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Abstract

Plant development studies often generate data in the form of multivariate time series, each variable corresponding 
to a count of newly emerged organs for a given development process. These phenological data often exhibit highly 
structured patterns, and the aim of this study was to identify such patterns in cultivated strawberry. Six strawberry 
genotypes were observed weekly for their course of emergence of flowers, leaves, and stolons during 7 months. 
We assumed that these phenological series take the form of successive phases, synchronous between individuals. 
We applied univariate multiple change-point models for the identification of flowering, vegetative development, and 
runnering phases, and multivariate multiple change-point models for the identification of consensus phases for these 
three development processes. We showed that the flowering and the runnering processes are the main determinants 
of the phenological pattern. On this basis, we propose a typology of the six genotypes in the form of a hierarchical 
classification. This study introduces a new longitudinal data modeling approach for the identification of phenological 
phases in plant development. The focus was on development variables but the approach can be directly extended to 
growth variables and to multivariate series combining growth and development variables.

Keywords:   Developmental pattern, development processes, Fragaria × ananassa, longitudinal data analysis, multiple change-
point model, phenological phase.

Introduction

Phenology consists of the study of recurrent biological events 
over time (Rathcke and Lacey, 1985). Recurrent events pro-
vide explicit information on the occurrence and duration of 
phenological phases (Denny et  al., 2014), which are of cen-
tral interest in phenological studies (Rathcke and Lacey, 1985; 
Wang et al., 2016). Phenological data often take the form of 
time series with various time indexing (e.g. day, week, and 
year) and variables of interest. Since temperature is the pri-
mary factor determining plant phenology, phenological series 
are often indexed by thermal time; that is, cumulative degree 

days above a threshold (Granier and Tardieu, 1998; Tsimba 
et al., 2013). Temperature responses are often modified by day 
length, and this influence can be taken into account using 
photo-thermal time (Craufurd et al., 2001; Li et al., 2018).

The analysis of phenological series falls into the statistical 
domain of longitudinal data analysis (Diggle et al., 2002) where 
a relatively large number of individuals are observed repeat-
edly over time. We here focus on the situation where the 
time sampling means that count data (i.e. number of newly 
emerged organs between two successive observation dates) are 
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collected instead of time interval data (i.e. time interval be-
tween the emergence of two successive organs) (Denny et al. 
2014). Collecting time interval data requires dating a new 
organ using a morphological stage which may be a source of 
uncertainty. This uncertainty is minimized in the case of count 
data since it only concerns a small proportion of the counted 
organs (often a single one) because of the sequential devel-
opment of phytomers that helps to determinate in a reliable 
way the last emerged organ at a given morphological stage. 
Phenological patterns are often summarized as single traits (e.g. 
time of first flowering occurrence or flowering duration; see 
Sønsteby and Heide, 2007; Honjo et al., 2011; Rahman et al., 
2014) or studied on the basis of cumulative numbers of organs 
fitted using sigmoidal functions (Sønsteby and Heide, 2008; 
Opstad et al., 2011). The shortcoming of this latter approach is 
that it exclusively focuses on the slowly varying component in 
phenological series while ignoring the rapidly varying com-
ponents (e.g. abrupt changes or local fluctuations in the pro-
duction of organs) (Chatfield, 2003). This approach is thus not 
appropriate for identifying phenological phases.

Strawberry, the main berry fruit crop (www.fao.org/faostat/
en/#home: production data of 2017), is a relevant model to 
study the occurrence and concomitance of various life cycle 
events. Vegetative reproduction with stolons or runners (elong-
ated stems) that produce daughter plants (hereafter identified 
as the runnering process) and sexual reproduction through in-
florescences occur successively or jointly depending on geno-
type, cultural technique, and environment (Costes et al., 2014; 
Perrotte et  al., 2016b). The control of the trade-off between 
flowering and runnering is crucial for managing the plant pro-
duction in nurseries and fruit production (Husaini and Neri, 
2016). Vegetative propagation could occur at the expense of 
inflorescences and therefore fruit yield (Tenreira et al., 2017). 
The molecular basis for this antagonism started to be de-
ciphered with the role of the gibberellin pathway in runnering 
control (Tenreira et  al., 2017; Caruana et  al., 2018), which 
involves the key role of GA20ox and DELLA allowing the 
trade-off between runnering and non-runnering genotypes. 
This pathway probably interacts with the flowering pathway 
involving phosphatidylethanolamine-binding protein (PEBP) 
family genes (Iwata et al., 2012; Perrotte et al., 2016a) with the 
hypothesis of the role of SOC (Mouhu et al., 2013). However, 
despite the fact that several studies (Battey et al., 1998; Darnell 
et al., 2003; Heide et al., 2013; Kurokura et al., 2013) have been 
conducted to understand the relationship between flowering 
and runnering processes, little is known concerning these de-
velopment processes with time.

The objective of this work was to design a general meth-
odology for identifying phenological phases on the basis of 
series of count of newly emerged organs. To this end, the ap-
proach based on multiple change-point models introduced 
by Perrotte et  al. (2016b) for the identification of flowering 
phases on the basis of univariate series of counts of inflores-
cences is here generalized. Multiple change-point models are 
applied to the identification of phenological phases on the 
basis of multivariate series combining different types of or-
gans, and new inference capabilities are introduced, in par-
ticular (i) the slope heuristic, a criterion that does not require 

the series to be very ‘long’ for the selection of the number of 
phases (Guédon, 2015); (ii) credibility intervals for each limit 
between phases; and (iii) variance decomposition within each 
phase for assessing the between-plant heterogeneity for a given 
genotype. These two latter methods coupled with hidden 
semi-Markov chains, a family of models for the segmentation, 
asynchronous between individuals, of series previously applied 
in various settings (Guédon et  al., 2007; Dambreville et  al., 
2015; Lièvre et al., 2016), are used for assessing the assumption 
of phenological phases synchronous between individuals of a 
given genotype. Identifying phenological phases synchronous 
between individuals is particularly relevant to study the in-
fluence of environmental conditions (e.g. fluctuating temper-
atures) on plant development. This new approach is applied 
for identifying flowering, vegetative development, runnering 
phases, and consensus phenological phases combining the 
three development processes in six cultivated strawberry geno-
types observed weekly during 7 months. This led us to a new 
characterization of these genotypes regarding potential agro-
nomical performances.

