Skip to main content
. Author manuscript; available in PMC: 2019 Oct 24.
Published in final edited form as: J Mach Learn Res. 2019 Apr;20:66.

Table 2:

CPU times and optima for simplex-constrained least squares. Here An×p, PD is the proximal distance algorithm, IPOPT is the Ipopt solver, and Gurobi is the Gurobi solver. After n = 1024, the predictor matrix A is sparse.

Dimensions Optima CPU Times
n p PD IPOPT Gurobi PD IPOPT Gurobi
16 8 4.1515 4.1515 4.1515 0.0038 0.0044 0.0010
32 16 10.8225 10.8225 10.8225 0.0036 0.0039 0.0010
64 32 29.6218 29.6218 29.6218 0.0079 0.0079 0.0019
128 64 43.2626 43.2626 43.2626 0.0101 0.0078 0.0033
256 128 111.7642 111.7642 111.7642 0.0872 0.0151 0.0136
512 256 231.6455 231.6454 231.6454 0.1119 0.0710 0.0619
1024 512 502.1276 502.1276 502.1276 0.2278 0.4013 0.2415
2048 1024 994.2447 994.2447 994.2447 1.2575 2.3346 1.1682
4096 2048 2056.8381 2056.8381 2056.8381 1.3253 15.2214 7.4971
8192 4096 4103.4611 4103.4611 4103.4611 3.0289 146.1604 49.7411
16384 8192 8295.2136 8295.2136 8295.2136 6.8739 732.1039 412.3612