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Abstract

In this work we developed a deep convolutional neural network (CNN) for classification of 

malignant and benign masses in digital breast tomosynthesis (DBT) using a multi-stage transfer 

learning approach that utilized data from similar auxiliary domains for intermediate-stage fine-

tuning. Breast imaging data from DBT and digitized screen-film mammography (SFM), digital 

mammography (DM) totaling 4,039 unique ROIs (1,797 malignant and 2,242 benign) were 

collected. Using cross-validation, we selected the best transfer network from six transfer networks 

by varying the level up to which the convolutional layers were frozen. In a single-stage transfer 

learning approach, knowledge from CNN trained on ImageNet data was fine-tuned directly with 

DBT data. In a multi-stage transfer learning approach, knowledge learned from ImageNet was first 

fine-tuned with the mammography data and then fine-tuned with the DBT data. Two transfer 

networks were compared for the second-stage transfer learning by freezing most of the CNN 

structure versus freezing only the first convolutional layer. We studied the dependence of the 

classification performance on training sample size for various transfer learning and fine-tuning 

schemes by varying the training data from 1% to 100% of the available sets. The area under the 

receiver operating characteristic curve (AUC) was used as a performance measure. The view-based 

AUC on the test set for single-stage transfer learning was 0.85±0.05 and improved significantly 

(p<0.05) to 0.91±0.03 for multi-stage learning. This study demonstrated that, when the training 

sample size from the target domain is limited, an additional stage of transfer-learning using data 

from a similar auxiliary domain is advantageous.
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I. INTRODUCTION

To utilize deep convolutional neural networks (CNNs) for pattern recognition tasks in 

medical imaging, transfer learning is commonly used due to the lack of large training data. 
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The knowledge from a trained source domain task is transferred to improve the learning in 

the target domain task. Pre-trained CNNs with transferable weights are particularly suited 

for transfer learning. Studies have shown that fine-tuning of pre-trained CNNs can achieve 

higher performance than conventional feature engineering methods for a variety of medical 

imaging tasks. [1]

In a CNN, the convolutional layers near the input are generic and the deeper layers are 

specific to the target task. [2] Transfer learning from one domain (e.g., non-medical images) 

to another (e.g., medical images) is to utilize these generic features while transforming or 

fine-tuning the deeper features to a target task. However, when the available training data 

from the target domain are limited, the pre-trained features may not be sufficiently fine-

tuned to the target task. Instead of transfer learning directly to the target domain with a small 

training set, additional, intermediate stages of transfer learning from related auxiliary 

domains may help improve learning in the target task.

CNNs are hierarchical representation of cascading feature extraction stages across the layers. 

The knowledge learned by training with image samples is incorporated in the weights. One 

common approach of transfer learning is to control the depth at which the amount of 

‘knowledge’ transfer between the source and target is optimal for the target task. This type 

of feature transformation by freezing the weights from the input layer up to a certain layer of 

CNN is analogous to utilizing a set of common basis functions for decomposing image 

features, while training the deeper layers with the image samples from the target domain to 

select the specific features for the target task. Previous studies on the effects of finite sample 

size on classifier performance when feature selection[3] is involved shows that the bias in 

the classifier performance depends on the number of training samples, the number of 

selected features and their statistical distribution. The CNN performance thus depends on the 

transfer learning strategy where the level of feature transformation is controlled across 

multiple stages as well as on the training sample size.

In this study, we propose a multi-stage transfer leaning approach, where a pre-trained CNN 

on non-medical images is first fine-tuned to a related task in medical imaging domain before 

being fine-tuned to the target task. We also study the dependence of the effectiveness of this 

approach on the transfer learning strategy and the training sample size in the two stages.

As of 2013, 67% of the U.S. women population over the ages of 40 have had a mammogram 

in the past two years. [4] Digital breast tomosynthesis (DBT) is a promising new breast 

imaging modality with the potential to alleviate the limitations of conventional 

mammography by providing quasi 3 dimensional structural information of the breast 

volume. DBT has been shown to improve the detection sensitivity of invasive breast cancer 

while reducing the recall rate. The reduction of tissue overlap provides increased lesion 

conspicuity particularly in dense breasts compared to full-field digital mammography (DM). 

