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Abstract

The sirtuin family of NAD+-dependent protein deacetylases promotes longevity and counteract 

age-related diseases. One of the major targets of Sirtuins are the FoxO family of transcription 

factors. FoxOs play a major role in the adaptation of cells to a variety of stressors such as oxidative 

stress and growth factor deprivation. Studies with murine models of cell-specific loss- or gain-of-

function of Sirtuins or FoxOs and with Sirtuin1 stimulators have provided novel insights into the 

function and signaling of these proteins on the skeleton. These studies have revealed that both 

Sirtuins and FoxOs acting directly in cartilage and bone cells are critical for normal skeletal 

development, homeostasis and that their dysregulation might contribute to skeletal disease. 

Deacetylation of FoxOs by Sirt1 in osteoblasts and osteoclasts stimulates bone formation and 

inhibits bone resorption, making Sirt1 ligands promising therapeutic agents for diseases of low 

bone mass. While a similar link has not been established in chondrocytes, Sirt1 and FoxOs both 

have chondroprotective actions, suggesting that Sirt1 activators may have similar efficacy in 

preventing cartilage degeneration due to aging or injury. In this article we summarize these 

advances and discuss their implications for the pathogenesis of age-related osteoporosis and 

osteoarthritis.
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1. Sirtuins in skeletal health and disease

The sirtuin family of NAD+-dependent protein deacetylase/mono-ADP-ribosyltransferase 

enzymes is conserved from bacteria to humans, controls a variety of cellular processes such 

as DNA repair and apoptosis, mitochondrial biogenesis, cell stress responses, response to 

hypoxia and circadian rhythms [1, 2]. Seven mammalian sirtuins (SIRT1-7) are known. 
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SIRT1, SIRT6, and SIRT7 are predominantly located in the nucleus, where they regulate the 

expression of specific genes by deacylation/deacetylation of histones and non-histone 

proteins while SIRT3, SIRT4, and SIRT5 localize to mitochondria. SIRT1 deacetylates 

histones H3, H4 and H1 but also modifies more than 50 non-histone proteins[3], including 

transcription factors such as p53, nuclear factor-κB (NF-κB), and FoxOs. Besides their 

major role as lysine deacetylases, Sirts can also catalyze other acyl-lysine modifications, 

including depropionylation, demalonylation, desuccinylation, decrotonylation, 

delipoamidation, other long-chain fatty acid deacylations and mono-ADP-ribosylation. 

These are commonly referred to as deacylation reactions [4, 5].

Sirtuins promote longevity in diverse species and mediate many of the beneficial effects of 

caloric restriction, such as a reduced incidence of cancer, cardiovascular disease and diabetes 

[6]. Like the case in every other tissue, Sirt1 is the best studied sirtuin in bone and cartilage. 

Sirt1 actions in chondrocytes and bone cells are critical for normal skeletal development and 

homeostasis. Nonetheless, recent studies indicate that Sirt3, Sirt6 and Sirt7 also contribute to 

skeletal homeostasis. Despite these recent advances, much less is known about the role of 

sirtuins in skeletal aging. In view of the beneficial effects of sirtuins, there has been 

considerable effort to find small molecules to stimulate their activity for therapeutic 

purposes [7]. The first natural Sirt1 activator to be discovered was resveratrol (3,4′,5-

trihydroxystilbene) [8]. Currently, a multitude of synthetic Sirt1 activators have been 

developed and shown to prolong lifespan and delay innumerous diseases of aging in model 

organisms [7], including osteoporosis and osteoarthritis. These compounds also show 

promise to improve cardiovascular and metabolic disease in human clinical trials [9].

1.1. SIRT1

Initial attempts at examining the role of Sirt1 on the skeleton were performed in Sirt1 KO 

mice. These mice are small, sterile and display high rates of perinatal lethality [10, 11]. Sirt1 

KO also exhibit delayed mineralization of the skull, vertebrae and digits and defects in the 

development and closure of craniofacial sutures [12]. In contrast, Sirt1 haplo-insufficient 

(Sirt1+/−) mice develop normally and have no overt phenotype. Nevertheless, female mice 

exhibit a significant reduction in trabecular and cortical bone mass in long bones, 

characterized by decreased bone formation while male mice had no bone phenotype [13]. 

