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Abstract

This study uses a recently developed phase-field approach to model fracture of arterial walls with 

an emphasis on aortic tissues. We start by deriving the regularized crack surface to overcome 

complexities inherent in sharp crack discontinuities, thereby relaxing the acute crack surface 

topology into a diffusive one. In fact, the regularized crack surface possesses the property of 

Gamma-Convergence, i.e. the sharp crack topology is restored with a vanishing length-scale 

parameter. Next, we deal with the continuous formulation of the variational principle for the multi-

field problem manifested through the deformation map and the crack phase-field at finite strains 

which leads to the Euler–Lagrange equations of the coupled problem. In particular, the coupled 

balance equations derived render the evolution of the crack phase-field and the balance of linear 

momentum. As an important aspect of the continuum formulation we consider an invariant-based 

anisotropic constitutive model which is additively decomposed into an isotropic part for the 

ground matrix and an exponential anisotropic part for the two families of collagen fibers 

embedded in the ground matrix. In addition we propose a novel energy-based anisotropic failure 

criterion which regulates the evolution of the crack phase-field. The coupled problem is solved 

using a one-pass operator-splitting algorithm composed of a mechanical predictor step (solved for 

the frozen crack phase-field parameter) and a crack evolution step (solved for the frozen 

deformation map); a history field governed by the failure criterion is successively updated. 

Subsequently, a conventional Galerkin procedure leads to the weak forms of the governing 

differential equations for the physical problem. Accordingly, we provide the discrete residual 

vectors and a corresponding linearization yields the element matrices for the two sub-problems. 

Finally, we demonstrate the numerical performance of the crack phase-field model by simulating 

uniaxial extension and simple shear fracture tests performed on specimens obtained from a human 

aneurysmatic thoracic aorta. Model parameters are obtained by fitting the set of novel 

experimental data to the predicted model response; the finite element results agree favorably with 

the experimental findings.
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1. Introduction

Over the last decades the physiological and pathological aspects of arterial tissues have 

become a prominent research topic in continuum and computational mechanics in regard to 

constitutive modeling, damage and fracture mechanics since there exists a salient relation 

between the histological architecture and the mechanical behavior of arteries in response to 

loading. As such, ever increasing number of studies have been a fashion to allow the latest 

advances in the complex structural composition of the arterial wall to be embodied into 

models which can mimic the mechanical behavior of the tissue in a computer environment.

1.1. Histology and mechanical behavior of arterial walls, related diseases

The arterial wall consists of three distinct layers: the intima (tunica intima), the media 

(tunica media) and the adventitia (tunica externa). In healthy young individuals the 

innermost layer, the intima, is composed of a single layer of endothelial cells, and hence has 

a negligible contribution to the mechanical behavior of the arterial wall. However, due to the 

development of the sub-endothelial layer with age it thickens and stiffens (arteriosclerosis) 

so that the mechanical contribution may become significant. The middle layer, the media, 

involves smooth muscle cells, elastin and collagen fibers arranged in several sub-laminae 

operating as the main load bearing layer under physiological conditions. The outermost 

layer, the adventitia, comprises fibroblasts, fibrocytes, and bundles of collagen fibers. 

Fibroblasts are the cells responsible for secreting elastin and collagen. The adventitia is the 

main functioning layer under supra-physiological loading conditions to prevent the artery 

from rupture [1].

Subsequently, we cast a closer look into the structural, mechanical and functional 

characteristics of the constituents that emanate from their composition and orientation in the 

arterial wall. The endothelial cells, e.g., assume a spindle shape when subjected to shear 

stress as a result of blood flow and convey this mechanical stimuli to smooth muscle cells 

which regulate the diameter of the artery [2]. The long molecules of elastin compose a 

rubber-like network having cross-links with each other. They can be stretched about 2.5 

times their initial length and keep the original size of the artery upon a stretch or contraction 

[3]. The structural protein collagen, however, emerges as the main load carrying constituent 

among all. Collagen molecules, called tropocollagens, organize themselves into collagen 

fibrils through intermolecular cross-links. These fibrils assemble into collagen fibers by 

proteoglycans (PGs). The orientation of the collagen fibers in both the media and the 

adventitia renders a helical structure [1]. To give an overall idea in regard to the mechanical 

contribution of cross-links to the tissue, it is observed that the fibrillar stretch is about one 

order of magnitude smaller than the macroscopic stretch [4]. Type I and III are the most 

common types of collagen in arterial walls [5]. In the absence of load, collagen fibers appear 

wavy and in a crimped form. When the load is present they gradually straighten and further 
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elongate as the load increases. In fact, they exhibit a J-like stress–strain behavior [6]. 

Furthermore, similar to ropes, they cannot withstand compressive forces.

With regard to constitutive models to characterize the mechanical behavior of the arterial 

wall, the model considerations have followed a propensity from being isotropic thin-walled 

to anisotropic thick-walled at finite deformation, as can be found in, e.g., [7–9] among 

others. Their applicability is limited due to the lack of either convexity or anisotropy. 

Besides, [9] can only recover special types of deformation as being two-dimensional. All of 

those aforecited models with their variants are essentially purely phenomenological. Another 

constitutive approach, blended with anisotropy and polyconvexity, was suggested in [1]. It 

was developed on the basis of a thick-walled tube which assumes an incompressible solid. 

The micro-structural information was partly imparted by this model. It was later modified to 

take account of an axisymmetric model of collagen fiber dispersion [5] and a non-symmetric 

collagen fiber dispersion [10]. Aside from the aforementioned set of models, it is noteworthy 

to refer to a different (debatable) model approach namely to use worm-like chains to capture 

the mechanical response of biological tissues, i.e. [11,12]; for a review concerned with the 

mathematical modeling of the mechanical properties of soft biological tissues that constitute 

arterial walls, see [13].

Considering diseases that trigger a cascade of mechanically degenerative processes we 

hereby address some general aspects of aneurysm, atherosclerosis and aortic dissection 

which eventually may result in the fracture of the wall. Aneurysms can be viewed as a local 

dilation of the aorta forming a balloon-like bulge on the localized part of the wall upon the 

onset of aneurysm. The stress acting on this localized part increases while the wall strength 

experiences degradation. The fracture happens if the dilated aortic wall cannot carry the wall 

tension due to hemodynamic loads which may bring fatal consequences. The primary factors 

causing aneurysms are known to be aging, smoking, hypertension, atherosclerosis and 

genetic disorders [14,15]. The fact that atherosclerosis have turned out to be a prevailing 

cause of casualties draws the attention of modern medical science. The formation of 

atherosclerotic plaques is attributed to the low wall (laminar) shear stress associated with the 

disrupted laminar blood flow which forms a breeding ground for the fibroinflammatory lipid 

plaque. This plaque gradually grows and narrows the lumen of the artery; causes also 

adverse changes in the mechanical properties i.e. fibrotic media loses its elasticity 

considerably and rupture can be induced by the increase of blood pressure in case of an 

excessive atherosclerotic plaque [16–18]. Aortic dissections commence with an initial tear in 

the intima which advances further in the radial direction towards the media. The dissection 

propagates later in the axial direction owing to blood flow while it retains to be located on 

the sub-adventitial plane (between the sub-layers of media or media and adventitia) which 

creates a false lumen that can entirely close off the lumen of the aorta [19].

1.2. Damage and fracture models in arterial walls

To the best of our knowledge, there are only a few endeavors to model failure of arterial 

walls. The study [20] implemented the XFEM (Extended Finite Element Method), a 

technique to model crack growth without re-meshing, on the basis of PUFEM (Partition of 

Unity Finite Element Method) which allows the local enrichment functions, i.e. Heaviside 
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functions, associated with additional degrees of freedom to be integrated into a finite 

element approximation [21–23]. In [20] the authors showed a numerical analysis of a 

peeling experiment (mode-I) on a dissected aortic medial strip in the form of delamination. 

Later on, the study [24] documented the simulation of the fracture of an atherosclerotic 

arterial wall in three-dimension by using an anisotropic extension of the irreversible 

isotropic cohesive element model, as proposed in [25]. The surface-like cohesive elements 

are inserted between two solid elements where the crack is expected to grow and the opening 

displacements are resisted by cohesive tractions. Next, the study [26] performed the identical 

numerical test as in [20] and compared the results with various mesh sizes. A recently 

developed phase-field model for fracture, on which we will give a detailed background 

information in the forthcoming section, applied to the arterial wall, is documented in [27]. 