Materials and methods

Experimental protocol and data sets

Plant material and growth conditions
Six seasonal flowering genotypes (Capriss, Ciflorette, Cir107, Cléry, 
Darselect, and Gariguette) of the cultivated octoploid strawberry 
(Fragaria × ananassa) were studied. These genotypes differ by their pro-
duction of flowers, leaves, crowns, and stolons, and by their chilling re-
quirement and flowering earliness (see Supplementary Table S1 at JXB 
online). The number of leaves produced and, to a lesser extent, the 
number of flowers were correlated to the number of crowns produced. 
Cold-stored plants were obtained from Invenio nursery (Douville, France 
0°61'E and 45°02'N, altitude 150 m). In the nursery, these plants re-
ceived their chilling requirement in autumn 2014 by placing them in a 
climatic chamber at 2 °C. Afterwards, all the genotypes were planted on 
10 December, except Ciflorette (4 December), into a breeding ground 
bag (ORGAPIN) of 10 liters with drip irrigation and fertilization in a 
greenhouse at a minimal temperature of 8 °C. The experiment was con-
ducted in randomized blocks with four blocks. Each block consisted of 
two breeding ground bags per genotype placed side by side, each con-
taining six plants distributed in two rows—12 plants per genotype and 
block. Only the central plants with the greatest height per block were 
observed to avoid border effects between neighboring plants belonging 
to different genotypes. We thus observed a total of 32 replicates per geno-
type (Supplementary Fig. S1).

Phenological series
For the six seasonal genotypes, 32 plants per genotype were observed 
during seasonal production. During 27 weeks, from 16 December 2014 
to 24 June 2015, the number of newly emerged flowers, leaves, and sto-
lons per plant were counted using morphological criteria (petiole length 
>0.5 cm for leaves and length >1 cm for stolons). Once counted, the 
stolons were cut to the base according to production conditions. In add-
ition, the number of crowns (i.e. the number of axes) per plant were 
counted at the end of the experiment. We checked using ANOVA on 
ranks (Kruskal–Wallis test) that, for each genotype and development pro-
cess, there was no block effect on the count distributions pooling all the 
observation periods. The day of plantation was chosen as the time origin 
of the phenological series, which were indexed by days. The interval be-
tween two successive measurement occasions was between 5 d and 10 
d, this interval being a week in more than half of the cases (14 intervals 
among 26). Because of the unevenly spaced measurement occasions, the 
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data were standardized and each element of a phenological series con-
sisted of the number of weekly emerged organs. A thermal time indexing 
with base temperature (Tbase) at 0 °C (Rosa et al., 2011; Bethere et al., 
2016) was defined based on the growing degree day (GDD)

GDD = Tmean − Tbase,

where Tmean is the daily mean temperature computed on the basis of 
series of temperatures recorded every 10 min, and GDD are cumulated 
from the planting date.

Statistical models for the identification of phenological phases
We assumed that the phenological pattern of a genotype took the form 
of a succession of well-differentiated stationary phases where the distri-
bution of the number of weekly emerged organs did not change substan-
tially within each phase, but changed markedly between phases (Perrotte 
et al., 2016b). These phenological patterns were analyzed using two types 
of segmentation models applied to each genotype: (i) multiple change-
point models for the segmentation, synchronous between individuals, of 
the phenological series; and (ii) hidden semi-Markov chains for the seg-
mentation, asynchronous between individuals, of the same series. Hidden 
semi-Markov chains were applied to assess the synchronicity between 
individuals of the phenological phases.

Segmentation, synchronous between individuals, of 
phenological series for each genotype using categorical multiple 
change-point models
We here assume that the phenological phases were common for the dif-
ferent plants measured for a given genotype and used multiple change-
point models for the synchronous segmentation of the phenological series 
of the different plants; see Supplementary Methods S1 for a formal defin-
ition of multiple change-point models and associated statistical methods. 
For each genotype, the data to be segmented thus consisted of a sample of 
series of length 27 (the number of measurement dates) where each series 
corresponded to a plant. Univariate series for each type of organ (either 
flower, leaf, or stolon) and trivariate series combining flowers, leaves, and 
stolons were considered. The statistical methodology for univariate mul-
tiple change-point models directly generalizes to multivariate multiple 
change-point models since the different observed variables are assumed 
to be mutually independent within each phase.

Because the number of weekly emerged organs was between 0 and 25 
for flowers, 0 and 9 for leaves, and 0 and 11 for stolons, and the frequen-
cies were low for the highest values, we chose to consider these variables 
as categorical and to group the categories corresponding to the highest 
values above a given threshold. Furthermore, the frequency distributions 
for the flowers and the stolons were zero inflated, and standard parametric 
assumptions for count distributions (e.g. Poisson and negative binomial 
distributions) were not adapted to our case. The number of categories was 
seven for the leaves, the last one corresponding to the grouping of the 
values ≥6 (the frequency of >6 weekly emerged leaves was only 125 to 
be compared with a sample size of 5184, i.e. the cumulative length of the 
192 phenological series) for multiple change-point model estimation. The 
number of categories was four for the stolons, the last one corresponding 
to the grouping of the values ≥3 (the frequency of >3 weekly emerged 
stolons was only 238 to be compared with a sample size of 5184). For the 
flowers, because the values were more dispersed, we chose to keep alone 
the value 0 because of its high frequency (between 38% and 46% for the 
different genotypes), to group by two the following values up to 10, and 
to group the values ≥11 (the frequency of >11 weekly emerged flowers 
was only 165 to be compared with a sample size of 5184). We thus directly 
estimated probability masses for the possible categories within a given 
phenological phase. The rather large sample sizes (32 plants for each geno-
type to be multiplied by the length of the phase in observation dates) jus-
tified the direct estimation of probability masses for the possible categories.

We adopted a retrospective or off-line inference approach whose ob-
jective was to infer the number of phases J, the positions of the J–1 change 
points, and the within-phase probability masses for each number of organs. 
For the selection of the number of phases, we used the slope heuristic 

proposed by Guédon (2015). The principle of this kind of penalized like-
lihood criterion consists of making a trade-off between an adequate fit-
ting of the model to the data and a reasonable number of parameters to 
be estimated. Once the number of phases J had been selected for a given 
genotype, the series were optimally segmented into J phases using the dy-
namic programming algorithm proposed by Auger and Lawrence (1989). 
The assessment of multiple change-point models relied on two posterior 
probabilities (see Supplementary Methods S1 for formal definitions). (i) 
Posterior probability of the selected J-phase model, namely weight of the 
J-phase model among all the possible models. This posterior probability 
is an output of the slope heuristic (see Supplementary Methods S1). (ii) 
Posterior probability of the optimal segmentation in J phases, namely 
weight of the optimal segmentation among all the possible segmentations 
in J phases. This posterior probability should be interpreted with respect 
to the number of possible segmentations in J phases of a series of length 

T, which is 

Ç
T − 1
J − 1

å
.