Thus the availability of DBT continues to increase in the U.S. [5] and widely used in clinical 

practice [6]. Research and development of computer-assisted methods in mammography had 

a long history [7], [8], including the use of convolution neural networks [9]–[11]. Similar 

studies on computer-aided detection (CADe) and diagnosis (CADx) methods for DBT have 

been conducted with relatively smaller data set sizes, [12]–[25] compared to the past 
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mammography studies. The collection of medical images for development of computer-

assisted methods is a complex and expensive process that requires institutional approval and 

annotation by experts. To collect a substantial set of DBT data for deep learning methods is 

difficult without a concerted effort from multiple research groups with extensive funding 

similar to the Lung Image Database Consortium image collection (LIDC-IDRI). [26], [27] 

Multi-stage transfer learning is particularly useful in this scenario, when a sufficiently large 

data set is not available in the target domain. Knowledge from related domains, such as 

digitized screen-film mammography (SFM) and DM can be transferred to train a CAD 

system for DBT. In our previous study on CADe of masses in DBT, we have shown that 

transfer learning from training on mammograms can improve the learning on DBT. [23] In 

the current work, we study the usefulness of the additional stage of pre-training with SFM 

and DM data for the target task of classifying malignant and benign masses (CADx) in DBT.

In the following sections, we describe the data characteristics of mammography and DBT 

images, the processes of the single-stage and multi-stage transfer learning, and the 

investigations of the finite sample size effects on the transfer learning strategies. We then 

discuss the results and observations of these investigations.

II. METHODS AND MATERIALS

We studied multi-stage transfer learning from non-medical-image-trained CNN to medical-

image-trained CNN. For the three structures shown in Fig. 1., Fig. 1(a) shows the ImageNet 

trained AlexNet CNN structure [28] using 1.2 million non-medical images for a 1000 class 

image classification problem, corresponding to an average of about 1,200 samples per class. 

The CNN has 150K neurons and 33M parameters trained on the 2012 ImageNet large scale 

visual recognition challenge (ILSVRC) data set. Fig. 1(b) shows the stage 1 fine-tuned CNN 

on 2,454 unique regions of interest (ROIs) with breast masses extracted from mammograms, 

consisting of 1,057 and 1,397 ROIs for malignant and benign classes, respectively. Fig. 1(c) 

shows the stage 2 fine-tuned CNN on 1,140 unique ROIs from DBT images, consisting of 

590 and 550 ROIs for malignant and benign classes, respectively. A unique ROI on 

mammograms is defined as a mass ROI extracted from each available view. A unique ROI 

on DBT is defined as a mass ROI extracted from each of the five slices centered at the mass 

centroid on each available view. The following sections provide more details of the 

mammography and DBT data sets, CNN structures, transfer learning and validation 

methods.

A. Data sets

In this study, breast images from SFM, DM and DBT were partitioned into training, 

validation and independent test sets. SFM data was collected from the University of 

Michigan (UM) with Institutional Review Board (IRB) approval and from the Digital 

Database for Screening Mammography (DDSM). [23], [29] The DM images were acquired 

with a GE Senographe 2000D FFDM system at the UM and collected with IRB approval. 

The DBT data were collected from the UM and the Massachusetts General Hospital (MGH) 

with IRB approval [12] from the respective institutions. The UM DBT system was a General 

Electric (GE) GEN2 prototype DBT system with a total tomographic angular range of 60°, 
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3° increments and 21 projection views. The MGH DBT system was a prototype GE DBT 

system with a 50°, 3° increments and 11 projection views. Both the DBT volumes were 

reconstructed using simultaneous algebraic reconstruction technique with a slice spacing of 

1 mm and in-plane resolution of 100 μm × 100 μm. All the breast images used in the study 

were reduced to 200 μm × 200 μm pixel size by averaging every adjacent k × k pixels, where 

k depended on the original pixel size of the image. The mass on each view was marked with 

a bounding box by a Mammography Quality Standard Act (MQSA) qualified radiologist 

with over 30 years of experience in breast imaging. A 128 × 128-pixel ROI centered at the 

mass was extracted from the breast image and normalized using a background correction 

method. [11], [30] The ROI size of 128×128 pixels at a pixel size of 200 μm × 200 μm can 

enclose a mass up to 25.6 mm in the long diameter.

Table I and table II summarize the breast imaging data sets used in the study. The 

mammography training data consisted of SFM cases from UM and DDSM, and DM cases 

from UM and the test set consisted of SFM cases from UM. The DBT training data 

consisted of cases from UM and MGH and the test set consisted of cases from UM. For each 

lesion in a DBT volume, ROIs were extracted from five slices centered at the central slice of 

the lesion and within the upper and lower bounds of the box marked by the radiologist.