Likewise, deletion of Sirt1 in adult mice decreases cortical bone mass indicating that the 

skeletal effects of Sirt1 are not restricted to development and growth [14].

The effects of Sirt1 on the skeleton are mediated, at least in part, via cells of the osteoblast 

lineage (Table 1). Murine models of Sirt1 deletion in cell of the mesenchymal lineage have 

elucidated that Sirt1 in osteoblast and osteocytes increases trabecular bone mass, while Sirt1 

in osteoblast progenitors increases cortical bone by stimulating bone formation at the 

endocortical surface [15-18]. Several lines of evidence indicate that Sirt1 promotes bone 

formation by stimulating Wnt signaling. Specifically, deacetylation of FoxOs by Sirt1 

prevents FoxO association with β-catenin and potentiates Wnt signaling, leading to 

increased osteoblast proliferation[17]. The stimulatory actions of Sirt1 on osteoblastogenesis 

might also be mediated by direct effects on β-catenin and Runx2 [15, 19]. In addition, Sirt1 
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may promote bone formation by decreasing the expression of the Wnt signaling-antagonist 

Sost [13, 20].

In contrast to its stimulatory actions on osteoblastogenesis, Sirt1 in myeloid lineage cells 

inhibits osteoclastogenesis and bone resorption [16, 18]. Sirt1 deacetylates and, thereby, 

stimulates FoxO-mediated transcription in osteoclasts. These effects inhibit mitochondrial 

ATP production and ROS accumulation.

As the case with Sirt1+/− mice, the skeletal effects of targeted Sirt1 deletion in bone cells 

were readily seen in females but not in males [16, 17]. However, the reasons for the sex 

specific effects of Sirt1 on the skeleton remain unknown.

1.2. SIRT3

SIRT3 is a major mitochondrial deacetylase [21] and influences most key aspect of 

mitochondrial biology including nutrient oxidation, ATP and ROS generation, mitochondrial 

dynamics, and the mitochondrial unfolded protein response. Despite these influence in 

mitochondria, SIRT3-deficient mice are metabolically normal at a young age, with no 

changes in body composition including BMD, as determined by DXA [21]. Nonetheless, 

deficiency of SIRT3 leads to accelerated development of diseases of aging including the 

metabolic syndrome, cancer, cardiovascular and neurodegenerative diseases [22, 23].

Sirt3−/− mice have low trabecular bone mass in long bones during growth [24], but no 

changes were detected in adult mice [25]. On the other hand, mice with global Sirt3 

overexpression have unaltered bone mass at a young age but exhibit low bone mass 

associated with increased osteoclastogenesis and decreased mineral apposition rate at 13 

months of age [25]. Thus, SIRT3 might exert age-dependent effects on bone, but further 

studies are needed to elucidate the role of this mitochondrial sirtuin on the skeleton.

1.3. SIRT6

Studies attempting to elucidate the role of SIRT6 in bone have used SIRT6−/− mice which 

display a progeroid degenerative syndrome including reduced size, acute loss of 

subcutaneous fat, lordokyphosis, colitis, and severe lymphopenia [26]. These mice also have 

low circulating insulin-like growth factor (IGF-I) and glucose levels and die between 3 and 4 

weeks of age. Not surprisingly, bone mineral density and cancellous and cortical bone 

volume are much reduced in SIRT6−/− compared to control mice [27, 28]. 

Histomorphometric analysis performed in 3-week-old mice revealed impaired bone 

formation, while effects on resorption remain controversial [27, 29]. Ex-vivo osteoblast and 

osteoclast cell cultures from SIRT6−/− mice suggest that Sirt6 contributes to osteoblast and 

osteoclast formation. Nevertheless, the extremely small size and overall poor health 

condition caused by Sirt6 deletion, makes interpretation of the data extremely difficult. 

