET formation
demonstrated an odds ratio for DIC of 1.06
(95% confidence interval [CI], 1.04–1.08;
P, 0.0001). Using categorical data, similar
results were obtained (odds ratio, 14.52;
95% CI, 3.76–56.06; P, 0.0001) for strong
(8.12; 95% CI, 2.14–30.77; P= 0.002) and
for moderate NET formation groups
(Table 3 and Figure 2C, left panel).

Degrees of NET Formation Are
Associated with Multisystem Organ
Failure and Mortality
Because DIC is associated with development
of organ dysfunction and poor outcome, we
examined the relationship between NETs
and multiorgan failure (MOF). Assessment
with both SOFA and modified SOFA
(platelet count removed) scores showed that
the degree of NET formation was associated
with organ injury throughout the study
(Table 1). Patients in the moderate and
strong NET categories had higher
admission SOFA scores (median, 7 [4, 11]
and 9 [7, 12], respectively) than the absent
and mild groups (SOFA, 6 [4, 9] and 6 [3,
8], respectively) (P, 0.001). SOFA scores
in the moderate and strong NET groups
remained significantly elevated throughout
the study duration. Furthermore, patients
in the strong NET group had higher
admission modified SOFA scores (median,
8 [5, 11]) than in the absent (6 [3, 8]), mild
(6 [3, 8]), and moderate groups (6 [3, 10])
(P= 0.002), which also remained significant
throughout the study duration. Patients
whose plasma induced strong NET
formation also required more
cardiovascular support days than
patients with no NETs (median, 10.0
d [interquartile range, 7.0–17.0] vs. 8.0
[5.0–11.0]. The mortality rates in both
moderate (30.6%) and strong (34.0%) NET
formation groups were higher than in the
absent (12.0%) and mild (15.9%) groups
(P, 0.003). Univariate analysis
demonstrated odds ratios of 3.24 for
mortality (95% CI, 1.28–8.15; P= 0.013) in

the moderate NET formation group and
3.79 (95% CI, 1.51–9.51; P= 0.005) in the
strong NET formation group (Table 3).
Using continuous percentages of NET
formation data, the odds ratio was 1.02
(1.01–1.03) (P, 0.0001). As for other
NET-related assays, there was no significant
association between cfDNA, MPO, or
DNA–MPO complexes with mortality
(Table 3).

APACHE II is a commonly used
scoring system for severity-of-disease
classification. We used Spearman’s rank
correlation with continuous percentages of
NET formation data and found that NET-
forming capacity was significantly
associated with APACHE II scores
(r= 0.442; P= 0.013) (Table 1). However,
subsequent multivariate analysis
demonstrated that NET-forming capacity
was independently associated with both
DIC and mortality after adjustment for
APACHE II (Table 3 and Figure 2C). We
found that NET formation was a strong
predictor of DIC (area under the curve
[AUC], 0.851; P, 0.001) (Figure 2D and
Table 3). Although less strong in predicting
mortality (AUC, 0.656; P, 0.001), NET
formation was comparable to both
APACHE II (AUC, 0.683; P, 0.001)
(DeLong test vs. NETs; P= 0.440) and
SOFA scores (AUC, 0.604; P= 0.009)
(DeLong test vs. NETS; P= 0.381)
(Figure 2E and Table 3).

Anti–IL-8 Partially Blocks Patient
Plasma from Inducing NETs
Multiple inducers of NETs have been
reported, such as IL-1b, IL-6, IL-8, tumor
necrosis factor-a, and extracellular
histones. Using our novel assay for NET
formation and cytokine profile multiplexes,
we found that in our cohort, IL-8 was the
only cytokine that was significantly
positively associated with NET formation
(Table E3 and Figure 3A), compared with a
large number of negatively correlated
cytokines, including IL-5, IL-9, IL-12, IL-
13, IL-17, bFGF (basic fibroblast growth
factor), GM-CSF (granulocyte–macrophage
colony–stimulating factor), and RANTES
(regulated upon activation, normal T cell
expressed and secreted) (Table E3). To
functionally investigate if IL-8 was the
cytokine responsible for NET formation in
our assay, IL-8 was added to normal plasma
at relevant circulating concentration (100
pg/ml). Upon incubation with healthy
neutrophils, NET formation was induced