B. CNN structure

As shown in Fig. 1(a), the ImageNet-trained AlexNet CNN structure has five convolutional 

layers and three fully connected layers connected with max-pooling and normalization 

layers; the last fully connected layer is a softmax layer with 1000 outputs. [28] To adapt the 

ImageNet CNN trained for a 1000-class task to a 2-class mammography task, two fully 

connected layers were appended to the end of the network with 100 and 2 nodes, 

respectively. A similar approach of dropping the number of nodes in the last fully connected 

layer by adding additional layers was proposed by Oquab et al. [31] The same CNN 

structure was used for both stage 1 and stage 2 transfer learning. Table III lists the number of 

neurons, the filter sizes and the number of nodes in each layer including the two additional 

fully connected layers (F4 and F5). The CNN was trained with mini-batch stochastic gradient 

descent optimization using a batch size of 128 to maximize the multinomial logistic 

regression objective [28] on a Tesla K40 GPU. The output score of each sample from the 

softmax layer of the CNN was used as a decision variable for receiver operating 

characteristic (ROC) analysis [32] and the area under the ROC curve (AUC) was used as a 

performance measure. Trapezoidal rule was used to estimate the AUC during iterations for 

its efficiency. From our previous study [33], we observed that a momentum of 0.9 and an 

initial learning rate of 0.001 would reach stable plateau within 200 epochs for our studied 

task. We therefore used these parameters for the current study.

C. First-stage transfer learning strategy

In the first-stage transfer learning, ‘knowledge’ transfer from the CNN trained on non-

medical images was transferred to the CNN to be trained for classification of malignant and 

benign masses in mammography. Different levels of knowledge from the pre-trained task 

may be transferred to the current target task by varying the number of convolutional layers 

allowed to be fine-tuned by the image samples of the target task. The fully connected layers 
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were always initialized with a random seed in stage 1. To identify the best transfer learning 

scheme for fine-tuning the ImageNet-trained CNN to the breast mass classification task, we 

first conducted experiments with the mammography data as follows.

The mammography data was divided into a training set and a test set as shown in table I. A 

total of six transfer networks were evaluated: five from freezing C to the ith convolutional 

layer Ci, where i=1,.., 5, and one from not freezing any layers (C0). These networks are 

denoted as C1, C1-C2, C1-C3, C1-C4, C1-C5, and C0, respectively, in the following 

discussion. As the early convolutional layers are usually more generic and the deeper layers 

are more specific to the task, by varying the freezing point along the depth of the CNN 

layers, we attempted to find empirically the balance between transferring the generic and 

specific type of features for our target task. From the six transfer networks and the average 

performance of ten experiments, we selected the best levels for transfer learning of the 

mammography task.

After the network selection experiments, the training and test sets of 19,632 mammography 

ROIs were combined into a large training set for the rest of the experiments.

D. Multi-stage transfer learning

In our previous work on detection of masses in DBT, we have shown that a CNN trained on 

mammography images to differentiate true masses and normal breast tissue can also classify 

DBT masses with an AUC of 0.81 without additional fine-tuning. [23] This important 

observation can potentially alleviate the large data requirements for DBT when training deep 

learning structures. To assess the knowledge that could be gained by pre-training with 

mammography data for the target task of classifying malignant and benign mass in DBT, the 

stage-1 mammography transfer-trained CNN was tested without stage-2 fine-tuning with 

DBT data (Fig. 2, A).

We investigated two strategies for second-stage transfer learning: freezing up to C1 (Fig. 2, 

B) and freezing up to F4 (Fig. 2, C) layers. We chose these extreme situations to assess the 

range of variations when a relatively small set of samples for the target task was available for 

training. To provide a baseline for assessing the usefulness of additional pre-training with 

mammography data, the ImageNet-trained CNN was directly fine-tuned with DBT data (Fig. 

2, D).