Thus, elucidation of the role of Sirt6 in skeletal homeostasis awaits studies with conditional 

knock-out mice.
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1.4. SIRT7

SIRT7 acts as a histone desuccinylase and contributes to the maintenance of genome 

stability by participating in the repair of DNA double-strand breaks [30]. SirT7−/− mice have 

elevated perinatal lethality and those that survive to adulthood have a short lifespan and 

show signs of accelerated aging including kyphosis, reduced weight and fat content, 

compromised hematopoietic stem cell function, increased p16INK4 expression, and reduced 

circulating IGF-1 protein [31, 32]. Deletion of SIRT7 in osteoblasts and osteocytes leads to 

low cortical and trabecular bone mass secondary to decreased bone formation and increased 

bone resorption [33]. The stimulatory effects of Sirt7 on osteoblasts might be due to 

deacylation of lysine (K) 368 in the C-terminal region of Osterix1 which increases its 

transactivation activity.

2. Sirtuins in cartilage homeostasis and osteoarthritis

2.1. SIRT1

As in bone, the majority of studies investigating sirtuin roles in cartilage homeostasis, aging, 

and osteoarthritis (OA) pathogenesis have focused on SIRT1. In mice, Sirt1 

haploinsufficiency results in delayed growth and increased spontaneous OA by 9 months of 

age, which is associated with increased chondrocyte apoptosis [34]. Similar changes were 

observed in transgenic mice homozygous for a Sirt1 inactivating mutation [35]. 

Chondrocyte-specific deletion of Sirt1 resulted in normal development but increased severity 

of OA with aging and following joint injury [36] (Table 1). These findings in mice are 

consistent with reduced levels of SIRT1 measured in human OA cartilage [37, 38] and 

suggest a chondroprotective role for the sirtuin. SIRT1 inhibition increases apoptosis and 

pro-catabolic gene expression by human articular chondrocytes, particularly under challenge 

with pro-inflammatory cytokines [39-41] or nitric oxide [38]. In contrast, SIRT1 activation 

not only reduces these catabolic responses [38, 39, 41] but also enhances chondrogenic gene 

expression [42], in part through the deacetylation and increased nuclear localization of 

SOX9 [43]. SIRT1 exerts survival and other chondroprotective effects through regulation of 

mitochondrial biogenesis, oxidative stress, autophagy, and ER stress responses – pathways 

that are known to drive OA progression [44]. In human OA chondrocytes, for example, 

reduced SIRT1 activity was associated with reduced mitochondrial biogenesis; 

pharmacological activation of the energy sensor AMP-activated protein kinase (AMPK) 

activated proliferator-activated receptor gamma coactivator 1α (PGC-1α), a master 

regulator of mitochondrial biogenesis, through SIRT1 deacetylation to enhance chondrocyte 

ATP production [44].

Despite abundant evidence of a chondroprotective role for SIRT1, its activity may not be 

exclusively beneficial to joint homeostasis. Monteagudo et al. provide evidence that the loss 

of SIRT1 modulation due to inhibition of Disruptor of telomeric silencing 1-like (DOT1L), a 

histone methyltransferase, increased chondrocyte Wnt signaling and led to OA in mice [45]. 

These results seem consistent with decreased SIRT1 levels in osteoblasts from human OA 

subchondral bone, which increased SOST expression and reduced canonical Wnt signaling 

[46]. Yet the findings of Monteagudo et al. also seem to conflict with another recent study 

showing upregulation of Wnt signaling mediator lymphoid enhancer factor (LEF)-1 and 

Almeida and Porter Page 4

Bone. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



matrix metalloproteinase (MMP)-13 levels in Sirt1−/− mice, as well as inhibition of LEF-1-

mediated MMP-13 expression by SIRT1 overexpression in human OA chondrocytes [47]. 

More studies on the interconnection between SIRT1 and Wnt signaling in the context of OA 

pathogenesis are required. In addition to cartilage and peri-articular bone, joint homeostasis 

is also determined by contributions from the synovium. SIRT1 levels are increased in 

synovium from patients with rheumatoid arthritis (RA), and SIRT1 can enhance pro-

catabolic gene expression by synovial fibroblasts while inhibiting their apoptosis; of note, 

SIRT1 levels were reported lower in OA synoviocytes [48]. As the precise activities of the 

sirtuins continue to be unveiled, preclinical evaluation of sirtuin modulators for OA therapy 

should consider their effects on multiple joint tissues.