These two posterior probabilities reflect the hierarchical nature of the 
inference with two successive steps: (i) selection of the number of phases 
using the slope heuristic considering all the possible segmentations in J 
phases for J=1,...,Jmax; and (ii) computation of the optimal segmentation 
in the number of phases previously selected.

It is often of interest to quantify the uncertainty concerning change-
point positions. To this end, we computed a credibility interval for each 
change point using the smoothing algorithm proposed by Guédon (2013); 
see Supplementary Methods S1 for a formal definition. In the multiple 
change-point models built on the basis of the phenological series, all 
the estimated parameters (i.e. change points and probability mass func-
tions for the numbers of weekly emerged organs within each pheno-
logical phase) are population parameters. It should be noted that because 
of the rather short length of phenological series and thus of phenological 
phases, it would be unreliable to estimate probability mass functions for 
the numbers of weekly emerged organs of each individual within each 
phenological phase (i.e. individual parameters). Nevertheless, there was 
some heterogeneity between individuals within each phase, and we thus 
decomposed the variance within each phase applying first a rank trans-
form following the standard approach of the one-way ANOVA on ranks. 
The proportion of between-individual variance was used for assessing the 
commonality of phase definition between individuals.

Segmentation, asynchronous between individuals, of 
phenological series for each genotype using hidden 
semi-Markov chains
In order to validate the assumption of phases synchronous between indi-
viduals, we built models for the asynchronous segmentation of individ-
uals and then checked the degree of synchronicity of the phases between 
individuals. These models are hidden semi-Markov chains (HSMCs) 
which are two-scale segmentation models (for a formal definition of these 
models and associated statistical methods, see Supplementary Methods 
S2). In our context, the successive phenological phases and their durations 
(coarse scale) are represented by a non-observable semi-Markov chain 
while the number of weekly emerged organs within a phase (fine scale) 
is represented by categorical observation distributions attached to each 
state of the semi-Markov chain. Hence, each state of the semi-Markov 
chain represents a phenological phase. A semi-Markov chain is defined by 
three subsets of parameters: (i) initial probabilities (π j; j=0,...,J–1) to model 
which is the first phase occurring at the beginning of the measurement; (ii) 
transition probabilities (pi;i, j=0,...,J–1) to model the succession of phases; 
and (iii) occupancy distributions attached to non-absorbing states (a state 
is said to be absorbing if, after entering this state, it is impossible to leave 
it) to model the phase duration in the number of measurement occasions.

A HSMC adds a fourth subset of parameters to the three subsets of 
parameters previously defined for the underlying semi-Markov chain: 
(iv) categorical observation distributions to model the number of weekly 
emerged organs within a phase.

In order to mimic the deterministic succession of phases of multiple 
change-point models, we assumed that the semi-Markov chain was com-
posed of successive transient states (a state is said to be transient if, after 
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leaving this state, it is impossible to return to it) followed by a final ab-
sorbing state and thus imposed that pi i+1=1 and pij=0 for j≠i+1 for each 
successive transient state i. We also grouped the categories as described for 
the multiple change-point models for the estimation of the observation 
distributions. A HSMC was built for each development process and each 
genotype. The estimated HSMC was used to segment each observed series 
in phenological phases (Guédon, 2003). The frequency distributions of the 
limits between phases were extracted from these optimal segmentations 
and compared with the limits between phases identified using the multiple 
change-point model estimated on the same phenological series.

Illustration with the identification of flowering phases in 
Gariguette using categorical multiple change-point models
For Gariguette flowering, the slope heuristic favors two multiple change-
point models (Fig. 1B): the optimal model with six phases (posterior 
probability of 0.78) and an alternative model with five phases (posterior 
probability of 0.22). The optimal segmentations in five and six phases are 
nested with a supplementary limit between days 113 and 119 in the case 
of six phases. This can be explained by a not too abrupt decrease of the 
flower production at the end of the first flowering flush. The segmenta-
tions are non-ambiguous with very high associated posterior probabilities 
(0.99 and 0.91 to be related to 14 950 and 65 780 possible segmentations 

for five and six phases, respectively). The limits between flowering phases 
are consistent with abrupt changes of flower production with time for all 
the individuals (see the heat map in Fig. 1A). The piecewise constant func-
tions corresponding to the successive mean numbers of weekly emerged 
flowers within each of the six or five phases are consistent with the weekly 
average numbers of emerged flowers extracted from data (Fig. 1B).

Results

The weekly mean numbers of emerged organs computed for 
each genotype highlight phenological phases especially for the 
flowers (see the flowering flush in February–March in Fig. 2A) 
and stolons (see the runnering flush starting in May in Fig. 2C). 
We assumed that the flowering, vegetative development (Fig. 
2B), and runnering patterns were common to all the 32 in-
dividuals of a given genotype and that these patterns took the 
form of a succession of stationary well-differentiated phases. The 
analysis of these developmental patterns broke down into two 
steps. (i) Identification of flowering, vegetative development, or 
runnering phases, synchronous between individuals, for each 

Fig. 1.  Flowering phases identified for Gariguette using univariate categorical multiple change-point models. (A) Heat map of the series of flower 
production, with the tint scale ranging from light (low intensity) to dark tint (high intensity). Flowering phases are delimited by solid and dashed black lines. 
Solid black lines represent limits between phases common to the optimal six-phase and alternative five-phase segmentations, and the dashed black line 
represents the additional limit between phases of the optimal segmentation. (B) The segmentations in phases are represented as piecewise constant 
functions (solid black lines for the optimal six-phase segmentation and dashed black lines for the alternative five-phase segmentation), with the level of 
each phase corresponding to the mean number of weekly emerged flowers in the phase. The weekly mean numbers of emerged flowers are represented 
by red points connected by lines and the associated SDs by dashed red lines. (This figure is available in color at JXB online.)
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genotype; see illustrations in Fig. 1, and Supplementary Figs S2 
and S3. We focused in particular on the selection of the number 
of phases and on the assessment of the synchronous segmenta-
tion assumption. (ii) Comparison of the flowering, vegetative 
development, or runnering patterns between genotypes in order 
to identify commonalities and differences between genotypes.