However, the compressive stiffness attributed to collagen fibers in the free-energy function 

utilized in [27] was not physically justified, inasmuch as it is a well accepted practice within 

the biomechanics community that collagen fibers are not regarded as compression-resistant 

elements. Subsequently, they employed this model on two-dimensional numerical examples. 

A visual comparison of the overall crack growth between the simulation results (Fig. 12(a)) 

and the typical experimental test results (Figure 5 in [18]) suggests a conspicuous 

discrepancy. In addition to the abovementioned continuum models there are some multi-

scale approaches available, [28,29], to model the failure of biological tissues by connecting 

the micro-scale failure of individual collagen fibers with the macro-scale material response.

Apart from the fracture phenomenon, [30] modeled stress-softening behavior evident in 

cyclic tension tests of arterial walls by applying continuum damage mechanics (CDM), see 

[31], with (1 – d) inserted only in the anisotropic part of the hyperelastic function i.e. 

damage solely occurs in fibers. [32] extended the approach by postulating a stochastic 

method to account for the sliding of the PG bridges that connect collagen fibrils, and 

speculated that they are responsible for the damage evolution in arterial walls. A recent 

study by [33] introduced a three-dimensional relaxed incremental variational damage model, 

thereby convexifying the energy in case of a loss of convexity with a convex hull due to [34].

1.3. Crack phase-field approach to fracture

Fracture, in general, is accompanied by a series of irreversible inhomogeneous micro-

mechanisms where a number of imperfections initiated at micro level, i.e. voids and cracks, 

grow in a particular way in the course of time to form macro-voids and macro-cracks which 

gives rise to the accumulation of damage in advance of the fracture. This can be realized as a 

material deterioration by means of stress softening [35].

The authors of [36,37] laid the foundations of the classical theory of brittle fracture with 

well-known shortcomings to determine curvilinear crack paths, crack kinking and branching 

angles. These problems regarding the Griffith theory can be eliminated through variational 

principles due to an energy minimization, as introduced in a phase-field model for a quasi-

static brittle fracture in [38], and with the numerical implementation in [39] that 

approximates the Mumford–Shah functional [40] with a framework rendered by the Γ-

convergence theory. This theory tracks the behavior of the global minimum of problems 

(minimum values and minimizers) by ‘integrating out’ the local minimizers in the limit [41]. 
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For a comprehensive overview we refer to [42]. The hallmark of all the aforementioned 

considerations is to provide a diffusive crack topology, healing the sharp crack surface, 

which approximates between intact and cracked states of the material by means of a scalar 

assisting variable. Aside from that, the study documented in [43] independently applied a 

phase-field approach to the brittle fracture based on the Ginzburg–Landau type of evolution 

equation.

All the above stated approaches suffer from being either unrealistic in the sense that a crack 

is driven both in tension and compression or they are thermodynamically inconsistent. An 

alternative quasi-static small strain phase-field model (second-order phase-field theory) of 

fracture has been presented in [44] with the property of being thermodynamically consistent 

and allowing crack growth only in tension. Accordingly, this proposed approach handles an 

incremental variational setup for a two-field problem of gradient-type dissipative solids with 

a characteristic length scale. From the modeling point of view, this model is conceptually in 

accordance with CDM. A finite strain extension of this model, as discussed in Section 1.2, 

can be found in [45,27]. There are also studies dealing with higher order phase-field models 

(fourth-order phase-field theory) of the strongly anisotropic fracture which resorts to the 

extended Cahn–Hilliard framework [46].

If we reveal a noticeable advantage of the crack phase-field approach to those approaches 

outlined in Section 1.2, we can state that crack phase-field models avoid the modeling of 

discontinuities, whereas the models listed in Section 1.2 try to model discontinuities by 

means of nodal enrichment techniques using PUFEM or re-meshing strategies which make 

them a costly task to handle, especially, three-dimensional domains.

In our present contribution, we basically follow the quasi-static brittle fracture model 

documented in [44,47] where a robust operator-splitting algorithm is implemented. 

Nevertheless, instead of an incremental formulation we present a continuous formulation of 

the variational principle for the multi-field problem manifested through the deformation map 

and the crack phase-field at finite deformations. Besides, we consider the crack growth being 

driven by a novel energy-based anisotropic failure criterion in accordance with the 

mechanics of arterial tissues. Furthermore, unlike [27], the represented numerical 

simulations are carried out in the three-dimensional domain. As a matter of fact, we simulate 

the fracture of an aortic aneurysmatic tissue specimen undergoing both uniaxial extension 

and simple shear loads and compare the results with a novel experimental study recently 

conducted in [48].

To provide a motivation of the present study in a nutshell, Fig. 1(a) displays a medial strip of 

a human aneurysmatic thoracic aorta sample prepared for a uniaxial extension test, while 

Fig. 1(b) shows the segment of the thoracic aorta from which the strip was cut out. Fig. 1(c) 

displays the ruptured strip after the extension test whereby the constitutive and 

computational modeling of tissue failure is requested.

1.4. Organization of the work

The article is organized as follows. In Section 2 we introduce the field variables governing 

the coupled problem with corresponding finite strain kinematics. Additionally, the 
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Ginzburg–Landau type phase-field model is motivated both in one and three dimensions. In 

Section 3 we outline the continuous formulation of the variational framework for the 

coupled two-field problem by obtaining the strong form of balance equations, also called 

Euler–Lagrange equations, based on power balance. Section 4 is concerned with the 

incorporation of an anisotropic hyperelastic constitutive model to delineate the mechanical 

behavior of the wall in the Eulerian framework. In the sequel, we propose an energy-based 

anisotropic failure criterion where a critical fracture energy scaled by the length-scale 

parameter, i.e. the width required to have a smooth approximation of the crack, controls the 

evolution of the crack phase-field with respect to the isotropic and the anisotropic part of the 

effective free-energy function. With this setup at hand in Section 5 we perform a staggered 

solution update that partitions the monolithic solution scheme into two sub-problems which 

contain minimizers for each partial problem. Subsequently, we obtain the weak form of the 

balance equations by means of a standard Galerkin procedure and continue with the 

linearization of the nonlinear weighted-residual expressions. Later, we develop the algebraic 

counterparts of the weighted-residual expressions and their linearized terms. Finally, in 

Section 6, we perform representative numerical examples that fit a set of novel experimental 

data obtained from both uniaxial extension and simple shear tests in a quasi-static manner.

2. Multi-field problem for failure in anisotropic continuum

In this section, we focus on the primary field variables, namely the crack phase-field d and 

the deformation map φ governed by the Euler–Lagrange equations which determine the 

diffusive crack topology and the balance of linear momentum. We introduce the finite 

elasticity in anisotropic solids paying attention to the structure of the tissue. Next we briefly 

motivate the crack phase-field in a one-dimensional setting and continue with the modeling 

of failure in three-dimensional continua which resorts to [47,44].

2.1. The primary field variables of the multi-field problem

Let us assume a material body at time t0 ∈ 𝒯 ⊂ ℝ, which we refer to as the reference 

configuration in the three dimensional space designated by ℬ ⊂ ℝ3 with the material point 

X ∈ ℬ. In the same manner the placement of the deformed body at current time t ∈ 𝒯 ⊂ ℝ
we refer to as the spatial configuration denoted by 𝒮 ⊂ ℝ3 with the spatial point x ∈ 𝒮
mapped through the deformation map φ, see Fig. 2. As long as t ⊂ ℝ is fixed, one can also 

write φt(X) [49]. Its definition renders

φt(X): ℬ × 𝒯 𝒮,
(X, t) x = φ(X, t) .

(1)

Additionally let us introduce the surface ∂ℬ ⊂ ℝ2 of the reference configuration ℬ ⊂ ℝ3. 

Alongside with the deformation map φ in (1) we now elucidate the basic geometric mapping 

for the crack phase-field d. The time-dependent auxiliary crack phase-field parameter is
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d : ℬ × 𝒯 [0, 1],
(X, t) d(X, t),

(2)

which interpolates between the intact (d = 0) and the ruptured (d = 1) state of the material.