2.2. SIRT2-7

To date, less is known about the roles of the other sirtuins in cartilage homeostasis and OA. 

Levels of SIRT3 decrease with age in rat and mouse cartilage as well as in human OA 

cartilage, which has been associated with increased acetylation and reduced activity of 

mitochondrial antioxidant enzyme superoxide dismutase 2 (SOD2); moreover, Sirt3−/− mice 

displayed accelerated OA [49]. Reduced SIRT3 levels and increased SOD2 acetylation has 

since been confirmed in human OA chondrocytes by a separate group, who further 

demonstrated that these changes were associated with increased mitochondrial (mt)ROS and 

mtDNA damage. Pharmacological AMPK activation improved mtDNA integrity and 

organelle function through increased SIRT3 activity [50]. SIRT6 levels are also decreased in 

cartilage from patients with OA as well as in aged mice [51], although its levels may be 

enhanced within proliferating cell nuclear antigen (PCNA)-positive chondrocyte clusters 

within OA tissue [52]. Consistent with both observations, SIRT6 RNA inhibition enhanced 

markers of DNA damage, telomere dysfunction, and senescence within human cultured OA 

chondrocytes [52], while SIRT6 overexpression reduced expression of senescence markers 

in a similar population [51]. In contrast to the chondroprotective functions demonstrated for 

SIRT1, SIRT3 and SIRT6, SIRT2 and SIRT4 both increase stability of HIF-2α in articular 

chondrocytes, stimulating pro-catabolic gene expression in these cells [53]. However, their 

direct catabolic function during aging or osteoarthritis requires further study. SIRT7 may 

also have negative actions in cartilage, as Sirt7−/− mice displayed resistance to age-related 

and exercise-induced OA and Sirt7 inhibition increased Sox9 activity in the chondrogenic 

ATDC5 cell line [54].

3. Actions of Sirt stimulators on skeletal aging

Resveratrol is a polyphenol found in nuts, grapes and other plant sources that affords 

protection against inflammation, oxidative stress and cancer [55, 56]. Resveratrol can 

stimulate Sirt1 and innumerous human and rodent studies have elucidated effects for 

resveratrol in ameliorating disorders such as cardiovascular disease, diabetes and 

inflammation (reviewed in detail by Novelle et al [57]). Although resveratrol can also 

activate the estrogen receptor, AMPK and MAPK, among others [58], acute deletion of 

SIRT1 in adult mice prevents many of the physiological effects of resveratrol and other 

sirtuin-activating compounds (STACs) [59, 60]. Resveratrol administration increases bone 

mass in young mice due to an increase in osteoblast number [61]. Similarly, the small 
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molecule Sirt1 activator SRT1720 increases bone mass in growing mice due to stimulation 

of bone formation and inhibition of resorption [20]. These effects are associated with a 

decrease in sclerostin levels. In cultured cells, resveratrol and other Sirt1 activators, such as 

SRT1720 or SRT2104, promote osteoblast differentiation and reduce osteoclasts formation 

[62-67].

Notably, administration of resveratrol, SRT1720 or SRT2104 to mice attenuates the loss of 

bone mass with aging [14, 18, 68]. In line with these findings, old mice overexpressing Sirt1 

have high bone mass [69]. Sirt1 stimulators also cause a significant increase in bone mass in 

the estrogen deficiency or unloading models of osteoporosis [14, 18, 70-72]. Perhaps more 

important, resveratrol promotes a significant increase in bone mass in elderly obese men 

[73]. These findings provide compelling evidence to suggest that Sirt1 may serve as a 

therapeutic target for combating age-related bone loss. Nevertheless, it remains unknown 

whether a decrease in Sirt1 activity contributes to natural skeletal aging.