Validation of the assumption of a succession of 
phenological phases synchronous between individuals

The selection of the number of phenological phases is unam-
biguous in 11 cases among 18 with high posterior probabil-
ities of the multiple change-point models selected by the slope 
heuristic (Tables 1–3 for flowering, vegetative development, and 
runnering, respectively). In the case of a well-supported alter-
native model (in terms of posterior probability of the multiple 
change-point model) always with one more or one less phase, the 
corresponding optimal segmentation is nested (i.e. all the limits 

Fig. 2.  Weekly mean numbers of emerged (A) flowers, (B) leaves, and (C) 
stolons for the six genotypes. The time indexing is given both in days after 
plantation with corresponding months and in cumulative degree-days, 
these two time indexing being valid for all the genotypes except Ciflorette. 
(This figure is available in color at JXB online.)
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except one are common to the two segmentations) or almost 
nested (i.e. for some limits there is only an overlap between the 
two credibility intervals). The former case concerns the flowering 
phases of Gariguette (Table 1), the vegetative development phases 
of Cléry, Cir107, and Darselect (Table 2), and the runnering 
phases of Cléry (Table 3), while the latter case only concerns the 
runnering phases of Darselect and Capriss (Table 3).

The posterior probabilities of the optimal segmentation 
are always high (to be related to the number of possible seg-
mentations which is, 26 for two phases, 325 for three phases, 
2600 for four phases, 14 950 for five phases, and 65 780 for 
six phases) and the credibility intervals for the limits between 
phases are narrow (and often restricted to a single date for 18 
limits among 21 for the flowering phases, all the nine limits 
for the vegetative development phases, and two limits among 
eight for the runnering phases; Tables 1–3). We will thus only 
consider the optimal segmentation in the selected number of 
phases, and expressions such as ‘the optimal/alternative four-
phase segmentation’ will be used as a shortcut for ‘the optimal 
segmentation of the optimal/alternative four-phase model’ in 
the remainder of this article.

The distributions of the number of weekly emerged flowers, 
leaves, and stolons for consecutives phases are well differenti-
ated; see summaries in Tables 1–3 and illustrations for two geno-
types, Gariguette (Fig. 3A, C, E for flowers, leaves, and stolons, 

respectively) and Cir107 (Fig. 3B, D, F for flowers, leaves, and 
stolons, respectively). This is consistent with the segmentation 
assumption. These distributions are right skewed with various 
shapes often far from Poisson and negative binomial distribu-
tion shapes, some of them being zero inflated. This a posteriori 
justifies the direct modeling of probability masses for each organ 
count value appropriately aggregated. The piecewise constant 
functions deduced from the segmentations often show jumps 
of high amplitude for the mean number of weekly emerged 
organs at the limit between phases (Fig. 4A, B, C for flowers, 
leaves and stolons, respectively). It should be noted that these 
piecewise constant functions, while illustrative, only constitute 
a partial summary of the segmentations since the within-phase 
frequency distributions are always right skewed and often zero 
inflated and thus far from Gaussian distributions (Fig. 3).

In order to validate the assumption of phenological phases 
synchronous between individuals, a HSMC was built for each 
development process and each genotype. The number of states 
of the HSMC was the number of phases of the optimal mul-
tiple change-point model selected by the slope heuristic. The 
only exception was the vegetative development for Darselect 
for which the first phase consisting of a single date could not 
be modeled using HSMCs and a two-state HSMC corres-
ponding to a well-supported alternative multiple change-point 
model (Table 2) was thus built. We then assessed the degree of 

Table 2.  Vegetative development phases identified using univariate categorical multiple change-point models

Phase Limit Phase Limit Phase Limit Phase No. of phases Posterior probability

Segment Model

Gariguette 0.63, 1.06 40 2.1, 1.51 92 0.62, 0.79 154 2.56, 1.57 4 0.86 1
 7% (40, 40) 12% (92, 99) 10% (154, 154) 18%    
Cléry   1.14, 1.24   154 2.43, 1.79 2* 1 0.17
   6%   (154, 154) 28%    
Cléry 0.42, 0.72 40 1.32, 1.27   154 2.43, 1.79 3 1 0.53
 11% (40, 40) 9%   (154, 154) 28%    
Cléry 0.42, 0.72 40 1.62, 1.35 113 0.83, 0.94 154 2.43, 1.79 4* 0.65 0.29
 11% (40, 40) 12% (113, 119) 14% (154, 154) 28%    
Cir107   1.71, 1.54   154 3.24, 1.93 2 0.99 0.82
   5%   (154, 154) 24%    
Cir107 0, 0 13 1.8, 1.53   154 3.24, 1.93 3* 0.97 0.18
  (13, 13) 6%   (154, 162) 24%    
Darselect   0.97, 1.02   162 2.01, 1.45 2* 1 0.24
   5%   (162, 162) 33%    
Darselect 0, 0 13 1.02, 1.02   162 2.01, 1.45 3 1 0.76
  (13, 13) 6%   (162, 162) 33%    
Capriss   2.19, 1.69     1* 1 0.002
   9%        
Capriss 0, 0 13 2.28, 1.67     2 1 0.97
  (13, 13) 10%        
Ciflorette   1.7, 1.46     1 1 0.99
   4%        

For each genotype, the segmentations are presented in two rows as the alternation of phase characteristics (mean and SD of the number of weekly 
emerged leaves computed from the raw data without grouping in the first row and part of between-individual variance in % in the second row) and limit 
between phases (limit in the first row and interval with credibility 0.95 for this limit in the second row). The closeness of the limits between phases defines 
the alignment of this first set of columns describing the segmentations. The number of phases selected by the slope heuristic, the posterior probabilities 
of the multiple change-point model selected by the slope heuristic, and the optimal segmentation in the corresponding number of phases are given in the 
last three columns. The ‘*’ indicates a well-supported alternative model in terms of posterior model probability (except for Capriss for which the optimal 
segmentation contains a very short first phase consisting of a single date of measurement)
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synchronicity of the phenological phases between individuals 
from the asynchronous segmentation of individuals in phases 
made using the estimated HSMC. The frequency distributions 
of the limits between phases are often concentrated on the 
limit identified with the multiple change-point models and the 
immediately neighboring measurement dates (Supplementary 
Tables S2–S4). The mode of the frequency distribution is the 
limit identified by the multiple change-point models for 20 
limits among 21 for the flowering phases, for four limits among 
eight for the vegetative development phases, but for any of the 
eight limits for the runnering phases. The differences found for 
runnering phases can be explained by the asynchronous begin-
ning of stolon production between individuals also reflected 
in the high percentage (between 65% and 84%) of between-
individual heterogeneity in the phase of low stolon production 
(second phase) preceding the phase of high stolon production 
(third phase) for Cléry, Cir107, Darselect, and Capriss (Table 3).