2.1.1. Kinematics—The material gradient of the deformation map φ leads to the 

deformation gradient

F = ∇φ,

(3)

which maps the unit Lagrangian line element dX onto its Eulerian counterpart dx = FdX. 

The gradient operators ∇[•] and ∇x [•] denote the gradient operator with respect to the 

reference X and the spatial x coordinates, respectively. Moreover, the Jacobian J := detF > 0 

characterizes the volume map of infinitesimal reference volume elements onto associated 

spatial volume elements. Furthermore, we equip the two manifolds ℬ and 𝒮 with the 

covariant reference metric tensor G and spatial metric tensor g. They are required for 

mapping between the co- and contravariant objects in the Lagrangian and Eulerian 

manifolds [49]. Then, the right and left Cauchy–Green tensors read

C = FT gF, b = FG−1FT,

(4)

which measure the deformation in the Lagrangian and Eulerian configurations, respectively. 

The energy stored in a hyperelastic isotropic material is characterized by the invariants

I1 = trC, I2 = 1
2 I1

2 − tr C2 , I3 = detC .

(5)

The anisotropic response of biological tissues requires the description of additional 

invariants. To this end, we introduce two reference unit vectors M and M′ for the fiber 

orientations and their spatial counterparts
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m = FM, m′ = FM′,

(6)

which idealize the micro-structure of the arterial wall. We can express the related Eulerian 

form of the structure tensors Am and Am′ as follows

Am = m ⊗ m, Am′ = m′ ⊗ m′ .

(7)

Upon simplifications elucidated through a particular material response provided by 

experiments and the incompressibility condition, i.e. I3 = 1, the only isotropic invariant 

remains to render the isotropic mechanical response of the tissue is I1 which takes the 

following form in the spatial configuration

I1 = g: b .

(8)

Besides, the physically meaningful additional invariants

I4 = m ⋅ gm, I6 = m′ ⋅ gm′

(9)

are sufficient to capture the anisotropic response of the thoracic aortic tissue.

2.1.2. Finite elasticity of an anisotropic solid—Finite elasticity of biological tissues 

is governed by the balance equation derived from the principle of minimum potential energy, 

i.e.
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φ = Arg inf
φ ∈ 𝒲φ

E(φ) − P(φ) ,

(10)

with the energy storage functional E and the external work functional P according to

E(φ) = ∫
ℬ

Ψ F, Am, Am′ dV , P(φ) = ∫
ℬ

ρ0γ ⋅ φdV + ∫
∂ℬt

T ⋅ φdA,

(11)

respectively. Therein ρ0, γ and T are the density, the prescribed body force and the surface 

traction in the reference configuration, respectively, while Ψ denotes the free-energy 

function per unit reference volume; the specific form for the constitutive behavior of arterial 

walls is introduced in Section 4.1. The minimization problem (10) is subjected to Dirichlet-

type boundary conditions, i.e.

𝒲φ: = φ φ ∈ H1(ℬ), φ = φ where φ ∈ ∂ℬφ .

(12)

According to the minimization principle, the deformation map φ delineated by a respective 

field minimizes the functional (10) which leads to the balance equation

Div P + ρ0γ = 0

(13)

for a quasi-static deformation in the domain ℬ along with the Neumann-type boundary 

condition
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P ⋅ N = T on ∂ℬt .

(14)

The balance equation (13) is the Euler–Lagrange equation of the minimization problem (10). 

Herein, P is the first Piola–Kirchhoff stress tensor and N is the Lagrangian unit surface 

normal vector.

2.2. Ginzburg–Landau type phase-field model for diffusive cracks

In this section, the Ginzburg–Landau type phase-field approach for brittle fracture of 

isotropic solids will be briefly summarized, as outlined in [47,44]. The extension of the 

brittle fracture to the anisotropic solid will be provided in Section 3.

2.2.1. Field equation for crack phase-field in one-dimensional setting—In 

order to motivate the phase-field approximation to cracking phenomenon, an infinite one-

dimensional bar L = [−∞, +∞] with a crack that initiates at the origin x = 0 can be 

contemplated. The domain is then defined to be ℬ = Γ × L with a constant cross-section Γ on 

x ∈ L. The assisting crack phase-field variable d(x) ∈ [0,1] characterizes the acute crack 

topology with

d(x): = δ(x): 1  for x = 0.
0  otherwise, 

(15)

described by the Kronecker delta function δ(x) as the discrete version of the Dirac delta 

function, where d = 0 and d = 1 mark the intact and the cracked (ruptured) state of the 

considered material, respectively, as depicted in Fig. 3(a). The auxiliary scalar field variable 

d represents the homogenized growth of micro-cracks and micro-voids within the material, 

as described in CDM. Next, this sharp crack topology is approximated to a diffusive crack 

topology via the exponential function

d(x) = e− x /l,

(16)

which makes the crack spread over the axial domain L, with the length-scale parameter l 
regularizing the sharp crack topology, see Fig. 3(b). Note that Eq. (16) is the solution of the 

homogeneous ordinary differential equation
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d(x) − l2d′′(x) = 0

(17)

subjected to the Dirichlet-type boundary conditions

d(0) = 1, d( ± ∞) = 0.

(18)

From a purely mathematical standpoint the differential equation (17) can be regarded as the 

Euler–Lagrange equation of the variational principle

d = Arg inf
d ∈ 𝒲d

I(d) ,

(19)

with the space of admissible solutions 𝒲d: = d |d(0) = 1, d(±∞) = 0}. The equivalent 

functional form delineating a potential for the one-dimensional problem is given as

I(d) = 1
2∫ℬ

d2 + l2d′2 dx .

(20)

An integration of the Galerkin-type weak form of the differential equation (17) provides this 

functional.

2.2.2. Field equation for crack phase-field in three-dimensional setting—The 

multi-dimensional formulation of the cracking in solid structures can be achieved in a 

similar way to the aforementioned one-dimensional motivation in Section 2.2.1. The 

respective deformation field is displayed in Fig. 4(a). For a non-deformable domain, the 

gradient operator can simply be taken as ∇x[•] = ∇[•]. Provided that an acute crack surface 

topology at time t is given as Γ(t) ⊂ ℝ2 in the solid ℬ, the regularized crack surface Γl(d), see 

Fig. 4(b), adopts the following multi-dimensional form
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Γl(d) = ∫
ℬ

γ(d, ∇d)dV ,

(21)

where the volume-specific crack surface reads

γ(d, ∇d) = 1
2l d2 + l2 ∇d 2 .

(22)

Following the steps employed in the one-dimensional problem, we can now state the 

minimization principle

d(X, t) = Arg inf
d ∈ 𝒲Γ(t)

Γl(d) ,

(23)

along with the Dirichlet-type boundary constraint

𝒲Γ(t) = d d(X, t) = 1 at X ∈ Γ(t) .

(24)

Upon the minimization of the regularized crack surface functional we derive the Euler–

Lagrange equations of the above stated variational principle, i.e.

d − l2Δd = 0 in ℬ and ∇d ⋅ N = 0 on ∂ℬ,

(25)

where Δd signifies the Laplacian of the crack phase-field which interpolates between the 

intact and the ruptured state of the material proportional to the length-scale parameter l, as 

depicted in Fig. 4(b), and N is the unit surface normal oriented outward in the reference 
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configuration. The Euler–Lagrange equations (25) are derived in the Appendix, see also 

[45].

3. Governing equations of the multi-field problem

Now we are focusing on the minimization principle of the global power balance that governs 

the multi-field problem, which yields the coupled balance equations for the evolution of the 

crack phase-field and the balance of linear momentum.

3.1. Energy storage functional in an anisotropic solid

As a point of departure, we redefine the energy storage functional (11)1 for the 

hyperelasticity of an anisotropic solid as

E(φ, d): = ∫
ℬ

Ψ F, Am, Am′; d dV

(26)

in terms of the free-energy function Ψ for a degrading continuum, with

Ψ F, Am, Am′; d : = g(d)Ψ0 F, Am, Am′ ,

(27)

where Ψ0 is the effective free-energy function of the hypothetical intact solid. A 

monotonically decreasing quadratic degradation function, i.e.

g(d): = (1 − d)2,

(28)

describes the degradation of the solid with the evolving crack phase-field parameter d, with 

the following growth conditions:

g′(d) ≤ 0 with g(0) = 1, g(1) = 0, g′(1) = 0.