Accumulating evidence demonstrates that natural and synthetic activators of SIRT1 have 

chondroprotective actions and, therefore, promise as OA therapeutics. Resveratrol inhibits 

chondrocyte apoptosis induced by pro-inflammatory cytokines [74, 75], in part through 

SIRT1-mediated deacetylation of p65 and inhibition of canonical NF-κB signaling [39, 76]. 

Chondroprotective efficacy has been reported following resveratrol delivery in murine and 

rabbit models of osteoarthritis [77, 78]. In human chondrocytes cultured in vitro, olive oil-

derived hydroxytyrosol (4-(2-Hydroxyethyl)-1,2-benzenediol) inhibited H2O2-induced DNA 

damage and cell death through SIRT1-mediated autophagy [79, 80]. As for synthetic 

activators, systemic delivery of SRT1720 transiently decreased histological OA scores and 

osteophyte volumes in mice that had received medial meniscus destabilization, which 

coincided decreased catabolic marker expression within the cartilage [81]. Further 

preclinical evaluation of these SIRT1 activators is needed using models of both injury-

induced and age-associated OA.

4. FoxO transcription factors

In mammals, FoxO1 (or FKHR), FoxO3 (or FKHRL1), FoxO4 (also called AFX) and 

FoxO6 [82] represent a subclass of a large family of forkhead proteins characterized by the 

presence of a winged-helix DNA binding domain called Forkhead box. FoxOs are major 

targets of the insulin-IGF1 signaling pathway which inhibits FoxO activity via Akt-mediated 

phosphorylation. Another post-translational modification that alters FoxO activity is 

acetylation/deacetylation. Deacetylation of FoxOs by Sirt1 promotes or inhibits FoxO-

mediated transcription depending on the cellular context and the target genes [83]. FoxOs 

play a major role in the adaptation of cells to a variety of stressors such as oxidative stress 

and growth factor deprivation [84], by promoting cell cycle arrest [85, 86], DNA damage 

repair, autophagy, and scavenging of free radicals [87-89] [83, 90]. FoxO1, 3, and 4 have 

broad and overlapping patterns of expression in many mammalian tissues, including bone 

[82, 91] and cartilage [92]. Even though they all recognize the same DNA target sequence 

[93], studies with models of individual or combined FoxO deletion have elucidated that 

FoxO1, 3, and 4 exert both redundant and non-redundant functions [94-98].
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5. FoxOs control bone resorption and formation

Mouse models of loss and gain-of-function of FoxOs have elucidated that FoxOs are 

important regulators of osteoclast differentiation and bone resorption. Specifically, combined 

loss of FoxO1, 3 and 4 in the myeloid lineage promotes cell proliferation, osteoclast 

formation and bone resorption leading to reduced trabecular and cortical bone mass [99]. 

Conversely, overexpression of FoxO3 attenuates osteoclastogenesis and bone resorption, and 

increases bone mass. RANKL, via Akt-mediated phosphorylation, decreases FoxO protein 

levels and transcriptional activity. This leads to a decrease in catalase and an increase in 

ROS, which in turn potentiates osteoclast formation and bone resorption [99-101] ((Fig. 1). 

FoxOs also stimulate the expression of hemeoxygenase-1 (HO-1) in osteoclast progenitors 

[99]. HO-1 catabolizes heme and attenuates mitochondrial oxidative phosphorylation and 

ATP production in macrophages. Notably, the increase in ROS due to loss of FoxO function 

in myeloid progenitors not only decreases bone mass, but also promotes atherogenesis in 

mice [98, 99]. Deacetylation of FoxOs by Sirt1 stimulates FoxO transcriptional activity and 

inhibits osteoclast formation [65]. Thus, the antiosteoclastogenic effects of FoxOs can be 

harnessed by Sirt1 stimulators (Fig. 1).