(P= 0.008) (Figure 3B). NET-forming
capacities of plasma from patients with
sepsis (median, 57.5; 47.5–78.8; n= 10)
were significantly attenuated by a
functional anti–IL-8 blocking mAb
(median, 19; 10.0–22.5; P, 0.001) and the
clinically trialed IL-8 receptor antagonists
reparixin (median, 7.0; 3.5–41.3; P, 0.001)
and AZD5069 (median, 18.5; 10.0–28.8;
P, 0.001) (Figure 3C). Mechanistically, IL-
8 signaling is predominately through
Ras/Raf/MAPK pathways (41) (Figure E2),
which are essential for NET formation (21).
Specific inhibition of MAPK activation
using an ERK inhibitor (U0126)
significantly blocked IL-8–induced NET
formation in normal plasma (P= 0.005)
(Figure 3B) as well as NET-forming
capacity of patient plasma (P, 0.001)
(Figure 3C). Moreover, ERK phosphorylation
induced by patient plasma was also
significantly reduced by anti–IL-8 mAb
treatment (P,0.001) (Figure 3D).
Collectively, this supports MAPK activation
as the major pathway of IL-8–induced NET
formation in patients.

Discussion

We found that NET formation could be
directly induced by patient plasma and was
associated with clinically relevant
information on disease severity,
complications, and outcome in the ICU. The
extent of NET formation on ICU admission
was significantly associated with sepsis and
independently predicted development of
DIC and 28-day mortality. The elucidation
of IL-8 as a major contributing factor to the
NET-forming capacity of patient plasma
could bridge important clinical utility with
biological plausibility on the role of NETs in
critical illness.

NETs have been increasingly
recognized in disease pathogenesis since
Brinkman and colleagues (12) described
their ability to trap and kill bacteria in
tissue samples from patients with infection.
Because NETosis represents an integral
component of the regulated immune
response in preventing translocation and
dissemination of infection (42–44), our
results led us to speculate that dysregulated
intravascular NETosis may promote
platelet trapping and cause consumptive
coagulopathy to impair end-organ
perfusion and provoke MOF. In support of
this theory, McDonald and colleagues (45)
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showed that NET-induced intravascular
coagulation caused widespread
microvascular occlusion and MOF in
several murine models of sepsis. They also
found that histones did not promote
platelet adhesion to NETs or production of
NETs. This could be relevant to our
findings that demonstrated lack of
association between histone concentrations
and NET formation.

Our findings that moderate to
strong NET formation is commonly
observed in patients with sepsis of
respiratory origin are of particular relevance
to patients with pneumonia-induced acute
respiratory distress syndrome (46). NET
formation in these patients is associated
with localized alveolar inflammation and
with high IL-8 concentrations within
BAL fluid (47).

We believe that a key strength of this
study on NETs is the demonstration of how
clinically relevant information links to
mechanistic understanding and
identification of therapeutic strategies. Our
findings are supported by those of Yang and
colleagues, who showed that plasma from
patients with sepsis was more likely to
induce NETs than that of patients without
sepsis (48). However, their findings were
limited to 62 patients with no correlation to
clinical outcomes. We found that compared
with other NET-related assays, cfDNA,
MPO, and MPO–DNA complexes (36,
49–53) were all poorly associated with
admission severity, clinical course, and
outcomes. This may be due to our assay
directly measuring NET-forming capacity
and not being affected by NET degradation
rates, factors altering the stability of NET

breakdown products, contamination from
neutrophil respiratory burst, or death of
other types of cells (Figure E2). Therefore,
our assay is clearly distinct from other
NET-related assays and more accurately
reflects the degrees of NET formation in
patients.