E. Effects of finite sample size

The generalizability of a classifier can be evaluated with respect to the mean classifier 

performance and variance of the classifier performance trained on a finite training sample 

size and validated on an independent test set, given both sets are drawn from the same 

population distribution. [34] In this study, the effect of finite sample size of mammography 

data and DBT data was investigated for various transfer learning strategies. We simulated a 

wide range of available training sample sizes by drawing a percentage of ROIs ranging from 

1% to 100% from the mammography or DBT training set. At each percentage, ROIs by case 

were randomly drawn from the original training set with the constraint that the proportion of 

the malignant and benign classes was kept at about the same as the original set. To study the 

effects of training sample size without the additional variability due to different weight 
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initialization, the fully connected layers in the CNN were initialized randomly using a single 

random seed for all runs under each condition. Different random seeds were used to select a 

desired percentage of training samples and, for each set, to batch the training samples to be 

input to the CNN during training.

For the study of mammography sample size effect during stage 1 pre-training of the C1-

frozen CNN, we compared three fine-tuning schemes: (A) no additional stage 2 transfer 

learning, (B) with stage 2 training of C1-frozen CNN using a fixed DBT training data size 

(100%), and (C) with stage 2 training of C1-to-F4-frozen CNN using a fixed DBT training 

data size (100%) (Fig. 2).

For the study of DBT training sample size effect, we also compared three transfer learning 

schemes: (D) single-stage transfer learning by directly fine-tuning the C1-frozen CNN using 

DBT data, (B) stage 1 training of C1-frozen CNN using a fixed mammography data size 

(100%) data followed by stage 2 training of C1-frozen CNN using DBT data, and (C) stage 1 

training of C1-frozen CNN using a fixed mammography data size (100%) followed by stage 

2 training of C1-to-F4-frozen CNN using DBT data.

F. Performance evaluation

To select the optimum transfer network in stage 1 (selection of convolution layers to be 

frozen during transfer training) from the ImageNet-trained CNN to a mammography-trained 

CNN, the mammography data were partitioned into training and test sets for training and 

validation. After the selection, the entire mammography data set was used to study training 

sample size effects in stage 1 transfer learning, and the inference ability on DBT for the 

mammography-trained CNNs was evaluated by using the DBT training set as a validation 

set. To compare the single-stage and multi-stage approaches in the four transfer learning 

schemes (A-D), we used the mammography data and the DBT training set for transfer 

learning, and compared the sample size effects on the overall performance of each scheme 

using the same independent DBT test set that was held out during all training processes. The 

AUC was used as a summary performance measure. An ROI-based ROC curve was obtained 

when each ROI was considered an individual sample. A view-based ROC curve was 

obtained when the average score of all ROIs within each view was considered an individual 

sample. Averaging is preferred over taking maximum of the scores based on the previous 

studies [35], [36].

III. RESULTS

A. Selection of CNN levels for transfer learning

Fig. 3 shows the performance on the mammography test set for the six transfer networks, C0, 

C1, C1-C2, C1-C3, C1-C4 and C1-C5 when they were trained with the mammography training 

set (table I). Each transfer network was trained for ten random batchings of the training 

samples. When the entire network was allowed to train (C0), the CNN had the lowest AUC 

and the largest variation. Freezing only C1 resulted in the highest average AUC and the 

lowest variation. The transfer network C1 was therefore chosen and used as the primary 

transfer learning structure in the subsequent analyses.
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B. Inference ability of mammogram-trained CNN on DBT and finite sample size effect

To evaluate the usefulness of knowledge learned from mammography data on the inference 

ability of CNN on DBT, three stage 1 transfer networks were analyzed : C1, C1-C3 and C1-

C5. The DBT training set was used as a validation set, which has not been used for training 

at this stage, to assess the classification performance without additional fine-tuning using the 

DBT data. The sample size effect was observed by varying the simulated mammography 

data set size from 1% to 100% for the three transfer networks as shown in Fig. 4(a). The 

ROI-based performances at 100% of mammography training data for the C1, C1-C3 and C1-

C5 transfer networks reached AUCs of 0.88, 0.83 and 0.78, respectively. This trend is similar 

to the inference performance of stage 1 mammogram-trained CNN shown in Fig. 3, where 

C1 was also found to be the optimal transfer network among the six studied. These 

experiments show that mammography is a useful auxiliary domain for DBT. However, if the 

learning capacity of the CNN is constrained because too many layers (e.g., C1-C3 and C1-

C5) are frozen during transfer training, the inference ability of the mammography-trained 

CNN on DBT can be limited due to inadequate adaptation of the features learned from non-

medical images in the ImageNet-trained CNN to the breast imaging domains.