Flowering process

Four (Cir107, Darselect, Capriss, and Ciflorette), five (Cléry), 
or six flowering phases (Gariguette) (Table 1; Fig. 4A) were 
identified on the basis of the univariate series of flower pro-
duction. All the genotypes present a common first flush from 
the end of January to the end of March (between 50 d and 99 
d after plantation corresponding to 486 and 1030 GDD, re-
spectively) with a short phase between the end of January and 
mid-February (71 d after plantation at 789 GDD) between the 
initial non-flowering phase and the phase corresponding to 
the peak of flower production of the first flush (Fig. 4A). It is 

explained in part by the asynchronous increase of flowering for 
the different individuals of a genotype (percentage of between-
individual heterogeneity between 24% and 43% for the dif-
ferent genotypes; see Table 1). The first flush differs between 
genotypes essentially by the production level of its peak (i.e. 
third phase), Gariguette having the highest production level, 
followed by Cir107, and the four other genotypes having rela-
tively similar production levels. Gariguette, which shows the 
highest peak of flower production for the first flush, also has a 
short phase intermediate between this peak and the phase of 
lower flower production. This phase is less well defined since, 
in the well-supported alternative model with one less phase 
(posterior probability of 0.22 for the five-phase model instead 
of 0.78 for the optimal six-phase model), it is merged with the 
following phase of lower flower production.

The main differences between genotypes concern (i) the 
occurrence of a second flowering flush from the end of May 
(175 d after plantation at 2288 GDD) until the end of the 
experiment for Gariguette and Cléry; (ii) the higher flower 
production in the flushes for Gariguette and Cir107; and (iii) 
for the four genotypes without a second flush, the higher 
flower production for Cir107 (Table 1; Fig. 4A). The six geno-
types can thus be grouped according to their flowering pat-
tern in the following way: (i) Gariguette and Cléry with two 
flowering flushes separated by a phase of lower flower pro-
duction (Fig. 4A); and (ii) Cir107, Darselect, Capriss, and 
Ciflorette with a single flowering flush followed by a phase 
of lower flower production starting in early April (113 d after 
plantation at 1209 GDD) (Fig. 4A). Within these two patterns, 
differences of flower production are observed, with a higher 

Table 3.  Runnering phases identified using univariate categorical multiple change-point models

Phase Limit Phase Limit Phase No. of phases Posterior probability

Segment Model

Gariguette 0.003, 0.08   162 1.47 1.78 2 1 0.98
 5%   (162, 162) 19%    
Cléry 0.01, 0.27   169 1.09, 1.68 2* 1 0.39
 7%   (169, 169) 44%    
Cléry 0, 0 154 0.14, 0.89 169 1.09, 1.68 3 0.32 0.52
  (119, 169) 84% (169, 175) 44%    
Cir107 0.004, 0.09 162 0.67, 1.13 175 2.81, 2.44 3 0.62 0.93
 4% (154, 162) 65% (169, 190) 35%    
Darselect 0.001, 0.04   162 0.67, 1.24 2 0.99 0.6
 5%   (162, 162) 46%    
Darselect 0, 0 154 0.11, 0.44 169 0.76, 1.31 3* 0.64 0.4
  (134, 162) 67% (162, 190) 53%    
Capriss 0.001, 0.04   169 0.64, 1.26 2 0.76 0.82
 4%   (169, 175) 33%    
Capriss 0, 0 162 0.14, 0.64 175 0.74, 1.32 3* 0.62 0.18
  (141, 169) 73% (175, 190) 37%    
Ciflorette 0.002, 0.04   160 2.27, 2.43 2 0.97 0.99
 5%   (160, 168) 23%    

For each genotype, the segmentations are presented in two rows as the alternation of phase characteristics (mean and SD of the number of weekly 
emerged stolons computed from the raw data without grouping in the first row and part of between-individual variance in % in the second row) and limit 
between phases (limit in the first row and interval with credibility 0.95 for this limit in the second row). The closeness of the limits between phases defines 
the alignment of this first set of columns describing the segmentations. The number of phases selected by the slope heuristic, the posterior probabilities 
of the multiple change-point model selected by the slope heuristic, and the optimal segmentation in the corresponding number of phases are given in the 
last three columns. The ‘*’ indicates a well-supported alternative model in terms of posterior model probability

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz331#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz331#supplementary-data
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flower production within the two flushes for Gariguette com-
pared with Cléry, and a higher flower production for Cir107 
compared with Darselect, Capriss, and Ciflorette.

Vegetative development process

One (Ciflorette), two (Cir107 and Capriss), three (Darselect 
and Cléry), or four vegetative development phases (Gariguette) 
(Table 2; Fig. 4B) were identified in the univariate series of 
leaf production. Two alternative models are well supported 
for Cléry (posterior probabilities of 0.29 for the four-phase 
model and 0.17 for the two-phase model instead of 0.53 for 

the optimal three-phase model) and one alternative model for 
Cir107 (posterior probability of 0.18 for the three-phase model 
instead of 0.82 for the optimal two-phase model) and Darselect 
(posterior probability of 0.24 for the two-phase model instead 
of 0.76 for the optimal three-phase model). The optimal and 
alternative segmentations are always nested. The optimal seg-
mentation incorporates a very short first phase consisting of a 
single date of measurement for Darselect and Capriss (Table 2). 
We did not consider that this first phase represents a biologic-
ally meaningful phenomenon and thus chose to merge it with 
the following phase for further analyses. This corresponds to 
a well-supported alternative model for Darselect but not for 

Fig. 3.  Distributions of (A, B) the number of weekly emerged flowers for each successive flowering phase, (C, D) the number of weekly emerged leaves for 
each successive vegetative development phase, and (E, F) the number of weekly emerged stolons for each successive runnering phase for Gariguette (A, 
C, E) and Cir107 (B, D, F). The phenological phases are defined by their limits in days after plantation in (A–D). (This figure is available in color at JXB online.)
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Capriss. For Cléry, we consider both the well-supported alter-
native two-phase and four-phase models in order to facilitate 
the comparison between genotypes.