(29)
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The first condition ensures degradation, while the second and third conditions set the limits 

for the intact and the ruptured state, and the final condition ensures the saturation at d → 1.

3.2. Rate of energy storage functional and external power functional

Time derivative of (26) gives the rate of energy storage functional

ℰ(φ̇, ḋ; φ, d): = ∫
ℬ

(P: F
.

− f ḋ)dV .

(30)

Herein,

P = ∂FΨ F, Am, Am′; d , f : = − ∂dΨ F, Am, Am′; d

(31)

are the first Piola–Kirchhoff stress tensor P and the energetic force f which is work 

conjugate to the crack phase-field d, respectively. The external power functional can be 

described as

𝒫(φ̇) = ∫
ℬ

ρ0γ ⋅ φ̇dV + ∫
∂ℬt

T ⋅ φ̇dA .

(32)

3.3. Crack energy functional and crack dissipation functional

The crack energy functional Dc can be defined with the help of the volume-specific crack 

surface (22) according to

Dc(d) = ∫
ℬ

gcγ(d, ∇d)dV ,

(33)

where gc denotes the critical fracture energy required to convert an un-cracked matter into a 

cracked matter. The evolution of (33) yields the crack dissipation functional 𝒟, i.e.
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𝒟(ḋ) = ∫
ℬ

gc δdγ(d, ∇d) ḋ dV ,

(34)

where δdγ denotes the variational derivative of the volume-specific crack surface γ, [44], 

with the explicit form

δdγ = 1
l d − l2Δd ,

(35)

which can be shown in an analogous manner to that given in the Appendix. The second law 

of thermodynamics requires that the dissipation functional has to be non-negative for all 

admissible deformation processes, i.e. 𝒟 ≥ 0.

3.4. Variational formulation based on power balance

The above stated functionals (30), (32) and (34) yield the power balance for the multi-field 

problem

Π(φ̇, ḋ): = ℰ(φ̇, ḋ) + 𝒟(ḋ) − 𝒫(φ̇) = 0.

(36)

On the basis of (36), a rate-type mixed variational principle can be constructed via a 

minimization principle for the quasi-static process, i.e.

φ̇, ḋ = Arg inf
φ̇ ∈ 𝒲φ

inf
ḋ ∈ 𝒲d

Π(φ̇, ḋ) ,

(37)

with the admissible domains for the state variables
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𝒲φ: = φ̇ φ̇ = 0 on ∂ℬφ ,
𝒲d: = ḋ ḋ = 0 on ∂ℬd .

(38)

The variation of the functional leads to the Euler–Lagrange equations which describe the 

multi-field problem for the brittle fracture of an anisotropic hyperelastic solid, i.e.

1:DivP + ρ0γ = 0,
2: f − gcδdγ ḋ = 0,

(39)

along with the loading–unloading conditions ensuring the principal of maximum dissipation 

during an evolution of the crack phase-field parameter d, i.e.

ḋ ≥ 0, f − gcδdγ ≤ 0, f − gcδdγ ḋ = 0

(40)

The first condition ensures the irreversibility of the evolution of the crack phase-field 

parameter. The second condition is an equality for an evolving crack, and it is negative for a 

stable crack. The third condition is the balance law for the evolution of the crack phase-field 

subject to the former conditions. The balance of static equilibrium (39)1 can be recast, by 

making use of the Piola identity, into the following form

Jdiv J−1τ + ρ0γ = 0,

(41)

where τ denotes the Kirchhoff stress tensor.

4. Constitutive equations of the multi-field problem

In this section, we shed light on (i) the constitutive equations that capture the nonlinear 

anisotropic response of arterial tissues, and (ii) the associated energy-based anisotropic 
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failure criterion that portrays the state of the material at which the cracking starts and 

propagates.

4.1. Constitutive equations

To characterize the local anisotropic mechanical response of an intact aortic tissue we 

specify the free-energy function Ψ0 in (27) and adopt the polyconvex, invariant-based 

anisotropic free-energy function

Ψ0 F, Am, Am′ : = Ψ0
iso J, I1 + Ψ0

ani I4, I6 ,

(42)

which additively decomposes into an isotropic neo-Hookean part responsible for the 

mechanical behavior of the ground matrix, i.e.,

Ψ0
iso J, I1 : = κ(J − lnJ − 1) + μ

2 I1 − 2lnJ − 3 ,

(43)

and an exponential anisotropic free-energy function taking into account the contributions of 

the collagen fibers, i.e. [1]

Ψ0
ani I4, I6 : =

k1
2k2

∑
i = 4, 6

exp k2 Ii − 1 2 − 1 ,

(44)

idealized by two distinct families of collagen fibers. Therein, κ denotes the penalty 

parameter whereas μ is the shear modulus. In the anisotropic term k1 and k2 stand for a 

stress-like material parameter and a dimensionless parameter, respectively. In the free-

energy function (42) the anisotropic terms in (44) only contribute when the fibers are 

extended, that is when I4 > 1 or I6 > 1. If one or more of these conditions is not satisfied then 

the relevant part of the anisotropic function is omitted from (44). If, e.g., I4 and I6 are less 

than or equal to 1, then the function Ψ0 is purely isotropic.

At this point we briefly touch upon some aspects regarding the computational treatment of 

the incompressible material behavior. The studies [50,51] discuss the non-physical 

volumetric deformation of an anisotropic material for the case that the hyperelastic model 

stated in (42) is mistakenly used in the compressible domain; e.g., a sphere reinforced with 
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one family of fibers would be deformed into a sphere with a larger size upon inflation 

instead of an ellipsoidal shape. Another study [52] mentions that the volumetric–deviatoric 

split gives rise to a non-physical reduction in the stress along the fiber direction lowered 

through the lateral expansion which leads to an increase in the volume ratio. A careful 

treatment of incompressible materials is necessary since very large values of the penalty 

parameter κ may lead to ill-conditioning of the global tangent arrays, known as locking. 

This can be circumvented by mixed finite element methods due to a three-field Hu–Washizu 

variational principle along with the augmented Lagrangian method to enforce 

incompressibility. For more details, we refer to, e.g., [53–55]. Another strategy is based on 

the use of higher-order elements which can eliminate the parasitic stresses, see [56]. The use 

of mixed element formulations, however, requires special attention, particularly in phase-

field problems of fracture since the degradation of the uniform volumetric response within 

an element domain cannot be arbitrarily chosen, i.e. the phasefield d calculated at each 

Gauss point does not match with the volumetric response described on the element level. In 

the view of the aforementioned information and our main focus on modeling fracture we 

have tried to avoid such computational complexities at this stage and have chosen the 

penalty parameter κ to be ≈103 μ which allows the analysis of a nearly incompressible 

material (compressibility effects are small).

Exploiting the Coleman–Noll procedure on the Clausius–Planck inequality, and using the 

form of the free-energy function Ψ as introduced in (27), we may retrieve the Kirchhoff 

stress tensor τ as follows

τ : = 2∂gΨ = g(d)τ0, τ0 = 2∂gΨ0,

(45)

where g(d) is the monotonically decreasing quadratic degradation function as provided in 

(28). Insertion of (42) along with (43) and (44) into the definition (45)2 leads to the stress 

expression for the intact material

τ0 = pg−1 + 2μ b − g−1 + 2ψ4m ⊗ m + 2ψ6m′ ⊗ m′,

(46)

where p: = κ(J − 1), and the deformation-dependent scalar coefficients ψ4 and ψ6 are 

defined as
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ψ4: = ∂I4
Ψ0 = k1 I4 − 1 exp k2 I4 − 1 2 ,

ψ6: = ∂l6
Ψ0 = k1 I6 − 1 exp k2 I4 − 1 2 .

(47)

Furthermore we need to derive the Kirchhoff stress tensor τ with respect to the Eulerian 

metric g to obtain the following Eulerian elasticity tensors

ℂ: = 4∂gg
2 Ψ = g(d)ℂ0, ℂ0 = 4∂gg

2 Ψ0 .