C. Single- and multi-stage transfer trained CNN and finite sample size effect

The effect of sample size was analyzed by simulating the available mammography and DBT 

training sample sizes from 1% to 100% of the original sets under different strategies as listed 

in Fig. 2. The experiment at each percentage was repeated 10 times to estimate the mean, 

median, range and interquartile range of AUCs. Fig. 5 and Fig. 6 show the box-and-whisker 

plots of the ROI-based AUCs over the training sample size range. Note that some small 

differences can be observed between the curves in Fig. 4(b) and Fig. 5(a) although both were 

obtained with scheme A because the former was evaluated with the DBT training set (used 

as a validation set in stage 1) while the latter was evaluated with the DBT test set. The 

statistical significance of the difference between pairs of the transfer learning approaches 

shown in fig. 5(d) and fig. 6(d) at different training sample sizes was evaluated with two-

tailed paired t-test. The p-values can be found in section VI of the Supplementary Material.

We compared the performance on the DBT test set by the single-stage transfer learning of 

the C1-frozen CNN using the DBT training set (scheme D) to that by the multi-stage transfer 

learning (scheme B) at 100% of the training sample sizes. The ROC curves and the AUCs 

for both the transfer networks obtained with the ROC curve fitting software by Metz et al 
[32] are shown in Fig. 7. The ROI-based AUCs were 0.84±0.02 and 0.90±0.02 for the 

single-stage and multi-stage transfer networks, respectively, and the view-based AUCs were 

0.85±0.05 and 0.91±0.03, respectively. The improvement in the view-based AUC by the 

multi-stage over single-stage transfer learning was statistically significant with a p-value of 

0.005.

IV. DISCUSSION

The increased adaptation of DBT for breast cancer screening and the possibility that the DM 

in the combo-mode will be replaced with a ‘synthesized’ DM necessitates innovative 

approaches to specifically improve the workflow of DBT interpretation. In this regard, CAD 
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for DBT may be utilized in an intelligent visualization tool that could potentially increase 

the efficiency of reading DBT volumes and the diagnostic accuracy. In this paper we 

introduced a multi-stage transfer learning approach for classification of masses in DBT 

where an ImageNet-trained CNN was first fine-tuned with more readily available 

mammography data before a second-stage fine-tuning with an available small DBT data set. 

We compared the multi-stage fine-tuned CNN with a single-stage CNN directly fine-tuned 

with the DBT data and studied the improvement in the CNN performance when the available 

mammography and DBT data varied over a wide range for the different strategies of fine-

tuning CNNs.

The ROC curves and AUCs for the classification of masses in the DBT test set (Fig. 7) 

indicate that the additional pre-training with mammography data significantly improved the 

performance over single-stage transfer learning with DBT data alone. Note that the AUCs in 

Fig. 7 are slightly different from those in Fig. 5 and Fig. 6 because they were estimated from 

the fitted ROC curves rather than by trapezoidal rules. In the absence of stage 1 pre-training, 

the single-stage transfer learning from ImageNet to DBT achieved an AUC of 0.82 at 100% 

sample size (Fig. 6(a)). Since the mammogram-trained CNN can classify DBT masses with 

an AUC of 0.86 (Fig. 5(a)), the observed low performance was mostly likely caused by the 

much smaller DBT training data. We expect that if a larger DBT training set is available, it is 

possible to achieve a higher AUC. In fact, 100% of the DBT training set contained 230 

views, which corresponded to about 10% of the 2242 mammography training set (Table I). 

With 10% of the mammography data, the AUC on the DBT test set was only about 0.72 

(Fig. 5(a)). This indicates that training with DBT data is likely more effective than training 

with mammography data if the sample sizes are comparable. A more detailed comparison of 

the performances of the CNN trained with single- and multi-stage transfer learning at a 

matched number of samples and a few other combined sample sizes is given in section VII 

of the Supplementary Material.

A number of important observations can be made from Fig. 4 to Fig. 6. First, when the 

sample size was small at either stage 1 or stage 2, the variations in the observed test 

performance were very large when the randomly drawn and randomly batched training 

samples were varied as indicated by the large IQRs and outliers. Occasionally the AUC 

could reach as high as those at 100% training sample size but the average AUC were not 

much better than by chance (0.5). Table IV presents a few examples of outliers observed in 

the different finite sample size experiments. This indicates that optimizing a CNN based on a 

small training set and exhaustively searching for the highest performance in a validation set 

could lead to overly optimistic results. The generalizability of a trained CNN therefore 

should be assessed with independent test cases that are not seen during parameter 

optimization.