Mice with combined deletion of FoxO1, FoxO3 and FoxO4 in osteoprogenitors exhibit high 

bone mass due to increased β-catenin/TCF transcription and cell proliferation [102] . These 

findings indicate that FoxOs act on osteoblast progenitors to attenuate cell cycling, most 

probably in order to restrain proliferation in situations of increased stress. Acetylation of 

FoxOs promotes the interaction between FoxO and β-catenin while Sirt1-mediated FoxOs 

deacetylation prevents this interaction and potentiates Wnt signaling, leading to increased 

osteoblast proliferation [17]. In contrast to the effects in osteoprogenitors, FoxOs in 

osteoblasts and osteocytes stimulate bone formation by attenuating ROS and promoting cell 

survival. These actions of FoxOs are due to increased expression of antioxidant enzymes like 

catalase and superoxide dismutase and prevention of oxidative stress [91, 103]. In addition, 

FoxO1 promotes the accumulation of glutathione, a peptide with redox-active sulfhydryl 

moieties which reduces ROS. The increase in glutathione is due to stimulation of protein 

synthesis caused by FoxO1 interaction with ATF4, a transcription factor that promotes 

amino acid import [103]. Actions of FoxOs in osteoblasts also decrease bone resorption via 

paracrine mechanisms, most likely, due to stimulation of osteoprotegerin (OPG) [91, 

102-105].

6. FoxOs in cartilage homeostasis and osteoarthritis

Chondrocytes within human and mouse articular cartilage predominantly express FoxO1 and 

FoxO3 compared to FoxO4. FoxO1 and FoxO3 levels both decrease with age and with OA, 

although abundant phosphorylated FoxO1 and FoxO3 were observed within chondrocyte 

clusters in OA cartilage [92]. These findings are consistent with a recent RNA-sequencing 

analysis identifying the FoxO signaling pathway as among the most dysregulated in human 

OA cartilage compared to normal tissue [106]. In mice, both total and phosphorylated 

FoxO1 and FoxO3 levels decrease in articular cartilage with age and after surgical joint 

injury [92]. The cartilage-specific deletion of FoxO1, FoxO3, FoxO4 or all three isoforms in 

mice was recently reported: combined FoxO deletion produced OA-like changes by 6 
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months of age, which was similar to deletion of FoxO1 alone; in contrast, FoxO3 deletion 

did not result in more severe OA than controls until 18 months [107]. Taken together, these 

studies suggest important roles for FoxO1 and FoxO3 in maintaining articular cartilage 

homeostasis (Fig. 1).

Both expression and phosphorylation of FoxO1, FoxO3, and FoxO4 were all detected in the 

cell populations of OA synovium, though FoxO4 phosphorylation was not as intense as in 

RA synovium. Pro-inflammatory cytokine challenge can increase FoxO1 phosphorylation in 

fibroblast-like synoviocytes isolated from OA tissue and FoxO4 phosphorylation in 

peripheral blood-derived macrophages [108]. FoxO3a has also been implicated in synovial 

T-cell survival during RA [109]. Considering these synovium-specific FoxO activities, 

additional studies using animal models of joint aging and injury are required to demonstrate 

whether FoxOs are a sufficiently specific target for intervention into OA progression.

7. FoxOs in skeletal aging

Several common mechanisms have been proposed to drive the natural aging process and, at 

least, some of these mechanisms also contribute to skeletal fragility [110, 111]. FoxOs are 

homologous to the C. elegans transcription factor DAF-16 (abnormal DAuer Formation-16). 

Loss of function mutations of the insulin-IGF1 receptor in C. elegans increase lifespan, an 

effect that is completely dependent on DAF-16 [112-114]. The role of FoxOs on longevity 

might be evolutionary conserved as multiple studies in humans have consistently revealed 

FoxOs, in particular FoxO3, as “longevity genes” [115]. Besides the insulin-IGF1 pathway, 

FoxOs modulate several other mechanisms of aging including oxidative stress, senescence 

and loss of proteostasis and, thereby, can influence the loss of bone mass with age and the 

development of osteoarthritis.

7.1. Oxidative Stress

Mitochondrial dysfunction and a consequent increase in ROS production have for long been 

considered a driver of aging [116]. In mice, ROS accumulates in bone with old age or with 

sex steroid deficiency [117, 118]. Loss of bone mass with aging is due to a decrease in the 

number of osteoblasts and this decrease is caused, at least in part, by an increase in 

mitochondrial ROS in cells of the osteoblast lineage, while mitochondrial ROS in osteoclasts 

contributes to the loss of bone mass with estrogen deficiency [119].