(48)

Insertion of (46) and (47) into the definition (48)2 gives the Eulerian elasticity tensor ℂ0 for 

the intact material

ℂ0 = (p + κ)g−1 ⊗ g−1 − 2p𝕀
g−1 + 2μ𝕀

g−1 + 4ψ44𝕄 + 4ψ66𝕄′,

(49)

where the symmetric fourth-order identity tensor 𝕀
g−1 has the following index 

representation: 𝕀i jkl = gikg jl +gilg jk /2 which is with respect to the metric g−1. In addition, 

the scalar coefficients ψ44 and ψ66 can be given as

ψ44: = ∂I4
ψ4 = k1 1 + 2k2 I4 − 1 2 exp k2 I4 − 1 2 ,

ψ66: = ∂I6
ψ6 = k1 1 + 2k2 I6 − 1 2 exp k2 I6 − 1 2 ,

(50)

and the fourth-order structure tensors take on the following form
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𝕄: = m ⊗ m ⊗ m ⊗ m, 𝕄′: = m′ ⊗ m′ ⊗ m′ ⊗ m′ .

(51)

4.2. Energy-based anisotropic failure criterion

According to experimental data of aortic tissues the related failure mechanism is anisotropic, 

see, e.g., [57,48]. In order to describe the anisotropic failure, we further elaborate on the 

equation for the evolution of the crack phase-field and substitute the Eqs. (31)2, (35) in (39)2 

for d ≥ 0 and then (27), (28) in (31)2 to obtain the following

f −
gc
l d − l2Δd = 0, f = 2(1 − d)Ψ0 .

(52)

We now assume distinct failure processes for the ground matrix and the fibers. Accordingly, 

the energetic force f can be additively decomposed into an isotropic part fiso and an 

anisotropic part fani according to

f = f iso + f ani
f iso = 2(1 − d)ΨO

iso,

f ani = 2(1 − d)Ψ0
ani .

(53)

Next, we introduce the distinct critical fracture energies over length scale gc
iso/l for the 

ground matrix and gc
ani/l for the fibers which are dual to the free-energy functions for the 

isotropic and the anisotropic parts, respectively, see (42). Consequently, (52) can be 

modified to account for the distinct failure assumption. After some simple algebraic 

manipulations, we obtain

2(1 − d)
Ψ0

iso

gc
iso/l

= d − l2Δd, 2(1 − d)
Ψ0

ani

gc
ani/l = d − l2Δd .

(54)
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In the subsequent treatment we define dimensionless crack driving functions for the 

isotropic ℋiso  and anisotropic ℋani  parts in (54), i.e.

ℋiso =
Ψ0

iso

gc
iso/l

, ℋani =
Ψ0

ani

gc
ani/l

.

(55)

By superposing the isotropic and anisotropic failure processes (54), we obtain with the use 

of (55)

d − l2Δd = (1 − d)ℋ, where ℋ = ℋiso + ℋani .

(56)

The left-hand side of (56)1 is the geometric resistance to crack growth whereas the right-

hand side is the local source term for crack growth [27]. In order to enforce the 

irreversibility condition and prevent the healing effects, the dimensionless source term (56)2 

is modified, i.e.

ℋ(t) = max
s ∈ [0, t]

[ ℋ(s) − 1 ] .

(57)

In the above, the Macaulay brackets 〈 (•) 〉 = [(•) + |(•)|]/2 filter out the positive values for 

ℋ(s) and keeps the anisotropic solid intact below a threshold energy density, i.e. until the 

failure surface is reached. Hence, the crack phase-field does not evolve for a dimensionless 

crack source term ℋ(s) < 1. The specific choice for ℋ(t) in (57) ensures irreversibility of the 

crack evolution and a positive energetic force f. The failure Ansatz (57) can be used for 

transversely isotropic as well as anisotropic biological tissues with two or more fiber 

families including dispersion. In Section 6.1 we investigate some aspects of the proposed 

failure criterion for a simple homogeneous case.

5. Finite element formulation

In this section, we present a staggered set of algebraic equations derived from the strong 

forms of the coupled set of equations through a Galerkin type finite element formulation. At 
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the first stage, we consider two decoupled sub-problems by the virtue of a one-pass operator-

splitting. In the sequel, we construct the weak forms of the Eqs. (41), (39)2 and consistently 

linearize them along the field variables, namely the deformation map φ(X,t), the crack phase-

field d(X,t). An identical temporal as well as spatial discretization scheme is employed for 

the deformation map and the crack phase-field. The field variables are appropriately 

discretized with isoparametric shape functions to transform the continuous integral 

equations of the nonlinear weighted-residuals and their linearizations to a set of coupled, 

discrete algebraic equations. Finally, this set of algebraic equations are solved by a Newton-

type iterative solver for the nodal degrees of freedom.

5.1. One-pass operator-splitting algorithm

We consider a discrete time increment τ = tn+1 − tn where tn+1 and tn stand for the current 

and previous time steps, respectively. The operator-splitting algorithm is composed of two 

sub-algorithms, i.e.

ALGOCM = ALGOC ∘ ALGOM .

(58)

Here, such an algorithm yields a decoupling within the time interval and results in 

partitioned symmetric structures for the mechanical and crack-growth sub-problems. In fact, 

the operator-splitting algorithm converts the non-convex coupled problem into two convex 

sub-problems which are computationally more feasible than the monolithic scheme. Within 

this context, the algorithm of each sub-problem is obtained as follows

(M):
Jdiv J−1τ + ρ0γ = 0,

ḋ = 0,
and (C):

φ̇ = 0
d − l2Δd − (1 − d)ℋ = 0.

(59)

The (first) algorithm (M) is the mechanical predictor step which is solved for the frozen 

crack phase-field parameter d = dn, while the algorithm (C) is the crack evolution step for 

the frozen deformation map φ = φn.

5.2. Galerkin-type weak formulation

This section is devoted to the transformation of the coupled balance equations into their 

weak forms through a conventional Galerkin procedure. To this end, we introduce two test 

function fields δφ and δd, which satisfy the essential boundary conditions, according to
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δφ ∈ 𝒲δφ: = δφ δφ = 0 on φ ∈ ∂ℬφ ,
δd ∈ 𝒲δd: = δd δd = 0 on X ∈ Γ(d) .

(60)

The strong form of the Eqs. (59) are multiplied with the admissible test functions (60) and 

integrated over the domain B leading to the weak form for the static force balance and the 

evolution of the crack phase-field. Following the Galerkin procedure, the Gaussian integral 

and the Cauchy theorems lead to the subsequent weighted-residual expressions of the field 

variables for the static force balance, i.e.

Gφ = Gint
φ (δφ, φ, d) − Gext

φ (δφ) = 0
Gint

φ = ∫
ℬ

sym ∇x(δφ) :τdV ,

Gext
φ = ∫

ℬ
δφ ⋅ ρ0γdV + ∫

∂ℬ
δφ ⋅ TdA,

(61)

where the body force γ and the surface traction T are assumed to be prescribed. Using 

similar arguments, the weak forms of the phase-field problem can be elaborated as

Gd = Gint
d (δd, φ, d) − Gext

d (δd) = 0
Gint

d = ∫
ℬ

δd[d − (1 − d)ℋ]dV + ∫
ℬ

∇(δd) ⋅ l2∇d dV ,

Gext
d = 0.

(62)

The geometric and the constitutive terms endow the weighted-residual expressions in (61) 

and (62) with nonlinearity; hence, a reliable and efficient solution of these equations entails 

a consistent linearization with regard to all quantities, i.e. φ and d associated with the 

nonlinear problem about φ = φ and d = d:

LinGφ
φ = Gφ(δφ, φ, d) + ΔGφ(δφ, φ, d; Δφ) = 0,

LinGd
d = Gd(δd, φ, d) + ΔGd(δd, φ, d; Δd) = 0.

(63)
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The above expressions are fashioned by Taylor’s expansion through the Gâteaux derivative 

that yields the linear incremental terms ΔGφ and ΔGd, which are decomposed in the 

following way

ΔGφ = ΔGint
φ − ΔGext

φ , ΔGd = ΔGint
d − ΔGext

d .

(64)

Since we have prescribed values for the body force γ and the surface traction T, the external 

increment vanishes, i.e. ΔGext
φ = 0. Besides, we conclude that the external term ΔGext

d

disappears as well. Accordingly, we first operate on ΔGint 
φ  which takes on the following 

form

ΔGint
φ = ∫

ℬ
sym ∇x(δφ) :ℂ:sym ∇x(Δφ) + ∇x(δφ): ∇x(Δφ)τ dV .