Second, Fig. 5 shows that, with the largest available DBT training set size (100%) in our 

study, the additional stage 1 pre-training with the mammography training set in scheme B 

(C1-frozen) improved the AUC over training with the DBT set alone (Fig. 6, scheme D: 

AUC of 0.82 at 100% DBT data) even when the available mammography data set was as 

small as 10% (about 245 ROIs). However, if the learning capacity of the pre-trained CNN 

was constrained by freezing too many layers as in scheme C (C1-to-F4 frozen), the new 
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knowledge in the DBT training set might not be properly utilized. This problem is 

particularly clear when the mammography training set was small (below about 30%); the 

AUCs of the C1-to-F4-frozen CNN (C) could not even reach the level of directly transfer 

learning with the DBT training set alone.

Third, Fig. 6 further confirms that the additional stage 1 pre-training by the mammography 

data consistently provided a substantial gain in the mean AUC over the range of simulated 

DBT training set size studied. The mean AUC increased by about 0.13 to 0.06 between 

scheme D and scheme B. It also shows that the DBT training set even at 100% was too small 

to train the DCNN alone (D), leaving much room for improvement. An interesting result is 

that the AUC achieved by the C1-frozen CNN (B) was much lower than that by the C1-to-F4-

frozen CNN (C) at small DBT training sample sizes. In this set of experiments, the available 

mammography data for stage 1 pre-training was large (100%) and the AUC on the DBT test 

set already achieved an AUC of 0.86 without stage 2 fine-tuning (Fig. 5, scheme A). When 

the DBT training set at stage 2 was small (below about 40%), allowing too many layers to be 

fine-tuned with DBT actually reduced the AUC to below 0.86, likely because the stage 2 

fine-tuning attempted to adapt the knowledge learned from mammography to DBT but 

learning from such small DBT sets was insufficient to achieve robust adjustment of the large 

number of weights. Fine-tuning with C1-to-F4-frozen (C) retained the knowledge learned 

from the mammography data and obtain a small gain in AUC to above 0.86 by adjusting 

only the weights of the final fully connected layer. The results in Fig. 5 and Fig. 6 

demonstrate that, to balance the knowledge retained from the source task and the knowledge 

learned from the target task, the optimal number of CNN layers to be frozen during transfer 

learning has to be chosen properly, taking into consideration the characteristics of the source 

and target tasks and the relative sizes of the available samples from the two domains. 

Visualization of the deep features extracted from the fully connected layers and examples of 

the activation maps from the convolutional layers trained with single- and multi-stage 

transfer learning are shown in sections VIII and IX of the Supplementary Material.

We retrospectively studied if our choice of 200 training epochs for all conditions based on 

experiments in stage 1 without using a validation set in stage 2 was reasonable. The mean 

squared error (MSE)-vs-Epochs curves for the four transfer learning strategies at 5%, 40% 

and 100% of the training samples sizes are shown in Fig. 8. The MSEs reached very stable 

values after about 100 epochs under all the conditions shown, indicating that 200 epochs 

could reach convergence without over-training. The CNN training was regularized using 

jittering, dropout in all hidden layers and random vertical flipping with probabilities of 0.2, 

0.5, and 0.5, respectively, which might have reduced the risk of over-fitting.

To understand if freezing the first convolutional layer is consistently the optimal transfer 

network for the data used in this study, we retrospectively performed similar experiments as 

those shown in Fig. 3, except that the DBT training set and test set were used instead of the 

mammography sets. Fig. 9 shows the performance of the six transfer networks on the DBT 

test set. Similar to Fig. 3, the C1-frozen transfer network was robust and consistently better 

than the other transfer networks.

Samala et al. Page 9

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



There are limitations in this study. A recent study showed that, for the ImageNet 

classification task, if the training set was scaled from 1 million to 300 million image 

samples, the gain in average precision increased at best linearly as the data size increased 

logarithmically. [37] Because of the limited sizes of our mammography and DBT data sets at 

present we cannot study whether the relative performance of the various fine-tuning 

strategies will change when these data sets are much larger. It is possible that different 

training set size may change the tradeoff between the learning capacity in a transfer network 

and the overfitting risk. We will continue to expand the data sets and investigate these trends 

in future studies.