For genotypes without a vegetative flush (Fig. 4B), the leaf 
production was higher for Capriss than for Ciflorette. For 
genotypes with at least one vegetative flush (Fig. 4B), all the 
four genotypes (Gariguette, Cléry, Cir107, and Darselect) show 
a common flush from early May (154–162 d after plantation 
at 1903–2039 GDD) until the end of the experiment. This 
flush differs between genotypes by its leaf production, which is 
higher for Cir107, intermediate for Gariguette and Cléry, and 
lower for Darselect. Gariguette and the alternative four-phase 
segmentation of Cléry are characterized by an additional first 
vegetative flush starting in mid-January (40 d after plantation 

at 397 GDD) and ending in mid-March (92 d after planta-
tion at 944 GDD) for Gariguette and early April (113 d after 
plantation at 1209 GDD) for Cléry, with the leaf production 
during this flush being higher for Gariguette than for Cléry. In 
contrast, Cir107, Darselect, and the alternative two-phase seg-
mentation of Cléry are characterized by an initial phase of low 
leaf production from early December to the end of April, with 
a higher leaf production for Cir107.

The main differences between genotypes concern (i) the 
number of vegetative development flushes (zero for Capriss and 
Ciflorette, one for Cir107, Darselect, and the alternative two-
phase model of Cléry, or two flushes for Gariguette and the 
alternative four-phase model of Cléry); and (ii) the leaf pro-
duction which is higher for Capriss compared with Ciflorette 
and for Cir107 compared with Darselect and the alternative 
two-phase model of Cléry (Fig. 4B). The genotypes can thus be 
grouped according to their vegetative development pattern in 
the following way (Fig. 4B): (i) Capriss and Ciflorette without 
a vegetative development flush; (ii) Darselect and Cir107 with a 
single flush starting in early May; and (iii) Gariguette with two 
flushes, Cléry being intermediate between Cir107/Darselect 
and Gariguette. However, because the alternative four-phase 
model is better supported than the alternative two-phase model, 
we chose to group Cléry with Gariguette.

Runnering process

Two (Gariguette, Darselect, Capriss, and Ciflorette) or three 
runnering phases (Cléry and Cir107) were identified in the 
univariate series of stolon production (Table 3; Fig. 4C). An al-
ternative three-phase model is well supported for Darselect (pos-
terior probability of 0.4 instead of 0.6 for the optimal two-phase 
model) and Capriss (posterior probability of 0.18 instead of 0.82 
for the optimal two-phase model), and an alternative two-phase 
model is well supported for Cléry (posterior probability of 0.39 
instead 0.52 for the optimal three-phase model). In contrast to 
the flowering and vegetative development processes, the assump-
tion of phases synchronous between individuals is less well sup-
ported in the case of the runnering processes. This is illustrated 
by (i) the non-nested optimal and alternative segmentations for 
Darselect and Capriss; (ii) the credibility interval for the limits 
between phases often not restricted to a single date and some-
times large; (iii) the high between-individual heterogeneity in 
the phase of low stolon production (second phase) preceding the 
phase of high stolon production (third phase) for Cléry, Cir107, 
Darselect, and Capriss (Table 3); and (iv) the difference between 
the limits obtained by the synchronous and the asynchronous 
segmentations of individuals (Supplementary Table S4).

All the genotypes present a flush of stolon production from 
May (162–175 d after plantation at 2039–2288 GDD) until the 
end of the experiment. The main differences between genotypes 
concern: (i) the beginning of the flush with a maximum dif-
ference of 2 weeks between genotypes (corresponding to 249 
GDD); (ii) the presence or not of a short intermediate phase 
between the phase of non-stolon production and the phase of 
high stolon production; and (iii) the level of stolon production in 
the last phase (Table 3; Fig. 4C), with Cir107 having the highest 
stolon production followed by Ciflorette, Gariguette, and Cléry, 

Fig. 4.  (A) Flowering, (B) vegetative development, and (C) runnering 
phases identified for the six genotypes. The successive phases are 
represented as piecewise constant functions, with the level of each 
phase corresponding to the mean number of weekly emerged organs 
within the corresponding phase. The time indexing is given both in days 
after plantation with corresponding months and in cumulative degree-
days, these two time indexing being valid for all the genotypes except 
Ciflorette. The piecewise constant functions corresponding to one flush are 
represented by solid lines, to two flushes by dashed lines, and to no flush 
by a dotted line. (This figure is available in color at JXB online.)

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz331#supplementary-data
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and Capriss and Ciflorette having the lowest stolon production. 
In summary, a single runnering pattern (Fig. 4C) was identified 
for all the genotypes with a single flush of stolon production 
which began late in seasonal production. This pattern differs 
mainly between genotypes by the level of stolon production.

Fluctuations of organ production synchronous 
between individuals

The production of flowers, leaves, and stolons was affected by 
marked fluctuations synchronous between individuals during 
the observation period (Fig. 2). We thus investigated these fluc-
tuations of organ production by first-order differencing the ob-
served series of the number of weekly emerged flowers, leaves, 
and stolons (Chatfield 2003). The weekly mean first-order dif-
ferenced series (Supplementary Fig. S4) show numerous de-
viations from 0, either positive (corresponding to an increase 
in organ production between two weeks) or negative (cor-
responding to a decrease in organ production between two 
weeks). Some of them can be explained by jumps of organ pro-
duction corresponding to limits between phenological phases 
(see Tables 1–3), while the others correspond to synchronous 
fluctuations of organ production between individuals probably 
due to change in the environmental conditions.

Joint analysis of the flowering, vegetative growth, and 
runnering processes and typology of the strawberry 
genotypes

In order to summarize for each genotype the different phases of 
plant development based on the three development processes, 
we jointly analyzed the flowering, vegetative development, and 
runnering processes using trivariate multiple change-points 

models. These trivariate multiple change-point models high-
lighted the changes of highest amplitudes for one or several of 
the three processes (assuming in this latter case that they were 
synchronous); see Table 4; Fig. 5.

For all the genotypes, the first consensus limit between 
phases corresponds to the beginning of the first flowering 
flush (i.e. the beginning of the first low flower production 
phase within this flush), except for Darselect (beginning of the 
second high flower production phase within this flush) (Table 
4; Fig. 5). For Gariguette and Cléry (using the alternative well-
supported model in this case), additional consensus limits were 
identified within the second flowering flush: at the beginning 
of the second high flower production phase for Gariguette and 
at the end of this phase for the two genotypes. For all the geno-
types, the last consensus limit corresponds to the beginning of 
the runnering flush. This limit is also explained by the begin-
ning of a vegetative flush for Cléry and Darselect. The non-
detection of some limits identified using univariate models (in 
particular between vegetative phases) can be explained by the 
lower amplitude of the jumps between successive phases.