A further strength of the assay is its
ability to identify the driving factors for
NETosis in individual patient plasma,
including important signaling pathways.
This could be used for determining potential
targets or guiding clinical management as
part of precision or personalized medicine.
We identified IL-8 as an important factor
promoting NETosis in some patients using
this assay, and targeting IL-8 by specific
inhibitors (reparixin, AZD5069, and
anti–IL-8 mAb) could significantly inhibit
NET formation in these patients. Using the

Table 3. Neutrophil Extracellular Trap Formation Is an Independent Predictor of Disseminated Intravascular Coagulation and
Mortality in Critically Ill Patients

Crude Odds Ratio P Value* Adjusted Odds Ratio (APACHE II) P Value† AUC P Value‡

DIC
Absent NET formation Reference — Reference — — —
Mild NET formation 0.274 (0.045–1.677) 0.161 0.248 (0.039–1.560) 0.137 — —
Moderate NET formation 8.121 (2.143–30.770) 0.002 7.176 (1.765–29.177) 0.006 — —
Strong NET formation 14.517 (3.759–56.057) <0.0001 13.035 (3.157–53.829) <0.0001 — —

NETs (%) 1.059 (1.041–1.078) <0.0001 1.058 (1.039–1.078) <0.0001 0.851 <0.0001
cfDNA 1.001 (1.000–1.001) 0.060 1.001 (1.000–1.001) 0.118 0.607 0.324
MPO 1.001 (0.997–1.004) 0.664 1.001 (0.997–1.005) 0.689 0.609 0.236
DNA–MPO complex 17.428 (1.976–153.679) 0.010 9.780 (0.972–98.424) 0.053 0.713 0.013
IL-1b 0.993 (0.923–1.068) 0.845 0.999 (0.920–1.084) 0.973 0.588 0.272
IL-6 1.000 (1.000–1.000) 0.113 1.000 (1.000–1.000) 0.139 0.546 0.499
TNF-a 0.999 (0.994–1.003) 0.501 0.999 (0.995–1.003) 0.593 0.658 0.044
IL-8 1.000 (1.000–1.000) 0.049 1.000 (1.000–1.001) 0.083 0.666 0.002
APACHE II score 1.144 (1.084–1.208) <0.0001 — — 0.753 <0.0001
SOFA score 1.435 (1.274–1.616) <0.0001 — — 0.837 <0.0001

Mortality
Absent NET formation Reference — Reference — — —
Mild NET formation 1.385 (0.617–3.109) 0.430 1.370 (0.601–3.125) 0.454 — —
Moderate NET formation 3.235 (1.284–8.152) 0.013 2.889 (1.114–7.494) 0.029 — —
Strong NET formation 3.785 (1.506–9.511) 0.005 2.995 (1.162–7.720) 0.023 — —

NETs (%) 1.020 (1.010–1.030) <0.0001 1.016 (1.006–1.026) 0.002 0.851 <0.0001
cfDNA 1.000 (1.000–1.000) 0.232 1.000 (1.000–1.000) 0.532 0.607 0.324
MPO 0.998 (0.0994–1.002) 0.353 0.998 (0.993–1.002) 0.261 0.609 0.236
DNA–MPO complex 2.005 (0.430–9.359) 0.376 1.432 (0.286–7.161) 0.662 0.713 0.013
IL-1b 1.008 (0.0981–1.035) 0.570 1.003 (1.011–1.119) 0.804 0.501 0.984
IL-6 1.000 (1.000–1.000) 0.907 1.000 (1.000–1.000) 0.904 0.596 0.064
TNF-a 0.999 (0.997–1.002) 0.671 0.999 (0.996–1.002) 0.598 0.511 0.846
IL-8 1.000 (1.000–1.000) 0.380 1.000 (1.000–1.000) 0.563 0.574 0.141
APACHE II score 1.087 (1.047–1.128) <0.0001 — — 0.683 <0.0001
SOFA score 1.087 (1.017–1.162) 0.014 — — 0.604 0.009