Another limitation is that we did not attempt to ”optimize” the hyperparameters such as 

momentum, learning rate, number of iterations, batch size, using a validation set for each 

condition due to the small available data sets and the computational costs. We did not 

exhaustively investigate the many different combinations that can be obtained by freezing 

different number of layers in each of the two-stage fine-tuning but selected only a few 

representative combinations of the two stage transfer learning. Nevertheless, our study has 

demonstrated the impact of training sample size in each stage and the effect of fine-tuning 

from related auxiliary tasks, thereby providing some useful information for transfer learning 

in medical imaging tasks. Although we used AlexNet in this study, the observed trends can 

likely be extended to other DCNN structures or tasks even if the absolute performance 

would differ.

A third limitation is that we did not compare the performance of deep learning methods with 

conventional feature engineering methods using the same data sets because our focus was to 

study the transfer learning strategies and sample size effects. In comparison with previous 

work using different data sets, Chan et al [38] developed a feature engineering approach for 

characterization of breast masses in a data set of 99 patients containing 56 malignant and 51 

benign masses and obtained an AUC of 0.93±0.02 from the DBT reconstructed volumes and 

0.84±0.04 from DBT projection view images from two-loop leave-one-case-out cross-

validation. A recent work on classification of breast masses in DBT by deep machine 

learning methods used a combination of CNN to characterize the masses in the in-plane 

direction and long short term memory networks to learn the texture pattern changes in the 

depth direction. [24] They used 185 DBT volumes with 197 biopsy-proven malignant 

masses and selected the benign masses from a computer-aided detection method. The 

combined method achieved an improvement (AUC = 0.92±0.02) over using the pre-trained 

CNN (AUC = 0.87±0.03) in a five-fold cross-validation. Our current study showed that our 

proposed multi-stage transfer learning (AUC = 0.91±0.03) can outperform single-stage 

transfer learning (AUC = 0.85±0.05) in an independent test set.

V. CONCLUSION

Our work demonstrates that multi-stage transfer learning can take advantage of the 

knowledge gained through source tasks from unrelated and related domains. We show that 

the limited data availability in a target domain can be alleviated with pre-training of the 

CNN using data from similar auxiliary domains. We also show that the gain in CNN 

performance from the additional stage of fine-tuning with the auxiliary data depends on the 
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relative sizes of the available training samples in the target and the auxiliary domains, and 

proper selection of the transfer learning strategy. Furthermore, when the training sample size 

is small, the variance in the performance of the trained CNN is large. Reporting the best 

performance through exhaustive search using a ”test” set can be overly optimistic. It is 

therefore important to validate the generalizability of the trained CNN with independent 

unknown cases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Overview of the CNN structures used in the multi-stage transfer learning. (a) ImageNet 

trained CNN with five convolutional layers and four fully connected layers. (b) Stage 1 

transfer learning using mammography data. Two fully connected layers (F4 and F5) are 

added to the ImageNet structure in (a). (c) Stage 2 transfer learning using DBT data. Note 

that (b) and (c) show three strategies of fine-tuning by freezing the CNN at different layers. 

The choice of fine-tuning layers is explained in sections II-C and II-D.
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Fig. 2. 
Four transfer learning and fine-tuning strategies using the mammography and the DBT data 

sets to be compared in this study. ‘A’ to ‘D’ denote the plots in the graphs from the Results 

section. ‘A’ and ‘D’ are referred to as single-stage transfer learning by mammograms and 

DBT, respectively. ‘B’ and ‘C’ are referred to as multi-stage transfer learning DBT. C1 

indicates that the C1 layer of the pre-trained CNN was frozen during transfer learning. C1-F4 

indicates that the C1 to F4 layers of the pre-trained CNN were frozen during transfer 

learning.
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Fig. 3. 
Box-and-whisker plots of inference results from stage 1 mammogram-trained CNN. The 

AUC values for classifying the mammography test ROIs (Table I) from the six transfer 

networks are shown for ten random batchings of the training samples. The training set and 

the test set consists of 12,360 and 7,272 ROIs, respectively. The 25th percentile, median, and 

75th percentile are represented by the bottom, middle and top of the boxes, respectively. The 

interquartile range (IQR) is the difference between the 75th and 25th percentile. AUC values 

outside the 1.5*IQR above the 25th percentile and below the 75th percentile are outliers. The 

whiskers indicate the maximum and minimum AUC values excluding the outliers. The 

dotted line shows the mean AUC of the repeated experiments.
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Fig. 4. 
The ROI-based AUC performance for classifying the 9,120 DBT training ROIs (serve as a 

validation set at this stage) (Table I) for three transfer networks at stage 1. Each simulated 

training set size was repeated with ten random samplings from the entire training set and 

random batching of the training samples. (a) Dependence of mean and standard deviation of 