ROS activate FoxOs via several post-translational modifications namely JNK- and Mst1-

mediated phosphorylation and p300/CBP-mediated acetylation [120-122]. ROS also 

promote the association of FoxOs to β-catenin and, thereby, a reduction in the β-catenin 

required for Wnt signaling and cell proliferation [123-127]. Accordingly, glucose-induced 

oxidative stress decreases proliferation of embryonic stem cells via a FoxO3/β-catenin 

complex-induced expression of the cyclin inhibitor p21Cip1 [128]. The interaction between 

β-catenin and FoxOs is evolutionary conserved as evidenced by the fact that in C. elegans 
the β-catenin orthologue, BAR-1, is required for DAF-16 mediated resistance to oxidative 

damage [129]. The findings that oxidative stress inhibit Wnt signaling via FoxOs and that 

mice lacking FoxOs in osteoprogenitors exhibit high bone mass throughout life supports the 

contention that FoxOs contribute to the deleterious effects of ROS on the skeleton.
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In human articular chondrocyte cultures, inhibition of FoxO1 alone or both FoxO1 and 

FoxO3 increases cell death in response to oxidative stress, in part through reduced 

expression of antioxidant proteins and of SIRT1 [130]. Conversely, FoxO3 overexpression 

increases antioxidant enzyme levels [130], and FoxO3 mediates these same effects when 

induced by a pharmacological activator of AMPK [131].

7.2. Autophagy

The integrity of proteins is maintained by folding mechanisms, as well as by degradation 

processes executed by the ubiquitin-proteasome and the autophagy-lysosome systems both 

of which decrease in old age [132, 133]. Autophagy is the process of degradation and 

recycling of cytoplasmic proteins and organelles in response to starvation. Autophagy also 

degrades protein aggregates to prevent cytotoxicity. Various diseases of aging are associated 

with decreased autophagy and impaired protein homeostasis (proteostasis) [134]. Several 

autophagy-related genes (atg genes) encode proteins that are responsible for the recruitment 

of cargo, formation of autophagosomes, fusion with the lysosome, and release of 

degradation products [135]. Expression of autophagy-related genes declines in muscle tissue 

from aged humans and several cell types from aged rodents, including osteoarthritic bone 

chondrocytes [136-138].

Inactivation of autophagy in osteoblasts and osteocytes in young mice decreases bone mass 

and mimics the effects of aging on the skeleton [139-142]. Likewise, suppression of 

autophagy in neurons, muscle and beta cells, has been associated with premature aging and 

age-related disorders [137, 143-145]. FoxOs promotes the expression of several autophagy 

genes in muscle, neurons, cardiomyocytes and hematopoietic stem cells [146-148]. Thus, 

maintenance of proteostasis appears to be critical for the pro-longevity effects of FoxO [149, 

150]. While the contribution of FoxOs to osteoblast or osteocyte autophagy remain 

unknown, both FoxO1 and FoxO3 are known to stimulate autophagy in human and murine 

articular chondrocytes [107, 130]. FoxO3 inhibition decreases autophagy and enhances ROS 

levels in response to corticosteroid challenge [151]. Moreover, the chondroprotective 

compound glucosamine increases autophagy in murine and human chondrocytes by 

dephosphorylation and activation of FoxO3 [152].

7.3. Cellular senescence

Another well-established mechanism of aging is cellular senescence, a process in which 

damaged cells are withdrawn from the cell cycle, avoid apoptosis, and alter their secretory 

activity a process known as the senescence associated secretory phenotype [153]. 

Accumulation of senescent cells contributes to several age-related diseases [154]. In bone, 

the number of senescent osteoprogenitors, osteocytes and chondrocytes increases with age 

and contribute to osteoporosis and osteoarthritis [155-157]. In some tissues FoxO4 is critical 

for senescent cell viability by binding to active p53 and, thereby, preventing p53-mediated 

apoptosis and promoting p21 expression and cell cycle arrest [158]. Administration of an 

interfering peptide that precludes the FoxO4/p53 interaction promotes apoptosis of 

senescent cells and attenuates the loss of hair, renal function, and activity in aged mice. 