Three consensus phases were identified at a macroscopic 
scale (Fig. 5): a first consensus phase corresponding to a vege-
tative phase; a second consensus phase beginning with the first 
flowering flush and ending just before the runnering flush; and 
a third consensus phase corresponding to the runnering flush. 
This third phase is roughly concomitant with the vegetative 
flush at the end of seasonal production for all the genotypes 
except Capriss and Ciflorette and with the second flowering 
flush for Gariguette and Cléry (Fig. 5). These results show that 
the developmental pattern of strawberry is mainly structured 
by the flowering and runnering processes and suggest different 
hierarchies between the three development processes during 
plant development.

Table 4.  Consensus phases identified using trivariate categorical multiple change point models

Limits between phases No. of phases Posterior probability

Segment Model

Gariguette 50, F 71, F 99, F, V 162, R 5 0.98 1
 (50, 50) (71, 71) (99, 99) (162, 162)    
Cléry 57, F   169, V, R 3 0.44 0.86
 (57, 57)   (154, 169)    
Cléry 57, F  113, F, V 162, R 4* 0.6 0.14
 (57, 57)  (113, 113) (162, 169)    
Cir107 57, F   162, R 3 1 1
 (57, 57)   (162, 162)    
Darselect 64, F   162, V, R 3 0.9 1
 (64, 71)   (162, 162)    
Capriss 57, F   162, R 3 0.82 1
 (57, 57)   (162, 169)    
Ciflorette 56, F   160, R 3 1 1
 (56, 56)   (160, 160)    

For each genotype, the limits between phases are presented in two rows [limit in the first row followed by F for flowering, V for vegetative development, 
and R for runnering if the limit corresponds to a limit identified in the univariate series (the letter is in italics if the limit only falls in the interval with credibility 
0.95 or is only identified in a well-supported alternative model) and credibility interval for this limit in the second row]. The closeness of the limits between 
phases defines the alignment of this first set of columns describing these limits. The number of phases selected by the slope heuristic, the posterior 
probabilities of the multiple change-point model selected by the slope heuristic, and the optimal segmentation in the corresponding number of phases 
are given in the last three columns. The ‘*’ indicates a well-supported alternative model in terms of posterior model probability. 

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz331#supplementary-data
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Univariate multiple change-point models highlighted 
marked differences in flowering, vegetative development, and 
runnering patterns among the six strawberry genotypes. On 
this basis, we were able to classify these genotypes hierarchic-
ally according to their developmental patterns with primarily 
one or two flushes of flowering, secondarily a single flush of 
runnering occurring at the end of the observation period, and 
zero, one or two flushes of vegetative development, with these 
flushes being of varying intensity (Fig. 6).

Discussion

Flowering is the main development process for 
characterizing genotypes

Extension of flowering through neoformation of 
floral buds
All the genotypes display a first flush of flowering lasting al-
most 2 months (Fig. 4A). This flush is the consequence of the 
floral initiation that took place in preformed buds (Barthélémy 
and Caraglio, 2007) during the previous autumn when 

temperatures and day length decreased (reviewed in Heide 
et al., 2013). Usually, this first flowering flush derives from three 
well-differentiated inflorescences (Bosc et al., 2012; Massetani 
and Neri, 2016), which each end a primary or a secondary axis. 
After this first flush, environmental conditions are still favorable 
for floral initiation, without an intervening dormancy period, 
and the resulting flower buds are termed neoformed (Puntieri 
et al., 2002). In our culture conditions of a forced soilless culture 
system, environmental conditions are still inductive until the 
beginning of April (in our conditions, 12.7 °C with a 12.45 h 
photoperiod reported as inducible conditions by Ito and Saito, 
1962; Heide, 1977; Heide et al., 2013). To gain a better under-
standing of the preformation of flower buds (corresponding to 
organs present in plants at the beginning of the experiment), 
and neoformation of flower buds, a detailed spatio-temporal 
architectural analysis (Savini et al., 2005; Massetani et al., 2011) 
should be conducted.

Flowering intensity
Differences between genotypes in production level of the 
flowering phases (Table 1; Fig. 4A) could be due to the 

Fig. 5.  Heat map representation of flowering, vegetative development, and runnering patterns for the six genotypes. The tint scale represents the 
intensity of each phase normalized by the maximal intensity of each development process (flowering, vegetative development, and runnering processes) 
for all the genotypes. Vertical black lines represent the consensus limits identified using the optimal trivariate multiple change-point models and the 
dashed black line represents the supplementary limit between consensus phases identified in the Cléry alternative four-phase segmentation. (This figure 
is available in color at JXB online.)
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complexity of inflorescences in terms of number of flowers 
(Darrow, 1929; Battey et al., 1998). As an illustration, the first 
inflorescence of Elsanta can produce a maximum of 15 flowers 
(Battey et al., 1998), while this can reach 30 for Gariguette, well 
known for its first inflorescence complexity (M.N. Demené, 
personal communication). Once the apical dominance has been 
released, development of branch crowns, by sympodial or lat-
eral branching, can occur (Husaini and Neri, 2016). As branch 
crowns are terminated by inflorescences, the number of branch 
crowns is intrinsically linked to the number of inflorescences 
(Hytönen et al., 2004; Tenreira et al., 2017) and consequently is 
correlated with the number of flowers as shown in our study 
for most of the genotypes (Supplementary Table S1). This trait 
could be triggered by the time of the apical dominance release 
or by the strength of this dominance (Sugiyama et al., 2004).

Flowering earliness
In plants, variations in temperature and light intensity during 
the floral inductive period for flower bud initiation could ex-
plain between-year variations in flowering time (Poethig, 2003). 
In strawberry, earlier floral initiation in preformed buds in au-
tumn is favored by lower temperatures or lower light intensities 
than usual but also by a genetic background with genotypes 
more receptive to environment flowering signals (Opstad et al., 
2011). This earliness will lead to a more differentiated terminal 
inflorescence before dormancy, which will emerge earlier than 
those issued from late floral initiation (Heide et al., 2013) such 
as illustrated by Gariguette (Supplementary Table S1) which 
flowered earlier than the other genotypes (Fig. 4A).