AUC on mammography training set size. (b) Box-and-whisker plots of inference results 

from the stage 1 mammogram-trained C1-frozen transfer learning CNN. The entire set of 

19,632 mammography ROIs was used for randomly drawing the training subsets. Note that 

the plot in (b) uses categorical x-axis to show details of the low percentage region.
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Fig. 5. 
Box-and-whisker plots of ROI-based AUC performance on the DBT test set while varying 

the simulated mammography training sample size available for stage 1 C1-frozen transfer 

learning. (a) Stage 1 mammogram-trained C1-frozen CNN without stage 2 (scheme A in Fig. 

2). (b) Stage 2 C1-frozen transfer learning at a fixed (100%) DBT training set size (scheme 

B). (c) Stage 2 C1-to-F4-frozen transfer learning at a fixed (100%) DBT training set size 

(scheme C). The dotted line in (a) to (c) plots the mean AUC at each simulated training set 

size. Note that the plots in (a) to (c) use categorical x-axis to show details of the low 

percentage region. (d) shows the mean and standard deviation of AUC in (a) to (c) together 

with the x-axis plotted in a linear scale.
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Fig. 6. 
Box-and-whisker plots of the ROI-based AUC performance on the DBT test set while 

varying the simulated DBT sample size available for training. (a) single-stage transfer 

learning by DBT trained C1-frozen CNN without pre-training with mammography data 

(scheme D), (b) Stage 2 C1-frozen transfer learning using DBT training set after Stage 1 

transfer learning with a fixed mammography data set (100%) (scheme B), and (c) Stage 2 

C1-to-F4-frozen transfer learning using DBT training set after Stage 1 transfer learning with 

a fixed mammography data set (100%) (scheme C). The dotted line in (a) and (b) plots the 

mean AUC at each simulated training set size. Note that the plots in (a) to (c) use categorical 

x-axis to show details of the low percentage region. (d) shows the mean and standard 

deviation of AUC in (a) and (b) together with the x-axis plotted in a linear scale.
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Fig. 7. 
Comparison of the ROI-based and view-based ROC curves for the DBT test set using the 

single-stage transfer network (D in Fig. 2) versus the multi-stage transfer network (B in Fig. 

2). The entire mammography set and the entire DBT training set were used for training.
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Fig. 8. 
Dependence of the mean squared error on the number of epochs for four transfer networks in 

four schemes (A, B, C and D) from one of the random sampling experiments. Within each 

scheme the training and test curves are shown for 5%, 40% and 100% of the training sample 

sizes. For B and C, 100% mammography data were used in the stage 1 pre-training. The 

DBT test set was used for testing of all four schemes and conditions.
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Fig. 9. 
Box-and-whisker plots of inference results from stage 1 DBT trained CNN. The mean AUC 

values for classifying the DBT test ROIs (Table I) from the six transfer networks are shown 

for 20 random batchings of the training samples. The training set and the test set consists of 

9,120 and 3,560 ROIs, respectively.
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TABLE III

CNN STRUCTURE.

Layer Num. of neurons Filter size Num. of nodes

C1 61,504 11 × 11 64

C2 43,200 5×5 192

C3 18,816 3×3 384

C4 12,544 3×3 256

C5 12,544 3×3 256

F1 4096

F2 4096

F3 1000

F4 100

F5 2
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TABLE IV

EXAMPLES OF OUTLIERS WHERE THE CNN WHEN TRAINED ON SMALLER DATA SET SIZE 

PERFORMS EQUALLY OR BETTER THAN CNN TRAINED USING 100% OF THE TRAINING DATA.

Scheme Percent training data AUC at 100% training data Minimum AUC Mean AUC Outlier AUC

Training on Mammography data (Fig. 5)

A 5% 0.86 0.46 0.67 0.83

A 60% 0.86 0.79 0.83 0.89

B 5% 0.88 0.74 0.81 0.88

B 10% 0.87 0.76 0.82 0.88

C 10% 0.87 0.63 0.77 0.86

C 60% 0.87 0.82 0.86 0.90

Training on DBT data (Fig. 6)

D 10% 0.82 0.43 0.65 0.82

D 60% 0.82 0.66 0.78 0.86
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