(65)

Maintaining the same formalism, we can now expand on the internal increment ΔGint 
d

describing the linearization of the crack phase-field around d at an incremental time step τ, 

i.e.

ΔGint
d = ∫

ℬ
δd(1 + ℋ)Δd dV + ∫

ℬ
∇(δd) ⋅ l2∇(Δd)dV .

(66)

5.3. Spatial discretization

We perform a spatial discretization of the field variables and construct residual vectors 

together with the element matrices. Here we briefly present an overview of the underlying 

theoretical aspects of the finite element discretization but mainly focus on the algebraic 

counterparts of the residual expressions. For an in-depth treatment of the discretization 

methods we refer to, e.g., [58,59]. Accordingly, we discretize the reference domain ℬ into 

element sub-domains ℬe
h within the body and the Neumann surface ∂ℬ into ∂ℬe

h. Thus, we 

write
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ℬ ≈ A
nel

e = 1
ℬe

h, ∂ℬ ≈ A
nel
t

e = 1
∂ℬe

h,

(67)

where nel is the number of finite elements while nel
t  stands for the number of surface finite 

elements. Then, the field variables φ, d, the weighting functions δφ, δd and the related 

increments Δφ, Δd are interpolated by the Ansatz functions (shape functions) 𝒩 in between 

physically meaningful free parameters, i.e. the values of the displacement and phase-field at 

the nodes. In fact, we discretize the field variables, the corresponding weighting functions 

and increments by means of the same 𝒞0 continuous shape functions (Bubnov–Galerkin 

method). These shape functions are then multiplied by the nodal values x, δx, and Δx for the 

deformation field on each element. In an analogous manner, for each element the nodal 

values d , δd , and Δd  of the crack phase-field are multiplied by the shape functions. In 

addition, we need the gradient of the weighting functions (∇x(δφ), ∇(δd)) and the 

incremental fields (∇x(Δφ), ∇(Δd)) to be obtained from the partial derivatives of the shape 

functions ∇x𝒩, ∇𝒩 .

In the next step, we insert Eq. (67) and the aforestated expressions into (61) and (62), as 

formulated in Section 5.2, in order to obtain the discrete residual vectors

ℝφ = A
e = 1

nen ∑
i = 1

nen
δxTi∫

ℬe
h BTi

τe − 𝒩iρ0eγe dV − A
e = 1

nel
t

∑
i = 1

nsf
δxTi∫

∂ℬe
h𝒩iTedA = 0,

ℝd = A
e = 1

nel ∑
i = 1

nen
δd i∫

ℬe
h 𝒩i de − 1 − de ℋe + ∇T𝒩ile

2∇de dV = 0,

(68)

where (•)e denotes the matrix form of the associated quantities, e.g., τe is the 6 × 1 Kirchhoff 

stress matrix, on a typical element, and nen and nsf denote the number of nodes per volume 

and surface element, respectively. In (68) we have also introduced the 6 × 3 matrix Bi, 

associated with node i, which consists of the partial derivatives of the shape functions with 

respect to the spatial coordinates xj. In the sequel, we identify the discrete forms of the 

linearized terms in analogy to the residual vectors by substituting the necessary arguments 

for the continuous representations in (65) and (66). The linearization process then reads
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Linℝ = ℝ + ∂ℝ
∂𝕌 Δ𝕌, ℝ = ℝφ

ℝd
, 𝕌 = φh

dh
.

(69)

The insertion of the discrete forms of the field variables yield the coupled element matrix. 

Thus,

𝕂 = ∂ℝ
∂𝕌 = 𝕂φφ 0

0 𝕂dd
,

(70)

and the element matrices of each sub-problem take on the following forms

𝕂M : = 𝕂φφ = A
nel

e = 1
∑
i = 1

nen
∑
j = 1

nen
δxTi

Kφφ, e
i j Δx j,

𝕂C: = 𝕂dd = A
nel

e = 1
∑
i = 1

nen
∑
j = 1

nen
δd iKdd, e

i j Δd j,

(71)

where 𝕂M is the stiffness matrix related to the mechanical predictor, while 𝕂C is the stiffness 

matrix describing the crack evolution. The components of the tangent matrices Kφφ, e
i j   and 

Kdd, e
i j  for one element related to the nodes i, j can be given as

Kφφ, e
i j = ∫

ℬe
h BTi

DeB j + ∇x
T𝒩iτe∇x𝒩 j dV ,

Kdd, e
i j = ∫

ℬe
h 𝒩i 1 + ℋe 𝒩 j + ∇T𝒩ile

2∇𝒩 j dV ,

(72)
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where De designates the matrix form of the elasticity tensor for a typical element. Table 1 

summarizes the operator-splitting algorithm which forms the basis for the implementation of 

the numerical scheme in which the phase-field d is driven by the local history field ℋ tn + 1 .

6. Representative numerical examples

In this section, we illustrate the performance of the proposed crack phase-field model 

applied to aortic fracture through numerical simulations to capture the experimental data. 

The failure criterion with the related failure envelope is analyzed in Section 6.1 for a simple 

geometry and loading condition (homogeneous problem), while Sections 6.2 and 6.3 show 

numerical simulations for uniaxial extension and simple shear tests with the anisotropic 

failure criterion (57).

The experiments are conducted on aneurysmatic specimens extracted from the media of a 

human thoracic aorta possessing two families of collagen fibers. The performed numerical 

simulations are based on the experimental data of the specimens which were obtained 

through different deformation modes (uniaxial extension and simple shear in the 

circumferential and longitudinal directions); for more details see the recent study [48], 

specimen AVIII therein.

6.1. Numerical investigation of the failure criterion for a homogeneous problem

Although the initiation and propagation of a crack in a tissue can become a highly 

inhomogeneous phenomenon in terms of stresses and strains, driven by an intricate 

combination of deformation modes, a homogeneous problem with simple loading conditions 

can provide further insight to the energy-based anisotropic failure criterion used in the 

present model. Therefore, we consider a unit cube discretized by one hexahedral element 

which resolves the analytical solution for the deformation and stress, and discards all non-

local effects due to the gradient of the crack phase-field ∇d and the length-scale parameter l 
(=1 mm), see Fig. 5(a). In this case, the tissue is regarded to be transversely isotropic with 

one family of fibers oriented along the x-direction. The elastic parameters required for the 

constitutive law are chosen to be μ = 10 kPa, k1 = 20 kPa and k2 = 1. As for the crack phase-

field, the critical fracture energies are selected as gc
iso = 5 kPa mm and gc

ani = 15 kPa mm. We 

investigate several loading conditions. First, we perform uniaxial extension tests along the x 
and the y-direction with a stretch ratio λx = 2 and λy = 2, respectively. Subsequently, the 

tissue undergoes biaxial deformations with the stretch ratios λx:λy = 2:1.1, 2:1.25, 2:1.5, 

2:1.75, 2:2, 1.75:2, 1.5:2, 1.25:2, and 1.1:2.

Fig. 5(a) demonstrates the obtained failure envelope at which the failure criterion is satisfied, 

leading to d > 0. The corresponding isotropic and anisotropic energy states of the tissue are 

shown in Fig. 5(b). Therein the uniaxial extension in the x-direction up to a stretch of 2 leads 

to a stress and energy state denoted by A, whereas C pinpoints the uniaxial extension in the 

y-direction up to a stretch of 2. The stress and energy states due to the equibiaxial stretch 2:2 

are indicated by B. This study clearly addresses the anisotropy of the failure criterion. In 

fact, the plane-stress failure envelope exhibits an elliptic curve for the investigated stretch 
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ratios, while the failure energy interpolates linearly between the anisotropic and isotropic 

free-energies for the transversely isotropic tissue.

6.2. Uniaxial extension tests of thoracic aorta with anisotropic failure

In the experimental investigations, excised aneurysmatic medial strips from a human 

thoracic aorta are tested along the circumferential (θ) and longitudinal (z) directions by 

means of uniaxial extension in accordance with the testing protocol documented in [48]. 