After dormancy, temperature is the main factor for organo-
genesis of inflorescences and flowers (Massetani et  al., 2011), 
and thermal time could be used to relate flowering occurrence 
to temperature under a wide range of environmental condi-
tions (e.g. Opstad et  al., 2011). In strawberry, constant base 
temperature for calculation of cumulative GDD for thermal 

time models differed according to the process (Bethere et al., 
2016) and for a single process according to the study (e.g. for 
flowering Opstad et al., 2011; Bethere et al., 2016). A constant 
base temperature of 0 °C was used in several analyses for both 
leaf appearance (Rosa et al., 2011) and flowering (Opstad et al., 
2011; Bethere et al., 2016) and we chose to use this base tem-
perature in our study. The use of a thermal time indexing will 
allow comparison of our results with other experiments re-
garding the effect of temperature on the duration and produc-
tion level of the different phenological phases.

In our experiment, differences in timing of floral initiation 
with consequences on flowering time (Fig. 4A) were due to 
genotype (Sønsteby, 1997; Opstad et al., 2011) and therefore 
linked to genetic background. This genetic background could 
involve allelic differences in the flowering time molecular 
gene network such as the FT/TFL1 family (Iwata et al., 2012; 
Koskela et al., 2016). This genetic background can be studied 
by analyzing simultaneously the temporal expression of these 
genes and the developmental stages of flower buds (Hyun 
et al., 2019).

Balance between vegetative development including 
runnering and flowering

The flowering and runnering processes are the main deter-
minants of the phenological phases observed in this study (Fig. 
5). They are also the two reproduction processes (sexual for 
flowering and vegetative for runnering; Heide et al., 2013). For 
each crown, leaves are produced sequentially by the terminal 
meristem while the terminal inflorescence results from the 
transformation of this meristem (Savini et  al., 2005). Stolons 
are produced by the lateral meristem in specific environ-
mental conditions (high temperatures and long photoperiod; 
Heide et  al., 2013). The production of leaves is thus far less 
constrained over time than the production of inflorescences 

Fig. 6.  Developmental patterns of strawberry genotypes summarized as a hierarchy of development processes. Development processes ordered from 
the most to the least discriminant; that is, flowering, runnering, then vegetative development are used to hierarchically partition the six genotypes on the 
basis of the number of flushes for each development process. The genotypes within each group of a partition are ordered according to the number of 
weekly emerged organs within the phases.

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz331#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz331#supplementary-data
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or stolons which corresponds to specific organogenesis events 
or environmental conditions. This could explain why vege-
tative development appears more regular than flowering and 
runnering which show changes of higher amplitudes between 
phases (Fig. 4). A temporal analysis of plant architecture devel-
opment, namely of the timing and positioning of the vege-
tative and reproductive development along the axes, would 
allow identification of the underlying spatio-temporal devel-
opmental rules (Massetani et al., 2011).

Multiple change-point models for identifying phases in 
plant growth and development

HSMCs are more general than multiple change-point models 
in terms of modeling assumptions, with the capability to repre-
sent phases asynchronous between individuals. This is counter-
balanced in multiple change-point models by the possibility to 
model very short phases but also by the availability of methods 
with a strong mathematical basis for selecting the number of 
phases. Moreover, discrepancies from the multiple change-
point model assumption of phases synchronous between in-
dividuals are easily detected using credibility intervals for the 
limits between phases and parts of between-individual variance 
within phases.

We introduced multivariate multiple change-point models 
in order to summarize the flowering, vegetative develop-
ment, and runnering processes. If the assumption of well-
differentiated stationary phases is reasonably valid in the 
univariate case, it is far less in the multivariate case where the 
numbers of weekly emerged flowers, leaves, and stolons are 
integrated in multiple change-point models as three observed 
variables. We indeed did not expect systematic synchronous 
changes of these three variables. However, the model be-
havior is a bit more subtle since a change of high amplitude 
on a single variable may be sufficient to define a limit be-
tween phases. This was illustrated in particular by the stolons 
for which the well-defined runnering phase was detected for 
the six genotypes even if we incorporate the flower and leaf 
variables. We thus exploited this behavior in the meta-analysis 
combining univariate and multivariate multiple change-point 
models to help in defining a hierarchy between the dif-
ferent phenological phases identified for each organ using the 
univariate multiple change-point models. In our study, results 
of this meta-analysis showed a hierarchy between the three 
development processes, with first flowering, then runnering, 
and finally vegetative development.

We here focus on count data corresponding to the number 
of newly emerged organs which are critical for studying de-
velopment processes. However, the proposed approach can be 
directly transposed to interval-scale variables (e.g. change in 
dimension corresponding to growth variable) as illustrated in 
Guédon et  al. (2007) by the identification of growth phases 
in forest trees using Gaussian multiple change-point models. 
Development and growth variables can thus easily be com-
bined in multivariate multiple change-point models, opening 
up the way for more integrative studies of plant growth and 
development.

Conclusion

Our results provide evidence that a longitudinal data ana-
lysis, based on multiple change-point models, enables the 
deciphering of complex dynamic developmental traits such 
as flowering and vegetative development. These results lay the 
foundation for more efficient breeding of new strawberry var-
ieties by characterizing their developmental patterns. In add-
ition, the identification of phenological phases contributes to 
advancing our understanding of flowering, vegetative develop-
ment, and runnering in strawberry.

Supplementary data

Supplementary data are available at JXB online.
Fig. S1. Design of the randomized block experiment.
Fig. S2. Vegetative development phases identified for 

Gariguette using univariate categorical multiple change-point 
models.

Fig. S3. Runnering phases identified for Gariguette using 
univariate categorical multiple change-point models.

Fig. S4. Weekly means with associated confidence intervals 
computed from the first-order differenced series of the num-
bers of weekly emerged flowers, leaves, and stolons for all the 
genotypes except Ciflorette.

Table S1. Cumulative number of flowers, leaves, crowns, 
and stolons produced per plant during the observation period, 
Spearman rank correlation coefficient between the cumula-
tive number of flowers and the cumulative number of crowns, 
chilling requirement, and flowering earlinessfor the six 
genotypes

Table S2. Frequency distributions of the limits between 
phases computed from the segmentation, asynchronous be-
tween individuals, of the series of flower production using 
hidden semi-Markov chains.

Table S3. Frequency distributions of the limits between 
phases computed from the segmentation, asynchronous be-
tween individuals, of the series of leaf production using hidden 
semi-Markov chains.

Table S4. Frequency distributions of the limits between 
phases computed from the segmentation, asynchronous be-
tween individuals, of the series of stolon production using 
hidden semi-Markov chains.

Methods S1. Definition of categorical multiple change-
point models and associated statistical methods.

Methods S2. Definition of hidden semi-Markov chains and 
associated statistical methods.
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