Senescent osteoprogenitors from old mice exhibit activation of p53 and increased p21 and, 

most probably, contribute to the decrease in bone formation with old age [155]. However, it 
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remains unknown whether FoxOs mediate any of effects of senescence in bone cells and, 

thereby, contribute to osteoporosis or osteoarthritis.

8. Summary

Recent research in animal models has revealed that the rate of physiological aging can be 

ameliorated by a variety of behavioral, genetic, and pharmacological means. Most 

importantly, decreased rate of aging in animal models is often accompanied by a delay (and 

decreased severity) of a number of age-associated diseases. Sirtuins and FoxOs are well-

established players in longevity in nematodes, flies, and mammals and represent a critical 

node for several degenerative diseases of aging including osteoporosis and osteoarthritis. 

Activation of SIRT1 in mice is associated with a delay in the onset of many other aging-

related diseases and can promote longevity. There are great expectations that this can also be 

accomplished in humans. Deacetylation of FoxOs by Sirt1 in the brain, pancreas and muscle 

counteract the development of neurodegenerative diseases, metabolic syndrome, sarcopenia, 

and cardiovascular disease [7, 159, 160]. In bone, deacetylation of FoxOs by Sirt1 decreases 

osteoclast and increases osteoblast number, making this signaling axis an ideal therapeutic 

target to counteract the loss of bone. This premise is further substantiated by findings that 

Sirt1 stimulators attenuate osteoporosis and osteoarthritis in different disease models. 

Exciting recent discoveries have elucidated that common mechanisms of aging such as 

oxidative stress and cellular senescence contribute to skeletal involution and osteoarthritis 

[111, 157]. It is, therefore, critical to continue the search for mechanisms of skeletal aging so 

that both osteoporosis and osteoarthritis solidify their position on the list of degenerative 

disease that are amenable to treatment with anti-aging drugs.
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Figure 1: FoxO actions in osteoblasts, osteoclasts, and chondrocytes and their regulation by 
SIRT1 activators.
In cells of the osteoblastic lineage, acetylation of FoxOs dictates their sequestion of β-

catenin and consequent modulation of Wnt signaling. In osteoclast progenitors, FoxOs 

suppress ROS levels, an important driver of osteoclastogenesis. Activators of SIRT1, 

through deacetylation of FoxOs, increase bone formation and decrease bone resorption, 

suggesting their use in preventing bone loss with aging. In chondrocytes, reduced levels of 

FoxO1 and 3a with age and OA contribute to increased oxidative stress and reduced 

autophagy, leading to increased chondrocyte apoptosis or catabolic gene expression. As in 

bone, FoxOs may mediate the chondroprotective actions of SIRT1 activators, but this has not 

yet been established.
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Table 1.

Summary of the effects of sirtuins on the skeleton as determined from studies using whole body or conditional 

KO mice.

Sirtuins Cell type Cellular effects Bone structure References

Sirt1 Osteoclast Osteoclast number ⬇ Trabecular bone mass ⬆ 16, 18

Osteoblast 
progenitor

Osteoblast number ⬆ Cortical bone mass ⬆ 15, 17

Osteoblast Osteoblast number ⬆ Trabecular bone mass⬆ 16, 18

Chondrocyte Apoptosis ⬇ Chondroprotective 36

Sirt3 All Trabecular bone during growth⬇ 24

No change in young adults 25

All* No changes in young adults; trabecular and cortical bone mass at 13 
months ⬇

25

Osteoclast number ⬆

MAR ⬇

Chondroprotective 49

Sirt6 All Bone formation ⬇ Failure to accrue a normal size skeleton 27-29

Sirt7 Osteoblast Bone formation ⬆ Trabecular and cortical bone mass ⬆ 33

Bone resorption ⬇

All Promotes osteoarthritis 54

*
Effects of Sirt3 were also determined from work with a model of whole body overexpression of Sirt3.
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