These aforecited tests are numerically reproduced in silico with a monotonic load pattern 

(stretch λ) exerted on the strips with an incision, as depicted in Fig. 6(a). The finite element 

mesh of the strip is generated with 3880 eight-node hexahedral elements with a length-scale 

parameter l = 0.4 mm. The generated mesh is refined in the regions between the incision and 

the opposite edge for which l satisfies l ≥ 2h for the crack zone to be resolved properly [44], 

where h denotes the minimum element size, see Fig. 6(b). The displacements are constrained 

at the θ = 0,r = 0, and z = 0 planes along the θ-, r-, and z- directions, respectively. The 

geometry and the related finite element mesh of the incised strip extended along the 

longitudinal z- direction is the analogue of Fig. 6.

While the elastic material parameters are estimated via nonlinear least-squares analysis by 

utilizing lsqnonlin on MATLAB® at a material point, the critical fracture energies gc
iso and 

gc
ani according to (55) are identified for each test through a quantitative comparison of the 

stress–stretch curves of the simulation results with those of the corresponding experimental 

data. It should be noted that in the nonlinear least-squares analysis we used the stress–stretch 

data until the ultimate stress which leads to the aforementioned elastic material parameters. 

The elastic and the crack phase-field parameters are summarized in Table 2. For a 

comparison of uniaxial extension test data with the finite element results in terms of Cauchy 

stress versus stretch for strips in the circumferential and longitudinal directions see Fig. 7(a), 

(b). Note that the curves provided via finite element analysis are obtained by considering the 

average of all nodal stresses at the planes θ = 12 mm and z = 12 mm in the circumferential 

and longitudinal directions, respectively. The results agree favorably with the anisotropic 

response of the tissue obtained from the experiments. The crack initiates from the tip of the 

incised region where the stress concentration and, therefore, the energy of the intact tissue 

takes on larger values than the other regions, and hence satisfies the failure condition. What 

follows is a nearly straight pattern as the phase-field grows towards the opposite edge at 

which the failure occurs. This is realized by a sudden loss of the load-bearing capacity, as 

illustrated in the corresponding stress–stretch curves of Fig. 7. Fig. 8 shows the distributions 

of the crack phase-field d and the circumferential Cauchy stress σθθ at the particular stress–

stretch locations A–D, as indicated in Fig. 7(a), while the related crack phase-field d and the 

longitudinal Cauchy stress σzz at the four states indicated in Fig. 7(b) are shown in Fig. 9.

6.3. Simple shear tests of thoracic aorta with anisotropic failure

Concerning the simple shear tests, the medial specimens are subjected to shear along the θ- 

and z-directions, referred to as zθ mode and θz mode (the first index refers to the plane 

while the second to the direction), respectively. Incisions are made to induce failure on a 

certain plane, see [48]. Such experiments are replicated computationally with respect to a 

Gültekin et al. Page 28

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2019 October 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



monotonic shear load applied to the specimens with symmetric incisions; for the related 

geometries see Fig. 10(a), (c). In the sequel, the geometry of the specimen, which is sheared 

along the θ-direction (zθ mode), is discretized with 23525 four-node tetrahedral elements 

with a length-scale parameter l = 0.167 mm, see Fig. 10(b), while for the other geometry (θz 
mode) 22657 finite elements are used with l = 0.25 mm, see Fig. 10(d). Note that l is chosen 

to satisfy l > 2h in order to resolve the crack surface properly, see [44]. The meshes are 

refined in the areas where the crack is expected to propagate in order to resolve the crack 

zone. With respect to the Dirichlet-boundary conditions the nodes on the z = 0 plane are 

constrained in three directions for the zθ mode, while those located on the θ = 0 plane are 

constrained in three directions for the θz mode. The elastic material parameters are 

estimated via nonlinear least-squares analysis by utilizing lsqnonlin on MATLAB®. The 

critical fracture energies gc
iso and gc

ani are predicted for each mode through a quantitative 

comparison of the Cauchy stress versus the amount of shear curves of the simulation results 

with those of the corresponding experiments. The elastic and the crack-field parameters for 

simple shear are summarized in Table 3. Here the mechanical response of the tissue is also 

assumed to be elastic up to the ultimate stress yielding the aforestated elastic material 

parameters.

Fig. 11 shows the finite element results in terms of the Cauchy stress (σzθ and σθz) versus 

the amount of shear (γ) and they agree well with the anisotropic experimental response. It 

needs to be underlined that the numerical results provided in Fig. 11 are obtained by 

considering the average of all nodal stresses at the edge z = θ = 3 mm for the zθ mode, and 

at the edge θ = 3, z = 5 mm for the θz mode. The onset of the cracks is observed at the two 

tips of the symmetrically incised region where the stress concentration, and therefore, the 

energy of the intact tissue satisfies the failure condition. The two distinct crack patterns meet 

in the middle of the refined region at which the complete failure phenomenon manifests 

itself. This is accompanied by the sudden loss of the load-bearing capacity as depicted in the 

corresponding curves of the Cauchy shear stress versus the amount of shear, see Fig. 11. Fig. 

12 illustrates the distributions of the crack phase-field d and the Cauchy shear stress σzθ at 

the locations A–D (indicated in Fig. 11(a)), while the crack phase-field d and the shear stress 

σθz at the four states (according to Fig. 11(b)) are displayed in Fig. 13.

7. Discussion

In this study we have proposed a new anisotropic crack phase-field approach to model 

failure of aortic tissues undergoing finite deformation. An anisotropic invariant-based 

hyperelastic model along with the phase-field model of fracture describe the elastic 

mechanical behavior of the tissue and the associated crack growth, respectively. The 

evolution of the crack phase-field was constructed on the basis of two critical fracture 

energies, one for the ground matrix and the other one for the collagen fibers. On the 

theoretical side, the multi-field problem was established on a rate-type variational principle, 

while on the numerical side the time-discrete incremental counterpart of the rate-type 

variational principle was replaced by a Galerkin-type weak formulation where the staggered 

finite element formulation was employed for a quasi-static process.
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On the constitutive part, the aortic tissue (in this study it is the media) is treated as a fiber-

reinforced material with the fibers corresponding to the collagenous component of the 

material and symmetrically disposed with respect to the cylinder axis; the used constitutive 

law is nonlinear and anisotropic. The evolution of the crack phase-field is dictated by an 

energy-based anisotropic failure criterion using critical fracture energies which relate to the 

ground matrix and the collagen fibers, as emphasized in Section 4.2. In addition, we also 

focused on the numerical implementation of the model and, finally, present quantitative 

comparisons of simulation results with experimental data that substantiate our modeling 

endeavors.

Aortic tissues are structurally comparable to fiber-reinforced composites. The mechanical 

behavior of the tissue before and after the onset of a crack is strongly dependent on the 

heterogeneities of the material, i.e. regional variations of tissue components such as collagen 

and elastin, existence of micro-defects, micro-calcification, etc. [28,60,61]. Accordingly, the 

hyperelastic constitutive model and the failure criterion presented here can be modified in 

order to consider the tissue micro-structure,e.g., histologically related parameters such as the 

density and dispersion of collagen fibers. In particular, the dispersion of collagen fibers both 

in-plane and out-of-plane, see [10] for more details, may considerably affect the failure 

mechanism. In addition, in order to shape the overall mechanical response of the tissue the 

role of collagen cross-links and proteoglycans should not be overlooked.

Tissue failure often occurs within different loading steps, i.e. in a typical stress–stretch curve 

two, sometimes more peaks can be observed until complete rupture. Thereby, the rupture of 

one fiber bundle is followed by the other; see, e.g., the experimental shear data (zθ mode) 

illustrated in Fig. 11(a). In a sense, this evokes a distinct evolution of the crack phase-field in 

regard to each fiber family, as suggested in [45]. The experimental tissue data of the post-

cracking behavior, i.e. the mechanical response of the tissue beyond reaching the ultimate 

stress until complete rupture, show also a considerable variability, see, e.g., Fig. 11. An 

alternative modeling approach which may increase the numerical accuracy is the use of a 

higher-order phase-field model, see, e.g., [46]. That allows to capture the fracture of highly 

anisotropic solids at finite strains. One of the criticisms of the presented model may be the 

choice of the elastic material parameters that render two different parameter sets, compare 

with Tables 2 and 3. We hereby point out that the fusion of the uniaxial extension and shear 

test data, at least for the experimental data set we use, was not satisfactory, albeit we tried to 

minimize one objective function involving the sum of squares of both uniaxial and shear 

responses. In other words we were not able to find one set of elastic parameters which was 

able to mimic both tests. The same unsatisfactory results were observed by trying to use one 

set of gc
iso and gc

ani throughout the finite element simulations.