Definition of abbreviations: APACHE II = Acute Physiology and Chronic Health Evaluation II; AUC=area under the curve; cfDNA=cell-free DNA;
DIC=disseminated intravascular coagulation; MPO=myeloperoxidase; NET=neutrophil extracellular trap; SOFA=Sequential Organ Failure Assessment;
TNF-a= tumor necrosis factor-a.
Bold indicates P , 0.05.
*P value for crude odds ratio to predict DIC and mortality.
†P value for adjusted odds ratio to predict DIC and mortality in a multivariable analysis (with patients adjusted for APACHE II scores).
‡P value for receiver operating characteristic analysis to predict DIC and mortality.
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same assay, we also identified MAPK
activation as a major pathway for IL-8 in
driving NETosis in patients. In multivariate
analysis, IL-8 concentrations could not
independently predict DIC and mortality,
similar to other reported activating factors
for NET formation (IL-1b, IL-6, and tumor
necrosis factor-a) (Table 3). This is because
IL-8 concentrations are not uniformly
elevated in patients, and there are unknown
factors involved that remain to be identified
in future studies.

Our assay does not necessarily require
isolation of individual patient neutrophils,
because concordant results were obtained
when patient plasma was incubated with
either homologous (patient-specific) or
heterologous (healthy individual)
neutrophils. This allows flexibility of use in
clinical practice with the choice of using
patients’ or healthy donors’ neutrophils.
Because fresh neutrophils are available in
most large hospitals with blood banks, and

because this NET assay can be easily
categorized by clinical scientists (into
absent, mild, moderate, or strong groups),
it has clear potential to be integrated into
routine clinical laboratory practice. Our
assay was developed in a cohort of patients
with sepsis and evaluated in a separate
cohort of ICU patients. However,
limitations of this study are that our results
for clinical associations were obtained in a
single ICU only, but our patient cohort has
consistently been representative of U.K.
Intensive Care National Audit and
Research Centre data.

In summary, this study demonstrates
how a simple, direct approach to
understanding NET-forming potential in the
circulation could be applied clinically to
identify patients at risk of DIC and poor
outcomes in the ICU.We have highlighted its
potential as a stratification tool for use upon
ICU admission that could enable
administration of early organ support or as a

companion diagnostic for novel therapies that
inhibit NET formation. Because NETs and
platelets interact to promote intravascular
coagulation and its dissemination, there is a
highly persuasive rationale for targeting NETs
in sepsis and DIC. Intravenous DNase has
been reported to significantly reduce end-
organ damage in sepsis models (45). Our
finding that IL-8 is a major inducer of NETs
in many critically ill patients presents an
exciting opportunity for more precise
therapeutic targeting by using our novel
assay system with incorporation of IL-8
inhibitors. n
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Figure 3. IL-8 contributes to the neutrophil extracellular trap (NET)-forming capacity of critically ill patient plasma, and this capacity is partially blocked by
anti–IL-8 and anti–mitogen-activated protein kinase (anti-MAPK) treatment. (A) Quantification of circulating factors known to stimulate NET formation
(histones, IL-1b, IL-6, IL-8, and tumor necrosis factor [TNF]-a) in patient plasma on ICU admission demonstrated that IL-8 was elevated in patients who
were able to induce NET formation (ANOVA; P, 0.05) (n=341). (B) Incubation of 100 pg/ml IL-8 in normal plasma with normal healthy neutrophils for 4
hours induced NET formation compared with normal plasma alone (n=10), which was blocked by inhibiting MAPK activation with U0126 (extracellular
signal-regulated kinase inhibitor [ERKi]) (n=3) (ANOVA; P, 0.05). (C) Preincubation of normal neutrophils with either anti–IL-8 monoclonal antibody (a-IL-
8) (n=10), reparixin (REP) (n=10), AZD5069 (AZD) (n=10), or MAPK inhibitor U0126 (ERKi) (n=6) before treatment with plasma of patients with sepsis
partially blocked NET formation (ANOVA; P, 0.05). (D) Western blot analysis of ERK activation (pERK/ERK ratio) in normal neutrophils incubated for 15
minutes with plasma of patients with sepsis preincubated without (UT) or with anti–IL-8 monoclonal antibody (a-IL-8) (n=3) (ANOVA; P,0.05).
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