We note that in the presented study we focused on the mechanical response of the medial 

tissue, treated as a solid, and we entirely neglect the intricate feed-back mechanism between 

the mechanical and the biochemical environment of the tissue known as 

mechanotrandsduction. Nevertheless, the presented approach with the aforementioned 

phenomenological and structurally motivated enhancements provides the basis to model 

fracture of soft biological tissues, in particular of aortic tissues, which may occur in 
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pathologies such as aneurysms and atherosclerotic plaques but also in healthy tissues due to 

impact loads that may occur during an accident.
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Appendix

A.1. Derivation of the Euler–Lagrange equations (25)

The minimization principle (23) can be interpreted as the first variation of the regularized 

crack surface δΓl(d) to be equal to zero. With the use of (21) and (22) we obtain

δΓl(d) = ∂d Γl(d)δd + ∂∇d Γl(d)∇δd

= 1
l ∫ℬ

d δd + l2∇d ⋅ ∇δd dV = 0.

(73)

Let us now focus on the second term in (73)2. The exploitation of the product rule gives

∫
ℬ

l2∇d ⋅ ∇δddV = l2∫
ℬ

Div(∇d δd)dV − l2∫
ℬ

Δd δddV ,

(74)

and the Gaussian integral theorem provides

∫
ℬ

l2∇d ⋅ ∇δd dV = l2∫
∂ℬ

∇d ⋅ NδddA − l2∫
ℬ

Δd δd dV

(75)

so that from (73)2 we obtain
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δΓl(d) = 1
l ∫ℬ

d − l2Δd δddV + l∫
∂ℬ

∇d ⋅ Nδd dA = 0.

(76)

For any δd this relation is zero when d − l2Δd = 0 in ℬ and ∇d · N = 0 on ∂ℬ, which is the 

requested result (25).
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Fig. 1. 
(a) Intact strip of the media prepared for a uniaxial extension test; (b) segment of a human 

aneurysmatic thoracic aorta from which the strip was cut out; (c) ruptured strip after the test.
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Fig. 2. 

Nonlinear deformation of a solid. The reference configuration ℬ ∈ ℝ3 and the spatial 

configuration 𝒮 ∈ ℝ3. φ:ℬ × ℝ ℝ3 is the nonlinear deformation map which maps at time 

t ∈ ℝt material point position X ∈ ℬ onto spatial position x = φ(X, t) ∈ 𝒮. The deformation 

gradient F maps a Lagrangian line element dX onto its Eulerian counterpart dx = FdX.
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Fig. 3. 
(a) Sharp crack topology described by the Kronecker delta function d(x) = δ(x) for vanishing 

length-scale parameter l → 0; (b) diffusive crack topology d(x) = e−|x|/l with a length-scale 

parameter equal to l.
Source: Adopted from [44].
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Fig. 4. 
The multi-field problem: (a) mechanical problem of deformation; (b) evolution of the crack 

phase-field problem.
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Fig. 5. 
(a) Unit cube with a transversely isotropic tissue consisting of one family of fibers with 

orientation M parallel to the x-direction — failure envelope in regard to the Cauchy stresses 

σxx and σyy at which the failure criterion is satisfied, leading to d > 0; (b) corresponding 

isotropic and anisotropic energy states of the tissue Ψ0
iso , Ψ0

ani  .
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Fig. 6. 
(a) Geometry of the specimen oriented in the circumferential θ-direction, uniaxially loaded 

by stretch λ. The structure of the media is characterized by two families of fibers, oriented 

in the directions M and M′ in the reference configuration, corresponding to the collagenous 

component of the material, and they are symmetrically arranged with respect to the cylinder 

axis — α is the angle between the fibers and the circumferential direction; (b) finite element 

mesh of the corresponding geometry with refinement around the incision. Dimensions are 

provided in millimeters.
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Fig. 7. 
Uniaxial extension test data (triangles) and corresponding finite element results (solid 

curves): Cauchy stress versus stretch for a strip in (a) the circumferential θ-direction and (b) 

the longitudinal z-direction.
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Fig. 8. 
Numerical results of uniaxial extension in the circumferential θ-direction with anisotropic 

failure at the stress–stretch locations A–D indicated in Fig. 7(a): (above) distribution of 

crack phase-field d; (below) corresponding circumferential Cauchy stress σθθ.
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Fig. 9. 
Numerical results of uniaxial extension in the longitudinal z-direction with anisotropic 

failure at the stress–stretch locations A–D indicated in Fig. 7(b): (above) distribution of 

crack phase-field d; (below) corresponding longitudinal Cauchy stress σzz.
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Fig. 10. 
(a), (c) Geometries of the specimens sheared in the circumferential θ-direction (zθ mode) 

and in the longitudinal z-direction (θz mode) by the displacement 3γ (thickness times 

amount of shear). The structure of the media is characterized by two families of fibers, 

oriented in the directions M and M′ in the reference configuration, corresponding to the 

collagenous component of the material, and they are symmetrically arranged with respect to 

the cylinder axis — α is the angle between the fibers and the circumferential direction; (b), 

(d) related finite element meshes of the corresponding geometries with refinements around 

the incisions. Dimensions are provided in millimeters.
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Fig. 11. 
Simple shear test data (triangles) and corresponding finite element results (solid curves): (a) 

Cauchy shear stress σzθ versus amount of shear γ for the zθ mode; (b) Cauchy shear stress 

σθz versus γ for the θz mode.
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Fig. 12. 
Distributions of the finite element results of simple shear in the circumferential θ-direction 

(zθ mode) with anisotropic failure at the locations A–D according to Fig. 11(a): (above) 

distribution of crack phase-field d; (below) corresponding Cauchy shear stress σzθ.
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Fig. 13. 
Distributions of the numerical results of simple shear in the longitudinal z-direction (θz 
mode) with anisotropic failure at the locations A–D according to Fig. 11(b): (above) 

distribution of crack phase-field d; (below) corresponding Cauchy shear stress σθz.
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Table 1

General solution algorithm for the multi-field problem in [tn,tn+1].

1. Initialization - At time tn given: deformation map, phase-field, history field φn, dn, ℋn

2.Update - Update the prescribed loads γ, φ and T at current time tn+1

3. Compute - Determine φn+1 from the minimization problem of elasticity

 ALGOM • Gφ = ∫ ℬsym ∇x(δφ) :τdV − ∫ ℬδφ ⋅ ρ0γdV − ∫ ∂ℬδφ ⋅ TdA = 0

4. Compute history - Check crack initiation/propagation condition, update history

•

ℋ tn + 1
ℋ tn  if ℋ tn + 1 < ℋ tn
ℋ tn + 1  else 

5. Compute dn+1 - Determine dn+1 from the minimization problem of crack topology

 ALGOC • Gd = ∫ ℬδd[d − (1 − d)ℋ]dV + ∫ ℬ ∇(δd) ⋅ l2∇ddV = 0
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Table 2

Elastic and crack phase-field parameters for anisotropic failure of aneurysmatic circumferential and 

longitudinal medial strips of an aorta under uniaxial extension.

Elastic μ = 16.95 kPa

k1 = 243.57 kPa

k2 = 2.57

α = 44.5°

Crack phase-field gc
iso

 = 32 kPa mm along the θ-direction

gc
ani

 = 112 kPa mm along the θ-direction

gc
iso

 = 32 kPa mm along the z-direction

gc
ani

 = 35 kPa mm along the z-direction

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2019 October 24.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gültekin et al. Page 50

Table 3

Elastic and crack phase-field parameters for anisotropic failure of aneurysmatic aortic specimens under simple 

shear along the circumferential (θ) and longitudinal (z) directions.

Elastic μ = 80.74 kPa

k1 = 62.04 kPa

k2 = 0.23

α = 53.68°

Crack phase-field gc
iso

 = 80 kPa mm along the θ-direction

gc
ani

 = 105 kPa mm along the θ-direction

gc
iso

 = 120 kPa mm along the z-direction

gc
ani

 = 240 kpa mm along the z-direction
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